Managing the EU energy crisis and greenhouse gas emissions: Seasonal ARIMA forecast
-
DOIhttp://dx.doi.org/10.21511/ppm.21(2).2023.37
-
Article InfoVolume 21 2023, Issue #2, pp. 383-399
- Cited by
- 576 Views
-
209 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
Changes in the logistics of energy resources and their potential shortage are causing a review of the EU energy policy. The energy sector significantly affects the progress toward achieving climate policy goals due to significt greenhouse gas emissions. The REPowerEU plan, implemented in the EU27 to overcome the energy crisis, requires new forecasts of greenhouse gas emissions due to a change in European energy policy.
This paper aims to examine the consequences of the management of the energy crisis caused by Russia’s invasion of Ukraine on EU climate policy. This study focuses on forecasting greenhouse gas emissions in the EU until 2030 and uses the Seasonal ARIMA model based on quarterly time series in the EU27.
Depending on energy management and changes in energy policy to overcome the energy crisis, a positive or negative scenario for greenhouse gas emissions may occur. An important parameter that should be considered when determining the scenario of the EU energy development according to climate policy was defined by correlation analysis.
According to the negative scenario and under the influence of the effects of the Russian invasion of Ukraine, the value of greenhouse gas emissions in the EU at the beginning of 2030 will be 0.752911 tons per capita. The positive scenario shows greenhouse gas emissions can be reduced to 0.235225 tons per capita.
The study results proved two extreme scenarios of greenhouse gas emissions, depending on how to overcome the energy crisis.
Acknowledgment
The authors appreciate the copyright holder: © European Union, 1995–2022, as well as the source of the extracted data, which is the European Commission website, Eurostat http://ec.europa.eu/eurostat (accessed on 16 October 2022).
This study was funded by the European Union (the project No. 101048079 – EU4SmartED – ERASMUS-JMO-2021-HEI-TCH-RSCH); by the Ministry of Education and Science of Ukraine (projects No. 0122U000788, 0122U000769, 0121U109553, 0120U102001, 0122U000777).
This research was funded by Faculty of Organization and Management of the Silesian University of Technology (grant number: 13/990/BK_23/0178).
- Keywords
-
JEL Classification (Paper profile tab)Q43, Q48, C50, C53
-
References74
-
Tables5
-
Figures6
-
- Figure 1. Cumulative greenhouse gas emissions by economic activity (in tons per capita), EU27, 2010-Q1 – 2022-Q1
- Figure 2. Greenhouse gas emissions by economic activity (tons per capita), EU27, 2010-Q1 – 2022-Q1
- Figure 3. Greenhouse gas emissions by electricity, gas, steam, and air conditioning supply activity (top) and its three additive components (tons per capita), EU27, 2010-Q1 – 2022-Q1
- Figure 4. Greenhouse gas emissions by electricity, gas, steam, and air conditioning supply activity (tons per capita), EU27, 2010-Q1 – 2022-Q1: the rolling mean (red), the rolling standard deviation (black), and the decomposed data (blue)
- Figure 5. Seasonal ARIMA model diagnostics
- Figure 6. Forecast of greenhouse gas emissions by electricity, gas, steam, and air conditioning supply activity (tons per capita) by 2030, EU27
-
- Table 1. Summary of recent research on sustainable development pathways
- Table 2. Sectors responsible for greenhouse gas emissions (by economic activity)
- Table 3. Augmented Dickey-Fuller test of the decomposed data (Greenhouse gas emissions by electricity, gas, steam, and air conditioning supply activity (tons per capita), EU27, 2010-Q1 – 2022-Q1)
- Table 4. Results of building the Seasonal ARIMA model
- Table 5. Relationship between energy consumption and CO2 and greenhouse gas emissions
-
- Aliyeva, A. (2022). Post-Oil Period in Azerbaijan: Economic Transformations, Anti-Inflation Policy and Innovations Management. Marketing and Management of Innovations, 2, 268-283.
- Artyukhova, N., Tiutiunyk, I., Bogacki, S., Wołowiec, T., Dluhopolskyi, O., & Kovalenko, Y. (2022). Scenario modeling of energy policies for sustainable development. Energies, 15(20).
- Astrov, V., Ghodsi, M., Grieveson, R., Holzner, M., Kochnev, A., Landesmann, M., Pindyuk, O., Stehrer, R., Tverdostup, M., & Bykova, A. (2022a). Russia’s invasion of Ukraine: Assessment of the humanitarian, economic, and financial impact in the short and medium term. International Economics and Economic Policy, 19(2), 331-381.
- Astrov, V., Grieveson, R., Kochnev, A., Landesmann, M., & Pindyuk, O. (2022b). Possible Russian invasion of Ukraine, scenarios for sanctions, and likely economic impact on Russia, Ukraine and the EU.
