Mobile apps in retail: Effect of push notification frequency on app user behavior
-
DOIhttp://dx.doi.org/10.21511/im.17(2).2021.10
-
Article InfoVolume 17 2021, Issue #2, pp. 102-111
- Cited by
- 2343 Views
-
892 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
Push notifications are a core functionality of mobile apps and allow app publishers to interact with existing app users and send promotional content. Since every push notification can also interrupt or annoy app users, the frequency of push notifications is a critical success factor. This study investigates how different frequencies of push notifications affect the behavior of app users of mobile apps in retail. In an experiment with 17,500 app users, five different frequencies are tested over seven weeks, and the effects on real observed app user behavior are analyzed. The results show that as the frequency of the non-personalized push notifications increases, uninstalls increase, and the direct open rate of push notifications decreases. A significant influence on indirect opens cannot be proven. The results provide practitioners with important insights into the potential harm that a too high frequency of push notifications can cause. Furthermore, the results support the importance of relevant content tailored to the respective user.
- Keywords
-
JEL Classification (Paper profile tab)M31, M37, L81
-
References41
-
Tables7
-
Figures0
-
- Table 1. Start-end-comparison of recipients, direct opens and indirect opens per frequency group
- Table 2. Start-end-comparison of direct open rate and indirect open rate per frequency group
- Table 3. Uninstall rate determined by frequency – regression results
- Table 4. Direct open rate determined by frequency – regression results
- Table 5. Indirect open rate determined by frequency – regression results
- Table 6. Comparison of regression results for direct and indirect opens
- Table 7. Summary of experiment results
-
- Adamczyk, P. D., & Bailey, B. P. (2004). If not now, when? The effects of interruption at different moments within task execution. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 271-278.
- Ahrholdt, D., Greve, G., & Hopf, G. (2019). Online-Marketing-Intelligence: Kennzahlen, Erfolgsfaktoren und Steuerungskonzepte im Online-Marketing. Springer Fachmedien Wiesbaden.
- Alsayed, S., Bano, N., & Alnajjar, H. (2019). Evaluating practice of smartphone use among university students in undergraduate nursing education. Health Professions Education.
- Bellman, S., Treleaven-Hassard, S., Robinson, J., Varan, D., & Potter, R. (2013). Brand communication with branded smartphone apps: First insights on possibilities and limits. GfK Marketing Intelligence Review, 5(2), 24-27.
- Berman, B. (2016). Planning and implementing effective mobile marketing programs. Business Horizons, 59(4), 431-439.
- Bidargaddi, N., Pituch, T., Maaieh, H., Short, C., & Strecher, V. (2018). Predicting which type of push notification content motivates users to engage in a self-monitoring app. Preventive Medicine Reports, 11, 267-273.
- Chen, Y. (2017). Integrated and Intelligent Manufacturing: Perspectives and Enablers. Engineering, 3(5), 588-595.
- Deckert, R. (2019). Digitalisierung und Industrie 4.0: Technologischer Wandel und individuelle Weiterentwicklung. Springer Gabler.
- Deckert, R., & Wohllebe, A. (2021). Digitalisierung und Einzelhandel: Taktiken und Technologien, Praxisbeispiele und Herausforderungen (1st ed.). Springer Gabler.
- Diez, E. (2020). Managing A Veterinary Practice: A Guide To Organizational Culture In Veterinary Practice. International Journal of Applied Research in Business and Management, 1(1), 18-26.
- Eurostat. (2018). Anteil der Internetnutzer in der Europäischen Union (EU-28) nach Ländern im Jahr 2018. Statista.
- Fischer, J. E., Yee, N., Bellotti, V., Good, N., Benford, S., & Greenhalgh, C. (2010). Effects of content and time of delivery on receptivity to mobile interruptions. Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services – MobileHCI ’10, 103.
- Freyne, J., Yin, J., Brindal, E., Hendrie, G. A., Berkovsky, S., & Noakes, M. (2017). Push Notifications in Diet Apps: Influencing Engagement Times and Tasks. International Journal of Human–Computer Interaction, 33(10), 833-845.
- Glay, A. (2019). Real-Time Push Mobile Marketing Strategy: To What Extent Do Time and Relevance Matter? Business Administration Dissertations.
- Hsu, T.-H., & Tang, J.-W. (2020). Development of hierarchical structure and analytical model of key factors for mobile app stickiness. Journal of Innovation & Knowledge, 5(1), 68-79.
- Iqbal, S. T., & Horvitz, E. (2007). Disruption and recovery of computing tasks: Field study, analysis, and directions. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – CHI ’07, 677-686.
- Jacob, K., & Gupta, D. (2017). Factors influencing people to later visit mobile app based on push notifications: A comparison between formats.
- Kakalejcík, L., Bucko, J., & Vejacka, M. (2019). Differences in Buyer Journey between High- and Low-Value Customers of E-Commerce Business. Journal of Theoretical and Applied Electronic Commerce Research, 14(2).
