Management and comprehensive assessment of the probability of bankruptcy of Ukrainian enterprises based on the methods of fuzzy sets theory
-
DOIhttp://dx.doi.org/10.21511/ppm.17(3).2019.30
-
Article InfoVolume 17 2019, Issue #3, pp. 370-381
- Cited by
- 1166 Views
-
183 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
Managing and evaluating the probability of bankruptcy of Ukrainian enterprises is one of the most complex and relevant problems of the economy and management. In the context of Ukraine’s integration into the international space, there is an arising issue of assessing the bankruptcy of Ukrainian enterprises that meets international financial standards and allows administering this process. A qualitative assessment of the bankruptcy of an enterprise is possible only using artificial intelligence methods – the fuzzy sets method, which allows including qualitative and quantitative indicators to the model for assessing bankruptcy of enterprises in Ukraine. The aim of the article is to improve the existing method for assessing the probability of bankruptcy of Ukrainian enterprises on the basis of the fuzzy sets method, which will include indicators of international financial reporting and allow more efficient administration and management of this process. The subject of the research is the process of formalizing the method of the enterprise bankruptcy assessment in accordance with the indicators of International Financial Reporting Standards. The study offers a mechanism for a comprehensive assessment of the probability of bankruptcy of Ukrainian enterprises with the use of the methods of fuzzy sets, which is based on international financial indicators: current ratio, payable turnover ratio, equity turnover ratio, return on assets, equity-to-debt ratio. The mechanism allows quickly managing bankruptcy conditions. In order to administer the economic activity of the bankrupt enterprises, based on the theory of a fuzzy sets, a system of enterprises management takes into account the international financial reporting.
- Keywords
-
JEL Classification (Paper profile tab)С60, G33, O16
-
References32
-
Tables3
-
Figures2
-
- Figure 1. The matrix of normalized values of indicators for assessment of the conditional enterprise bankruptcy probability
- Figure 2. Decision support system for assessing the probability of bankruptcy of enterprises
-
- Table 1. Experts answers to a question: “What value of the current ratio indicates a high risk of bankruptcy?”
- Table 2. Classification of financial indicators
- Table 3. System of indicators for assessment of the conditional enterprise bankruptcy probability
-
- Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609.
- Altman, E. (1984). A Further Empirical Investigation of the Bankruptcy Cost Question. The Journal of Finance, 39(4), 1067-1089.
- Andrushshak, Ye. M. (2004). Діагностика банкрутства українських підприємств [Diahnostyka bankrutstva ukrainskykh pidpryiemstv]. Finansy Ukrainy, 9, 118-124.
- Barsotti, F., Mancino, E. M., & Pontier, M. (2016). Switching tax structure and payouts in endogenous bankruptcy models. An International Journal of Probability and Stochastic Processes, 88(2), 163-190.
- Beaver, W., & Manegold, J. (1975). The Association between Marcet-Determined and Accounting Measured of Systematic Risk Some Futher Evidence. Journal of Financial and Quantitative Analysis, 10(2), 231-284.
- Beermann, K. (1976). Prognosemöglichkeiten von Kapitalverlusten mit Hilfe von Jahresabschlüssen. Westfälischen Wilhelms-Universität Münster, 11, 118-121.
- Chrystal, M. (2019). Creating a path out of bankruptcy through action learning. Action Learning: Research and Practice, 16(1), 62-67.
- Davidova, G., & Belikov, A. (1999). Методика количественной оценки риска банкротства предприятий [Metodika kolichestvennoy otsenki riska bankrotstva predpriyatiy]. Upravlenie riskami, 3, 13-20.
- Dontsova, L., & Nikiforova, N. (2015). Анализ бухгалтерской (финансовой) отчетности [Analiz bukhgalterskoy (finansovoy) otchetnosti]. Moscow: Delo i Servis.
- Fonitska, T., & Kozlovskyi, S. (2013). Modern theoretical and methodological approaches to the budget management system forming. Economic Annals-XXI, 3-4, 35-37.
- Gavurova, B., Packova, M., Misankova, M., & Smrcka, L. (2017). Predictive potential and risks of selected bankruptcy prediction models in the Slovak business environment. Journal of Business Economics and Management, 18(6), 1156-1173.
- Haider Mohammed Ali Bani Ata (2019). Addressing financial bankruptcy from the Islamic perspective. Banks and Bank Systems, 14(3), 9-19.
- Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441-468.
- Kozlovskyi, S., Mazur, H., Vdovenko, N., Shepel, T., & Kozlovskyi, V. (2018). Modeling and forecasting the level of state stimulation of agricultural production in Ukraine based on the theory of fuzzy logic. Montenegrin Journal of Economics, 14(3), 37-53.
- Law of Ukraine “Code of Ukraine on Bankruptcy Procedures”, No. 19, 2597-VIII, October 18, 2018.
- Ligonenko, L. (2016). Антикризове управління підприємством в умовах економіки знань та інтелектуалізації менеджменту [Antykryzove upravlinnia pidpryiemstvom v umovakh ekonomiky znan ta intelektualizatsii menedzhmentu]. Ekonomichnyi forum, 1, 161-170.
- Lukason, O., & Käsper, K. (2017). Failure prediction of government funded start-up firms. Investment Management and Financial Innovations, 14(2-2), 296-306.
- Matviychuk, A. (2013). Bankruptcy prediction in transformational economy: discriminant and fuzzy logic approaches. Fuzzy economic review, XV(1), 21-38.
- Matviychuk, A. (2013). Нечіткі, нейромережеві та дискримінантні моделі діагностування можливості банкрутства підприємств [Nechitki, neiromerezhevi ta dyskryminantni modeli diahnostuvannia mozhlyvosti bankrutstva pidpryiemstv]. Neiro-nechitki tekhnolohii modeluivannia v ekonomitsi, 2, 71-118.
- Obradović, D. B., Jakšić, D., Rupić, I. B., & Andrić, M. (2018). Insolvency prediction model of the company: the case of the Republic of Serbia. Economic Research-Ekonomska Istraživanja, 31(1), 139-157.
- Robbins, T. R., Zemanek, J. E., & Jr. (2017), UFC pay-per-view buys and the value of the celebrity fighter. Innovative Marketing, 13(4), 35-46.
- Sayfullin, R., & Kadykov, G. (2003). Прогнозирование банкротства с использованием факторных моделей [Prognozirovanie bankrotstva s ispolzovaniem faktornykh modeley]. Ekonomika i zhizn, 41, 11.
- Schwarz, J., & Pospisil, M. (2018). Bankruptcy, Investment, and Financial Constraints: Evidence from the Czech Republic. Eastern European Economics, 56(2), 99-121.
- Serrano-Cinca, C., Fuertes-Callén, Y., Gutiérrez-Nieto, B., & Cuellar-Fernández, B. (2014). Path modelling to bankruptcy: causes and symptoms of the banking crisis. Applied Economics, 46(31), 3798-3811.
- Sharapov, O., & Kaidanovich, D. (2012). Оцінювання можливого банкрутства на основі індикаторів фінансового стану компаній з використанням нейронних мереж зустрічного розповсюдження [Otsiniuvannia mozhlyvoho bankrutstva na osnovi indykatoriv finansovoho stanu kompanii z vykorystanniam neironnykh merezh zustrichnoho rozpovsiudzhennia]. Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi, 1, 207-227.
- Tereshenko, O. (2003). Дискримінантна модель інтегральної оцінки фінансового стану підприємства [Dyskryminantna model intehralnoi otsinky finansovoho stanu pidpryiemstva]. Ekonomika Ukrainy, 8, 38-44.
- Toffler, R., & Tishaw, H. (1977). Going, going, gone – four factors which predict. Accountancy, 88, 50-54.
- Wakkee, I., Dorrestein, F., & Englis, P. (2014). The stigmatization of bankrupt entrepreneurs in Dutch newspapers. Journal of Small Business & Entrepreneurship, 27(4), 369-391.
- Yousuf, A., Haddad, H., Pakurar, M., Kozlovskyi, S., Mohylova, A., Shlapak, O., & Janos, F. (2019). The effect of operational flexibility on performance: a field study on small and medium-sized industrial companies in Jordan. Montenegrin Journal of Economics, 15(1), 47-60.
- Yu, K., & He, D. (2018). The choice between bankruptcy liquidation and bankruptcy reorganization: a model and evidence. Journal of Management Analytics, 5(3), 170-197.
- Zadeh, L. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
- Zavadskyi, I., Osovska, T., & Yushkevych, O. (2006). Економічний словник [Ekonomichnyi Slovnyk]. Kyiv: Kondor.