- Bardy, R., & Rubens, A. (2022). Weighing Externalities of Economic Recovery Projects: An Alternative to Green Taxonomies that is Fairer and more Realistic. Business Ethics and Leadership, 6(3), 23-34.
- Belucio, M., Santiago, R., Fuinhas, J. A., Braun, L., & Antunes, J. (2022). The impact of natural gas, oil, and renewables consumption on carbon dioxide emissions: European evidence. Energies, 15(14), 5263.
- Butler, E. (2018). Conclusion: Central and Eastern European energy security – more than Russia. In W. Ostrowski & E. Butler (Eds.), Understanding energy security in central and Eastern Europe (pp. 222-231). London: Routledge.
- Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W., Ingraffea, A. R., Cambaliza, M. O., Sweeney, C., Karion, A., Davis, K. J., Stirm, B. H., Montzka, S. A., & Miller, B. R. (2014). Toward a better understanding and quantification of methane emissions from shale gas development. PNAS, 111(17), 6237-6242.
- de Jong, M. (2022). Too little, too late? US sanctions against Nord Stream 2 and the transatlantic relationship. Journal of Transatlantic Studies, 20(2), 213-229.
- de Vincenzo, D. (2022). NextGenerationEU between pandemic, war, and energy transition. Documenti Geografici, 1, 23-36.
- El Amri, A., Oulfarsi, S., Boutti, R., Sahib Eddine, A., & Hmioui, A. (2021). Carbon Financial Markets Underlying Climate Change Mitigation, Pricing and Challenges: Technical Analysis. Financial Markets, Institutions and Risks, 5(1), 5-17.
- Eltoum, A. M., Yatiban A., Omar, R., & Islam, R. (2022). Sustainability awareness in society and its impact on the level of responsible business adoption in the business sector of Dubai. Problems and Perspectives in Management, 20(3), 540-551.
- European Commission (EC). (2022). REPowerEU: Joint European action for more affordable, secure and sustainable energy. Representation in Ireland.
- European Union (EU). (2022). European Union website. Eurostat.
- Fasoranti, M. M., Alimi, R. S., & Ofonyelu, C. C. (2022). Effect of prepaid meters on the household expenditure on electricity consumption in Ondo state. SocioEconomic Challenges, 6(4), 86-96.
- Fitts, S. A. W., Antunes, N., Cocker, J., Matsudaira, S., Rutigliano, P., & Salvi, U. P. (2022). Legal issues associated with renewable fuels. Journal of Energy and Natural Resources Law, 40(4), 495-500.
- Gaur, A., Balyk, O., Glynn, J., Curtis, J., & Daly, H. (2022). Low energy demand scenario for feasible deep decarbonisation: Whole energy systems modelling for Ireland. Renewable and Sustainable Energy Transition, 2, 100024.
- Ghoble, V. T. (2019). Saudi Arabia–Iran Contention and the Role of Foreign Actors. Strategic Analysis, 43(1), 42-53.
- Hakhverdyan, D., & Shahinyan, M. (2022). Competitiveness, innovation and productivity of the country. Marketing and Management of Innovations, 1, 108-123.
- Halser, C., & Paraschiv, F. (2022). Pathways to overcoming natural gas dependency on Russia – The German case. Energies, 15(14), 4939.
- Hausfather, Z. (2015). Bounding the climate viability of natural gas as a bridge fuel to displace coal. Energy Policy, 86, 286-294.
- Hoffart, F. M., Schmitt, E.-J., & Roos, M. (2021). Rethinking economic energy policy research – developing qualitative scenarios to identify feasible energy policies. Journal of Sustainable Development of Energy, Water and Environment Systems, 9(2), 1-28.
- Javed, M. S., Ma, T., Jurasz, J., & Mikulik, J. (2021). A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems. Renewable and Sustainable Energy Reviews, 139, 110725.
- Johannesson, J., & Clowes, D. (2022). Energy resources and markets - perspectives on the Russia-Ukraine war. European Review, 30(1), 4-23.
- Kagerl, C., Moritz, M., Roth, D., Stegmaier, J., Stepanok, I., & Weber, E. (2022). Energiekrise und Lieferstopp für Gas: Auswirkungen auf die Betriebe in Deutschland [The energy crisis and gas supply stop: Consequences for businesses in Germany]. Wirtschaftsdienst, 102(6), 486-491. (In German).
- Keliuotytė-Staniulėnienė, G., & Daunaravičiūtė, K. (2021). The Global Green Bond Market in the Face of the COVID-19 Pandemic. Financial Markets, Institutions and Risks, 5(1), 50-60.
- Khalatur, S., & Dubovych, O. (2022). Financial Engineering of Green Finance as an Element of Environmental Innovation Management. Marketing and Management of Innovations, 1, 232-246.
- Kumari, S., & Singh, S. K. (2022). Machine learning-based time series models for effective CO2 emission prediction in India. Environmental Science and Pollution Research.
