Analysis of the stability factors of Ukrainian banks during the 2014–2017 systemic crisis using the Kohonen self-organizing neural networks
-
DOIhttp://dx.doi.org/10.21511/bbs.14(3).2019.08
-
Article InfoVolume 14 2019, Issue #3, pp. 86-98
- Cited by
- 836 Views
-
71 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
The article proposes an approach to analyzing reliability factors of commercial banks during the 2014–2017 systemic crisis in the Ukrainian banking system, using the Kohonen self-organizing neural networks and maps. As a result of an experimental study, data were obtained on financial factors affecting the stability of a commercial bank in a crisis period.
It has been concluded that during the banking crisis in Ukraine in 2014–2017, the resource base of a bank was the main factor of this bank stability. The most preferred sources of resources were funds from other banks (bankruptcy rate of 5.7%) and legal entities (bankruptcy rate of 8%), and the least stable were funds from individuals (bankruptcy rate of 28.5%).
The relationship between financial stability and the amount of capital and the structure of bank loans is less pronounced. However, one can say that banks that focused on lending to individuals experienced a worse crisis than banks whose main borrowers were legal entities.
The tools considered in the article (the Kohonen self-organizing neural networks and maps) allow for efficiently segmenting data samples according to various criteria, including bank solvency. The “hazardous” zones with a high bankruptcy rate (up to 49.2%) and the “safe” zone with a low rate of bankruptcy (6.3%) were highlighted on the map constructed. These results are of practical value and can be used in analyzing and selecting counterparties in the banking system during a downturn.
- Keywords
-
JEL Classification (Paper profile tab)C45, C53, G21, G33
-
References26
-
Tables5
-
Figures4
-
- Figure 1. SOM (2014–2017). Automatic clustering
- Figure 2. SOM (2014–2017). Local zones on the bank solvency map
- Figure 3. SOM (2014–2017). Global zones on the bank solvency map
- Figure 4. SOM (2014-2017). Kohonen maps for selected indicators of bank liabilities
-
- Table 1. Statistical analysis of input data characteristics
- Table 2. Anomalous values of balance sheet ratios of Ukrainian commercial banks in 2014–2015
- Table 3. Statistical characteristics of parameter 15 after eliminating anomalous values
- Table 4. SOM (2014–2017). Analysis of bank reliability by automatically allocated clusters
- Table 5. SOM (2014–2017). Analysis of the selected clusters’ profiles
-
- Alam, P., Booth, D., Lee, K., & Thordarson, T. (2000). The use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: an experimental study Expert Systems with Applications, 18(3), 185-199.
- Borovskiy, V. N., & Gatinskiy, Ya. A. (2011). Методы и проблемы анализа финансовой устойчивости банков в Украине [Metody i problemy analiza finansovoy ustoychivosti bankov v Ukraine]. Kultura narodov Prichernomorya, 201, 15-18.
- Boyacioglu, M. A., Kara, Y., & Baykan, O. (2009). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: a comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. Expert Systems with Applications, 36(2), 3355-3366.
- Calice, P. (2014, July). Predicting Bank Insolvency in the Middle East and North Africa (Policy Research Working Paper No. 6969). World Bank Group, Finance and Markets Global Practice.
- Deboeck, G., & Kohonen, T. (1998). Visual Explorations in Finance with Self-Organizing Maps (250 p.). London: Springer-Verlag.
- Erdogan, B. E. (2012). Prediction of bankruptcy using support vectormachines: an application to bank bankruptcy. Journal of Statistical Computation and Simulation, 83(8), 1543-1555.
- Ivasiv, I. B. (2004). Актуальні підходи до банківського моніторингу [Aktualni pidkhody do bankivskoho monitorynhu]. Finansy, oblik i audit, 4, 86-94.
- Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2018). Paths of glory or paths of shame? An analysis of distress events in European banking. Bank i Kredyt, 49(2), 115-144.
