Examining mobile banking performance among college students in Indonesia
-
DOIhttp://dx.doi.org/10.21511/bbs.19(4).2024.11
-
Article InfoVolume 19 2024, Issue #4, pp. 136-149
- 105 Views
-
18 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
The purpose of this study was to measure the performance of mobile banking by offering an integration from the diffusion of innovation and service convenience models among college students in Indonesia. This study uses a cross-sectional design with a survey study as a data acquisition strategy and the quantitative research type. The questionnaire was completed by 202 respondents from the University of North Sumatra, Telkom Mercubuana, Multimedia Nusantara, Bengkulu, Brawijaya, Katolik Widya Mandala Surabaya, Negeri Jakarta, Tarumanagara, Trisakti, and Pembangunan Nasional Veteran, due to their active use of mobile banking. Data analysis used the partial least squares structural equation modeling approach, where the service convenience model was analyzed in the second order and the diffusion of innovation model was analyzed in the first order. The results prove that decision convenience, access convenience, transaction convenience, benefit convenience, and post-benefit convenience are the determining dimensions of service convenience and have a significant positive effect on mobile banking performance. In addition, compatibility also has a significant positive effect on mobile banking performance. However, relative advantage and complexity do not affect mobile banking performance.
- Keywords
-
JEL Classification (Paper profile tab)G21, O33, L21
-
References67
-
Tables6
-
Figures1
-
- Figure 1. Research model for examining the mobile banking performance among college students in Indonesia
-
- Table 1. Respondent demographics of mobile banking users
- Table 2. Reliability and convergent validity for variables affecting mobile banking performance
- Table 3. Result of Fornell-Larcker for variables affecting mobile banking performance
- Table 4. Coefficient of determination for variables affecting mobile banking performance
- Table 5. Result of bootstrapping from SmartPLS
- Table 6. Hypothesis results to test each variable on mobile banking performance
-
- Acikgoz, F., Elwalda, A., & De Oliveira, M. J. (2023). Curiosity on Cutting-Edge Technology via the Theory of Planned Behavior and Diffusion of Innovation Theory. International Journal of Information Management Data Insights, 3(1), 100152.
- Ahdiat, A. (2022). Internet Banking and Mobile Banking Transaction Volume per 1,000 population in ASEAN Countries (2015–2021).
- Ahmad, A., Ahmad, R., & Hashim, K. F. (2016). Innovation traits for business intelligence successful deployment. Journal of Theoretical and Applied Information Technology, 89(1), 96.
- Al-Dmour, H., Saad, N., Basheer Amin, E., Al-Dmour, R., & Al-Dmour, A. (2023). The influence of the practices of big data analytics applications on bank performance: filed study. VINE Journal of Information and Knowledge Management Systems, 53(1), 119-141.
- Al-Jabri, I., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory. Journal of Electronic Commerce Research, 13(4), 379-391.
- Alsetoohy, O., Ayoun, B., Arous, S., Megahed, F., & Nabil, G. (2019). Intelligent agent technology: what affects its adoption in hotel food supply chain management? Journal of Hospitality and Tourism Technology, 10(3), 286-310.
- Band, J. A. (2006). Consumer adoption of the online desktop (MBA Tesis). University of Pretoria, Afrika Selatan.
- Benoit, S., Klose, S., & Ettinger, A. (2017). Linking service convenience to satisfaction: Dimensions and key moderators. Journal of Services Marketing, 31(6), 527-538.
- Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of Marketing, 66(3), 1-17.
- Chang, K. C., Chen, M. C., Hsu, C. L., & Kuo, N. T. (2010). The effect of service convenience on post-purchasing behaviours. Industrial Management & Data Systems, 110(9), 1420-1443.
- Chang, Y. W., & Polonsky, M. J. (2012). The influence of multiple types of service convenience on behavioral intentions: The mediating role of consumer satisfaction in a Taiwanese leisure setting. International Journal of Hospitality Management, 31(1), 107-118.
- Chen, L. D., Gillenson, M. L., & Sherrell, D. L. (2004). Consumer acceptance of virtual stores: a theoretical model and critical success factors for virtual stores. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 35(2), 8-31.
- Colwell, S. R., Aung, M., Kanetkar, V., & Holden, A. L. (2008). Toward a measure of service convenience: multiple-item scale development and empirical test. Journal of Services Marketing, 22(2), 160-169.
- Cooper, R. B., & Zmud, R. W. (1990). Information technology implementation research: a technological diffusion approach. Management Science, 36(2), 123-139.
- Dihni, V. A., (2022). Survei Indikator Ungkap Mayoritas Publik Belum Pernah Mengakses Digital Banking [Indicator Survey Reveals Majority of Public Have Never Accessed Digital Banking]. (In Indonesian).
- Doll, W. J., Deng, X., Raghunathan, T. S., Torkzadeh, G., & Xia, W. (2004). The meaning and measurement of user satisfaction: A multigroup invariance analysis of the end-user computing satisfaction instrument. Journal of Management Information Systems, 21(1), 227-262.