- Kurbatova, T., Sidortsov, R., Sotnyk, I., Telizhenko, O., Skibina, T., & Hynek, R. (2019). Gain without pain: an international case for a tradable green certificates system to foster renewable energy development in Ukraine. Problems and Perspectives in Management, 17(3), 464-476.
- Kurbatova, T., Sotnyk, I., & Khlyap, H. (2014). Economical mechanisms for renewable energy stimulation in Ukraine. Renewable and Sustainable Energy Reviews, 31, 486-491.
- Lahouirich M. W., El Amri, A., Oulfarsi S., Sahib Eddine, A., El Bayed Sakalli, H., & Boutti, R. (2022). From financial performance to sustainable development: A great evolution and an endless debate. Financial Markets, Institutions and Risks, 6(1), 68-79.
- Lambert, L. A., Tayah, J., Lee-Schmid, C., Abdalla, M., Abdallah, I., Ali, A. H. M., Esmail, S., & Ahmed, W. (2022). The EU’s natural gas cold war and diversification challenges. Energy Strategy Reviews, 43, 100934.
- Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., & Schellnhuber, H. J. (2019). Climate tipping points – too risky to bet against. Nature, 575, 592-595.
- Li, G., Pan, Z., Qi, Z., Wang, H., Wang, T., Zhao, Y., Zhang, Y., Li, G., & Wang, P. (2023). Hybrid forecasting system considering the influence of seasonal factors under energy sustainable development goals. Measurement: Journal of the International Measurement Confederation, 211, 112607.
- Liao, S. (2023). The Russia-Ukraine outbreak and the value of renewable energy. Economics Letters, 225, 111045.
- Liu, X., Wang, Z., & Cui, X. (2021). Scenario Simulation of the Impact of China’s Free-Trade Zone Construction on Regional Sustainable Development: A Case Study of the Pearl River Delta Urban Agglomeration. Sustainability, 13(14), 8083.
- Lochran, S. (2021). GNOME: A dynamic dispatch and investment optimisation model of the European natural gas network and its suppliers. Operations Research Forum, 2(4), 67.
- Lopez, G., Aghahosseini, A., Bogdanov, D., Mensah, T. N. O., Ghorbani, N., Caldera, U., Rivero, A. P., Kissel, J., & Breyer, C. (2021). Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. Journal of Cleaner Production, 293, 126195.
- Lyulyov, O., Pimonenko, T., Kwilinski, A., & Us, Y. (2021). The heterogeneous effect of democracy, economic and political globalisation on renewable energy. E3S Web of Conferences, 250, 03006.
- Marcel, D. T. A. (2022). Electricity Consumption and Economic Growth Nexus in the Republic of Benin. SocioEconomic Challenges, 3(2), 63-69.
- Matvieieva, Yu., & Hamida, H.B. (2022). Modelling and Forecasting Energy Efficiency Impact on the Human Health. Health Economics and Management Review, 3(2), 78-85.
- Meng, D., Iqbal, N., & Zhao, S. (2022). Natural resources environmental quality and economic development: Fresh analysis. Resources Policy, 79, 102948.
- Mišík, M., & Nosko, A. (2023). Post-pandemic lessons for EU energy and climate policy after the Russian invasion of Ukraine: Introduction to a special issue on EU green recovery in the post-COVID-19 period. Energy Policy, 177, 113546.
- Naumenkova, S., Mishchenko, V., & Mishchenko, S. (2022). Key energy indicators for sustainable development goals in Ukraine. Problems and Perspectives in Management, 20(1), 379-395.
- Oe, H., Yamaoka, Y., & Duda, K. (2022). How to Sustain Businesses in the Post-COVID-19 Era: A Focus on Innovation, Sustainability and Leadership. Business Ethics and Leadership, 6(4), 1-9.
- PACE. (2022). Resolution 2463. Further escalation in the Russian Federation’s aggression against Ukraine.
- Pedersen, T. T., Gøtske, E. K., Dvorak, A., Andresen, G. B., & Victoria, M. (2022). Long-term implications of reduced gas imports on the decarbonization of the european energy system. Joule, 6(7), 1566-1580.
- Polak, P., & Polakova, B. (2022). Changes in the EU’s geopolitical position and energy doctrine in light of the Ukraine invasion. Society, 59(3), 254-258.
- Polcyn, J., Us, Y., Lyulyov, O., Pimonenko, T., & Kwilinski, A. (2022). Factors influencing the renewable energy consumption in selected European countries. Energies, 15(1), 108.
- Potrč, S., Čuček, L., Martin, M., & Kravanja, Z. (2021). Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renewable and Sustainable Energy Reviews, 146, 111186.