- Kazeminia, A., Kaedi, M., & Ganji, B. (2019). Personality-Based Personalization of Online Store Features Using Genetic Programming: Analysis and Experiment. Journal of Theoretical and Applied Electronic Commerce Research, 14(1).
- Kim, M. (2014). The effects of external cues on media habit and use: Push notification alerts and mobile application usage habits.
- Kim, S., Baek, T. H., Kim, Y.-K., & Yoo, K. (2016). Factors affecting stickiness and word of mouth in mobile applications. Journal of Research in Interactive Marketing, 10(3), 177-192.
- Malik, H., Shakshuki, E. M., & Katuku, S. (2017). Exploring the Relationship Between Version Updates and Downloads of Asthma Mobile Apps. Procedia Computer Science, 109, 624-631.
- McFarlane, D. C. (2002). Comparison of Four Primary Methods for Coordinating the Interruption of People in Human-Computer Interaction. Human–Computer Interaction, 17(1), 63-139.
- McGookin, D., Tahiroğlu, K., Vaittinen, T., Kytö, M., Monastero, B., & Vasquez, J. C. (2019). Investigating tangential access for location-based digital cultural heritage applications. International Journal of Human-Computer Studies, 122, 196-210.
- Mehrotra, A., Pejovic, V., Vermeulen, J., Hendley, R., & Musolesi, M. (2016). My Phone and Me: Understanding People’s Receptivity to Mobile Notifications. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1021-1032.
- Morrison, L. G., Geraghty, A. W. A., Lloyd, S., Goodman, N., Michaelides, D. T., Hargood, C., Weal, M., & Yardley, L. (2018). Comparing usage of a web and app stress management intervention: An observational study. Internet Interventions, 12, 74-82.
- Okoshi, T., Ramos, J., Nozaki, H., Nakazawa, J., Dey, A. K., & Tokuda, H. (2015). Reducing users’ perceived mental effort due to interruptive notifications in multi-device mobile environments. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 475-486.
- Pejovic, V., & Musolesi, M. (2014). InterruptMe: Designing intelligent prompting mechanisms for pervasive applications. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 897-908.
- Peng, K.-F., Chen, Y., & Wen, K.-W. (2014). Brand relationship, consumption values and branded app adoption. Industrial Management & Data Systems, 114(8), 1131-1143.
- Pham, X.-L., Nguyen, T.-H., Hwang, W.-Y., & Chen, G.-D. (2016). Effects of Push Notifications on Learner Engagement in a Mobile Learning App. 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT), 90-94.
- Ross, F. (2020). Hearing Aid Accompanying Smartphone Apps in Hearing Healthcare. A Systematic Review. Applied Medical Informatics, 42(4).
- Sahami Shirazi, A., Henze, N., Dingler, T., Pielot, M., Weber, D., & Schmidt, A. (2014). Large-scale assessment of mobile notifications. Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems – CHI ’14, 3055-3064.
- Sai Vijay, T., Prashar, S., & Sahay, V. (2019). The Influence of Online Shopping Values and Web Atmospheric Cues on E-Loyalty: Mediating Role of E-Satisfaction. Journal of Theoretical and Applied Electronic Commerce Research, 14(1).
- Smith, A., Salas, K. de, Lewis, I., & Schüz, B. (2017). Developing smartphone apps for behavioural studies: The AlcoRisk app case study. Journal of Biomedical Informatics, 72, 108-119.
- StatCounter. (2019). Anteil mobiler Endgeräte an allen Seitenaufrufen nach Regionen weltweit im Jahr 2018. Statista.
- Vagrani, A., Kumar, N., & Ilavarasan, P. V. (2017). Decline in Mobile Application Life Cycle. Procedia Computer Science, 122, 957-964.
- VuMA. (2017). Beliebteste Anwendungen und Funktionen auf den persönlichen Handys/Smartphones der Apple-Kunden in Deutschland im Vergleich mit der Bevölkerung im Jahr 2017. Statista.
- Wang, X., Hong, Z., Xu, Y. C., Zhang, C., & Ling, H. (2014). Relevance judgments of mobile commercial information: Relevance Judgment of Mobile Commercial Information. Journal of the Association for Information Science and Technology, 65(7), 1335-1348.
- Westermann, T., Möller, S., & Wechsung, I. (2015). Assessing the Relationship between Technical Affinity, Stress and Notifications on Smartphones. Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct – MobileHCI ’15, 652-659.
- Wohllebe, A. (2020). Consumer Acceptance of App Push Notifications: Systematic Review on the Influence of Frequency. International Journal of Interactive Mobile Technologies (IJIM), 14(13).
- Wohllebe, A., Dirrler, P., & Podruzsik, S. (2020). Mobile Apps in Retail: Determinants of Consumer Acceptance – a Systematic Review. International Journal of Interactive Mobile Technologies (IJIM), 14(20), 153-164.