- Duarte, P., Silva, S. C., & Ferreira, M. B. (2018). How convenient is it? Delivering online shopping convenience to enhance customer satisfaction and encourage e-WOM. Journal of Retailing and Consumer Services, 44, 161-169.
- Grantham, A., & Tsekouras, G. (2005). Diffusing wireless applications in a mobile world. Technology in Society, 27(1), 85-104.
- Hair, J., Hult, G. T. M., & Ringle, C., & Sarstedt, M. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM). Classroom Companion: Business.
- Han, S. L., & Lee, S. H. (2011). Effect of Service Convenience on the Relationship Performance in B2B Markets: Mediating Effect of Relationship Factors. Journal of Distribution Research, 16(4), 65-93.
- Hashem, G., & Aboelmaged, M. (2023). Leagile manufacturing system adoption in an emerging economy: an examination of technological, organizational and environmental drivers. Benchmarking: An International Journal, 30(10), 4569-4600.
- Hlee, S., Lee, J., Moon, D., & Yoo, C. (2017). The acceptance of ‘intelligent trade shows’: Visitors’ evaluations of IS innovation. Information Systems Frontiers, 19, 717-729.
- Hsu, L. L., Lai, R. S., & Weng, Y. T. (2008). Understanding the critical factors effect user satisfaction and impact of ERP through innovation of diffusion theory. International Journal of Technology Management, 43(1-3), 30-47.
- Jahan, N., & Shahria, G. (2022). Factors effecting customer satisfaction of mobile banking in Bangladesh: a study on young users’ perspective. South Asian Journal of Marketing, 3(1), 60-76.
- Jebarajakirthy, C., & Shankar, A. (2021). Impact of online convenience on mobile banking adoption intention: A moderated mediation approach. Journal of Retailing and Consumer Services, 58, 102323.
- Jiang, L. A., Yang, Z., & Jun, M. (2013). Measuring consumer perceptions of online shopping convenience. Journal of Service Management, 24(2), 191-214.
- Joia, L. A., & Altieri, D. (2018). Antecedents of continued use intention of e-hailing apps from the passengers’ perspective. The Journal of High Technology Management Research, 29(2), 204-215.
- Kashif, Z., Waqas, M., & Azhar, T. (2023). Understanding the Impact of Service Convenience on Customer Satisfaction in Home Delivery: Evidence from Karachi. Academic Journal of Social Sciences (AJSS), 7(1), 151-169.
- Kaura, V. (2013). Service convenience, customer satisfaction, and customer loyalty: Study of Indian commercial banks. Journal of Global Marketing, 26(1), 18-27.
- Kaura, V., Durga Prasad, C. S., & Sharma, S. (2015). Service quality, service convenience, price and fairness, customer loyalty, and the mediating role of customer satisfaction. International Journal of Bank Marketing, 33(4), 404-422.
- Khan, M. A., & Alhumoudi, H. A. (2022). Performance of E-banking and the mediating effect of customer satisfaction: a structural equation model approach. Sustainability, 14(12), 7224.
- Khazaei, A., Manjiri, H., Samiey, E., & Najafi, H. (2014). The effect of service convenience on customer satisfaction and behavioral responses in bank industry. International Journal of Basic Sciences & Applied Research, 3(1), 16-23.
- Kyari, A. K., & Hudithi, F. A. A. (2022). Understanding consumers’ adoption of mobile banking in Nigeria: an empirical investigation. International Journal of Learning and Change, 14(2), 181-198.
- Lai, J. Y., Ulhas, K. R., & Lin, J. D. (2014). Assessing and managing e-commerce service convenience. Information Systems Frontiers, 16, 273-289.
- Lee, J. (2020). Task closure and task complexity effects on L2 written performance. Journal of Second Language Writing, 50, 100777.
- Lin, H. F. (2013). Determining the relative importance of mobile banking quality factors. Computer Standards & Interfaces, 35(2), 195-204.
- Liu, H., Ma, L., & Huang, P. (2015). When organizational complexity helps corporation improve its performance. Journal of Management Development, 34(3), 340-351.
- Lou, L., Tian, Z., & Koh, J. (2017). Tourist satisfaction enhancement using mobile QR code payment: An empirical investigation. Sustainability, 9(7), 1186.
- Lutfi, A., & Alqudah, H. (2023). The Influence of Technological Factors on the Computer-Assisted Audit Tools and Techniques Usage during COVID-19. Sustainability, 15(9), 7704.
- Lutfi, A., Alkelani, S. N., Alqudah, H., Alshira’h, A. F., Alshirah, M. H., Almaiah, M. A., Alsyouf, A., Alrawad, M., Montash, A., & Abdelmaksoud, O. (2022). The role of E-accounting adoption on business performance: The moderating role of COVID-19. Journal of Risk and Financial Management, 15(12), 617.
- Mahakittikun, T., Suntrayuth, S., & Bhatiasevi, V. (2020). The impact of technological-organizational-environmental (TOE) factors on firm performance: Merchant’s perspective of mobile payment from Thailand’s retail and service firms. Journal of Asia Business Studies, 15(2), 359-383.
- Maroufkhani, P., Iranmanesh, M., & Ghobakhloo, M. (2023). Determinants of big data analytics adoption in small and medium-sized enterprises (SMEs). Industrial Management & Data Systems, 123(1), 278-301.