- Kolodiziev, O., & Hontar, D. D. (2014). Сценарне моделювання стратегічного управління ринковою вартістю банку [Stsenarne modeliuvannia stratehichnoho upravlinnia rynkovoiu vartistiu banku]. Ekonomic Annals – ХХІ, 9-10(2), 19-23.
- Lerner, Yu. I. (2011). Оценка финансовой устойчивости банковской структуры [Otsenka finansovoy ustoychivosti bankovskoy struktury]. Visnyk ekonomichnoi nauky Ukrainy, 2(20), 82-86.
- Lopez-Iturriaga, F. J., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks: a study of U.S. commercial banks. Expert Systems with Applications, 42(6), 2857-2868.
- Lopez-Iturriaga, F. J., & Sanz, I. P. (2017). Using Self Organizing Maps for Banking Oversight. The Case of Spanish Savings Banks. In Handbook of Research on Financial and Banking Crisis Prediction through Early Warning Systems (pp. 116-140).
- Malyaretz, L., Dorokhov, O., & Dorokhova, L. (2018). Method of constructing the fuzzy regression model of bank competitiveness. Journal of Central Banking Theory and Practice, 7(2), 139-164.
- Meyer, P. A., & Pifer, H. W. (1970). Prediction of bank failures. The Journal of Finance, 25(4), 853-868.
- Mints, A. Y. (2015). Интеллектуальные методы анализа надежности участников рынков финансовых услуг [Intellektualnyye metody analiza nadezhnosti uchastnikov rynkov finansovykh uslug]. Visnyk Donetskoho Universytetu Ekonomiky ta Prava, 2, 85-90.
- Mints, A. Y. (2017). Classification tasks of data mining and data processing in economy. Baltic Journal of Economic Studies, 3(3), 47-52.
- National Bank of Ukraine. (2017). Огляд банківського сектору [Ohliad bankivskoho sektoru].
- National Bank of Ukraine. (2019). Banking system indicators.
- Negnevitsky, M. (2017, June 12-14). Identification of failing banks using Clustering with self-organizing neural networks. International Conference on Computational Science, ICCS 2017. Switzerland: Zurich.
- Rashkovan, V., & Pokidin, D. (2016). Кластерний аналіз бізнес-моделей українських банків: застосування нейронних мереж Кохонена [Klasternyi analiz biznes-modelei ukrainskykh bankiv: zastosuvannia neironnykh merezh Kokhonena]. Visnyk NBU, 238, 13-40.
- Režňáková, M., & Karas, M. (2014). Bankruptcy Prediction Models: Can the Prediction Power of the Models Be Improved by Using Dynamic Indicators? Procedia Economics and Finance, 12, 565-574.
- Sarlin, P., & Eklund, T. (2013). Financial performance analysis of European banks using a fuzzified Self-Organizing Map. International Journal of Knowledge-Based and Intelligent Engineering Systems, 17(3), 223-234.
- Sarycheva, L. V., & Sarychev, A. P. (2013). Кластерно-регрессионный анализ финансовых показателей банков Украины на основе МГУА [Klasterno-regressionnyy analiz finansovykh pokazateley bankov Ukrainy na osnove MGUA]. Induktyvne modeliuvannia skladnykh system, 5, 270-277.
- Serrano-Cinca, C. (1996). Self-organizing neural networks for financial diagnosis. Decision Support Systems, 17(3), 227-238.
- Spuchl’akova, E., & Frajtova-Michalikova, K. (2016, September 3-4). Comparison of LOGIT, PROBIT and neural network bankruptcy prediction models. ISSGBM International Conference on Information and Business Management (pp. 49-53). China: Hong Kong.
- Yu, Qi, Miche, Y., Severin, E., & Lendasse, A. (2013). Bankruptcy Prediction Using Extreme Learning Machine and Financial Expertise. Neurocomputing, 128, 296-302.