Measuring investors’ emotions using econometric models of trading volume of stock exchange indexes
-
DOIhttp://dx.doi.org/10.21511/imfi.17(3).2020.21
-
Article InfoVolume 17 2020, Issue #3, pp. 281-291
- Cited by
- 771 Views
-
185 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
Traditional finance explains all human activity on the ground of rationality and suggests all decisions are rational because all current information is reflected in the prices of goods. Unfortunately, the development of information technology and a growth of demand for new, attractive possibilities of investment caused the process of searching new, unique signals supporting investment decisions. Such a situation is similar to risk-taking, so it must elicit the emotional reactions of individual traders.
The paper aims to verify the question that the market risk may be the determinant of traders’ emotions, and if volatility is a useful tool during the investment process as the measure of traders’ optimism, similarly to Majewski’s work (2019). Likewise, various econometric types of models of estimation of the risk parameter were used in the research: classical linear using OLS, general linear using FGLS, and GARCH(p, q) models using maximum likelihood method. Hypotheses were verified using the data collected from the most popular world stock exchanges: New York, Frankfurt, Tokyo, and London. Data concerned stock exchange indexes such as SP500, DAX, Nikkei, and UK100.
- Keywords
-
JEL Classification (Paper profile tab)D91, G41, C58
-
References36
-
Tables4
-
Figures0
-
- Table 1. ARCH(1) estimation for DAX index
- Table 2. GARCH(1,1) estimation for S&P500 index
- Table 3. ARCH(1) estimation for NIKKEI 225 index
- Table 4. GARCH(1,1) estimation for FTSE 100 index
-
- Baker, M., & Stein, J. (2002). Market Liquidity as a Sentiment Indicator (Harvard Institute Research Working Paper, No. 177).
- Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. The Journal of Finance, 61(4), 1645-1680.
- Bandopadhyaya, A., & Jones, A. L. (2006). Measuring investor sentiment in equity markets. Journal of Assets Management, 7(3-4), 208-215.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.
- Bortolotti, L., & Mameli, M. (2012). Self-deception, Delusion and the Boundaries of Folk Psychology. Humanamente, 20, 203-221.
- Carroll, R. T. (2003). The Skeptic’s Dictionary: A Collection of Strange Beliefs, Amusing Deceptions, and Dangerous Delusions. Wiley.
- Charoenrook, A. (2003). Does Sentiment Matter? (Unpublished working paper). Retrieved from www.researchgate.net (accessed on 17th November 2019).
- Chopra, N., Lee, C., Schleifer, A., & Thaler, R. H. (1993). Yes, Discounts on Closed-End Funds Are a Sentiment Index. Journal of Finance, 48, 801-808.
- Crawford, D., Franz, D. R., & Lobo, G. J. (2005). Signaling managerial optimism through stock dividends and stock splits: a reexamination of the retained earnings hypothesis. Journal of Financial and Quantitative Analysis, 40(3), 531-561.
- Czekaj, J., Czupryna, M., Kubinska, E., & Markiewicz, L. (2016). Technical Analysis as a Rational Tool of Decision Making for Professional Traders. Emerging Markets Finance and Trade, 52(12), 2756-2771.
- Dennis, P., & Mayhew, S. (2002). Risk-Neutral Skewness: Evidence from Stock Options. Journal of Financial and Quantitative Analysis, 37(3), 471-493.
- Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987-1008.
- Fisher, K. L., & Statman, M. (2003). Consumer Confidence and Stock Returns. The Journal of Portfolio Management, 30(1), 115-127.
- Fisher, K. L., & Statman, M. (2000). Investor sentiment and stock returns. Financial Analysts Journal, 56(2), 16-23.
- DeWeese-Boyd, I. (2007). Taking Care: Self-Deception, Culpability and Control. Teorema: Revista Internacional de Filosofía, 26(3), 161-176.
- Gehrig, T., & Menkhoff, L. (2006). Extended evidence on the use of technical analysis in foreign exchange. International Journal of Finance & Economics, 11(4), 327-338.
- Gilovich, T., & Griffin, D. (2002). Introduction - Heuristics and Biases: Then and Now. In T. Gilovich, D. Griffin & D. Kahneman (Eds.), Heuristics and Biases: The Psychology of Intuitive Judgment (pp. 1-18). Cambridge: Cambridge University Press.
- Gup, B. E. (1973). A Note on Stock Market Indicators and Stock Prices. Journal of Financial & Quantitative Analysis, 8(4), 673-685.
- Kahneman, D., & Tversky, A. (1979). Prospect theory: An Analysis of Decision Under Risk. Econometrica, 47(2), 263-292.
- Keim, D. B., & Madhavan, A. (2000). The Relation between Stock Market Movements and NYSE Seat Prices. Journal of Finance, 55(6), 2817-2841.
- Kumar, M. S., & Persaud, A. (2002). Pure Contagion and Investors’ Shifting Risk Appetite: Analytical Issues and Empirical Evidence. International Finance, 5(3), 401-436.
- Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32(2), 311-328.
- Lashgari, M. (2000). The role of TED spread and confidence index in explaining the behavior of stock prices. American Business Review, 18(2), 9-11.
- Lee, C. M. C., Schleifer, A., & Thaler, R. H. (1991). Investor Sentiment and the Closed-End Fund Puzzle. Journal of Finance, 46, 75-109.
- Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The Journal of Finance, 55(4), 1705-1765.
- Majewska, A. (2000). Szacowanie zmiennosci na rynku opcji. Przeglad Statystyczny, 1-2, 161-170.
- Majewski, S. (2019). Could the volatility be a measure of Investors’ optimism? In K. Nermend & M. Latuszynska (Eds.), Experimental and Quantitative Methods in Contemporary Economics. Computational Methods in Experimental Economics (CMEE) 2018 Conference (pp. 133-142). Cham, Switzerland: Springer Proceedings in Business and Economics.
- Murphy, J. J. (2019). Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. New York, USA: New York Institute of Finance.
- Neal, R., & Wheatley, S. M. (1998). Do measures of investor sentiment predict returns? Journal of Financial and Quantitative Analysis, 33(4), 523-547.
- Nianhang, X., Xuanyu, J., Kam, C. Ch., & Zhihong, Y. (2013). Analyst coverage, optimism, and stock price crash risk: Evidence from China. Pacific-Basin Finance Journal, 25, 217-239.
- Randall, M. R., Suk, D. Y., & Tully, S. W. (2003). Mutual fund cash flows and stock market performance. The Journal of Investing, 12(1), 78-80.
- Sewell, M. (2007). Technical analysis. Department of Computer Sciences, University College London.
- Sims, C. (1980). Macroeconomics and Reality. Econometrica, 48, 1-48.
- Thaler, R. H. (Ed.). (2005). Advances in Behavioral Finance (Vol. 2). Princeton University Press.
- Yueh-hsiang, L., Shing-yang, H., & Ming-shen, Ch. (2005). Managerial optimism and corporate investment: Some empirical evidence from Taiwan. Pacific-Basin Finance Journal, 13(5), 523-546.
- Whaley, R. E. (2000). The Investor Fear Gauge. Journal of Portfolio Management, 26(3), 12-17.