- Mehmood, S. M., & Najmi, A. (2018). Understanding the impact of service convenience on customer satisfaction in home delivery: Evidence from Pakistan. International Journal of Electronic Customer Relationship Management, 11(1), 23-43.
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
- Muhamad, N. (2024). OJK Terima 17 Ribu Aduan Konsumen hingga Juli 2024, Ini Rinciannya [OJK Receives 17 Thousand Consumer Complaints by July 2024, Here are the Details]. (In Indonesian).
- Murthy, U. S., Smith, T. J., Whitworth, J. D., & Zhang, Y. (2020). The effects of information systems compatibility on firm performance following mergers and acquisitions. Journal of Information Systems, 34(2), 211-233.
- Rahardja, U., Sigalingging, C. T., Putra, P. O. H., Hidayanto, A. N., & Phusavat, K. (2023). The Impact of Mobile Payment Application Design and Performance Attributes on Consumer Emotions and Continuance Intention. SAGE Open, 13(1).
- Riquelme, H. E., & Rios, R. E. (2010). The moderating effect of gender in the adoption of mobile banking. International Journal of Bank Marketing, 28(5), 328-341.
- Rogers, E. (2003). Diffusions of Innovations (5th ed.). Simon & Schuster Publisher.
- Roy, S. K., Lassar, W. M., & Shekhar, V. (2016). Convenience and satisfaction: Mediation of fairness and quality. The Service Industries Journal, 36(5-6), 239-260.
- Roy, S. K., Shekhar, V., Lassar, W. M., & Chen, T. (2018). Customer engagement behaviors: The role of service convenience, fairness and quality. Journal of Retailing and Consumer Services, 44, 293-304.
- Salehi, F., Abdollahbeigi, B., Langroudi, A. C., & Salehi, F. (2012). The impact of website information convenience on e-commerce success of companies. Procedia-social and Behavioral Sciences, 57, 381-387.
- Seiders, K., Voss, G. B., Godfrey, A. L., & Grewal, D. (2007). SERVCON: development and validation of a multidimensional service convenience scale. Journal of the Academy of Marketing Science, 35, 144-156.
- Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons.
- Sembiring, S. M. R., Nasution, F. N., & Erlina (2024). Analyzing the Success of Mobile Banking Implementation by Integrating the Diffusion of Innovation and Service Convenience Framework: Based on the Experience of Students at the University of North Sumatera. International Journal of Research and Review, 11(4), 286-301.
- Shahid, M. (2022). Exploring the determinants of adoption of Unified Payment Interface (UPI) in India: A study based on diffusion of innovation theory. Digital Business, 2(2), 100040.
- Shahijan, M. K., Rezaei, S., & Amin, M. (2018). Qualities of effective cruise marketing strategy: Cruisers’ experience, service convenience, values, satisfaction and revisit intention. International Journal of Quality & Reliability Management, 35(10), 2304-2327.
- Shankar, A., & Rishi, B. (2020). Convenience matter in mobile banking adoption intention? Australasian Marketing Journal, 28(4), 273-285.
- Sultana, S., Akter, S., Kyriazis, E., & Wamba, S. F. (2021). Architecting and developing big data-driven innovation (DDI) in the digital economy. Journal of Global Information Management (JGIM), 29(3), 165-187.
- Taghizadeh, S. K., Rahman, S. A., Nikbin, D., Alam, M. M. D., Alexa, L., Ling Suan, C., & Taghizadeh, S. (2022). Factors influencing students’ continuance usage intention with online learning during the pandemic: a cross-country analysis. Behaviour & Information Technology, 41(9), 1998-2017.
- Vincenzo. (2010). Handbook of Partial Least Square. Springer-Verlag Berlin Heidelberg.
- Vyas, H., & Band, G. (2021). Service convenience and customer satisfaction: A study in the food and grocery retail context of Nagpur city. International Journal of Management IT and Engineering, 11(3), 47-54.
- Winarti, Y., Sarkum, S., & Halim, A. (2021). Product Innovation on Customer Satisfaction and Brand Loyalty of Smartphone Users. Journal of Applied Business Administration, 5(2), 179-187.
- Xia, H., Gao, Y., & Zhang, J. Z. (2023). Understanding the adoption context of China’s digital currency electronic payment. Financial Innovation, 9(1), 1-27.
- Yuen, K. F., Cai, L., Qi, G., & Wang, X. (2021). Factors influencing autonomous vehicle adoption: An application of the technology acceptance model and innovation diffusion theory. Technology Analysis & Strategic Management, 33(5), 505-519.
- Zhang, Y., & Chan, K. K. (2021). Infusing visual analytics technology with business education: An exploratory investigation in fostering higher-order thinking in China. Innovations in Education and Teaching International, 58(5), 586-595.
- Zoubi, M., ALfaris, Y., Fraihat, B., Otoum, A., Nawasreh, M., & ALfandi, A. (2023). An extension of the diffusion of innovation theory for business intelligence adoption: A maturity perspective on project management. Uncertain Supply Chain Management, 11(2), 465-472.