- Samsó, R., de Blas, I., Perissi, I., Martelloni, G., & Solé, J. (2020). Scenario analysis and sensitivity exploration of the MEDEAS Europe energy-economy-environment model. Energy Strategy Reviews, 32, 100582.
- Samusevych, Y., Maroušek, J., Kuzmenko, O., Streimikis, J., & Vysochyna, A. (2021). Environmental taxes in ensuring national security: A structural optimization model. Journal of International Studies, 14(2), 292-312.
- Schubert, D. K. J., Thuß, S., & Möst, D. (2015). Does political and social feasibility matter in energy scenarios? Energy Research & Social Science, 7, 43-54.
- Schwietzke, S., Sherwood, O., Bruhwiler, L., Miller, J., Etiope, G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White, J. W. C., & Tans, P. P. (2016). Upward revision of global fossil fuel methane emissions based on isotope database. Nature, 538, 88-91.
- Sedmíková, E., Vasylieva, T., Tiutiunyk, I., & Navickas, M. (2021). Energy consumption in assessment of shadow economy. European Journal of Interdisciplinary Studies, 13(2), 47-64.
- Sesini, M., Giarola, S., & Hawkes, A. D. (2022). Solidarity measures: Assessment of strategic gas storage on EU regional risk groups natural gas supply resilience. Applied Energy, 308, 118356.
- Shagina, M. (2022). Russia’s demise as an energy superpower. Survival, 64(4), 105-110.
- Singh, R., Paniyil, P., & Zhang, Z. (2022). Transformative role of power electronics: In solving climate emergency. IEEE Power Electronics Magazine, 9(2), 39-47.
- Solé, J., Samsó, R., García-Ladona, E., García-Olivares, A., Ballabrera-Poy, J., Madurell, T., Turiel, A., Osychenko, O., Álvarez, D., Bardi, U., Baumann, M., Buchmann, K., Capellán-Pérez, Í., Černý, M., Carpintero, Ó., De Blas, I., De Castro, C., De Lathouwer, J.-D., Duce, C., ... & Theofilidi, M. (2020). Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renewable and Sustainable Energy Reviews, 132, 110105.
- Steffen, B., & Patt, A. (2022). A historical turning point? early evidence on how the russia-ukraine war changes public support for clean energy policies. Energy Research and Social Science, 91, 102758.
- Štreimikienė, D., Samusevych, Y., Bilan, Y., Vysochyna, A., & Sergi, B. S. (2022). Multiplexing efficiency of environmental taxes in ensuring environmental, energy, and economic security. Environmental Science and Pollution Research, 29(5), 7917-7935.
- Sun, L., Niu, D., Wang, K., & Xu, X. (2020). Sustainable development pathways of hydropower in China: Interdisciplinary qualitative analysis and scenario-based system dynamics quantitative modeling. Journal of Cleaner Production, 287, 125528.
- Supriyanto, Adawiyah, W. R., Arintoko, Rahajuni D., & Kadarwati, N. (2022). Economic growth and environmental degradation paradox in ASEAN: A simultaneous equation model with dynamic panel data approach. Environmental Economics, 13(1), 171-184.
- Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., Qin, Y., & Davis, S. J. (2019). Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 572, 373-377.
- Umar, M., Riaz, Y., & Yousaf, I. (2022). Impact of Russian-Ukraine war on clean energy, conventional energy, and metal markets: Evidence from event study approach. Resources Policy, 79, 102966.
- Vasylieva, T., Machová, V., Vysochyna, A., Podgórska, J., & Samusevych, Y. (2020). Setting up architecture for environmental tax system under certain socioeconomic conditions. Journal of International Studies, 13(4), 273-285.
- Vasylieva, T., Pavlyk, V., Bilan, Y., Mentel, G., & Rabe, M. (2021). Assessment of energy efficiency gaps: The case for Ukraine. Energies, 14(5), 1323.
- Venugopala Rao, K. P., Farha, I., & Phutela, N. (2022). The relevance of accounting information in the era of Ind AS: Evidence from a Nifty Energy Index. Investment Management and Financial Innovations, 19(2), 201-210.
- Versal, N., & Sholoiko, A. (2022). Green bonds of supranational financial institutions: On the road to sustainable development. Investment Management and Financial Innovations, 19(1), 91-105.
- Vysochyna, A., Samusevych, Y., & Starchenko, L. (2020). Convergence trends of environmental taxation in European countries. E3S Web of Conferences, 202, 03031.
- Walker, M. (2007). Russia v. Europe: The Energy Wars. World Policy Journal, 24(1), 1-8.
- Yang, D., Liu, D., Huang, A., Lin, J., & Xu, L. (2021). Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling. Renewable and Sustainable Energy Reviews, 135, 110116.
- Zhang, X., Myhrvold, N. P., Hausfather, Z., & Caldeira, K. (2016). Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems. Applied Energy, 167, 317-322.
- Zhou, E., & Wang, X. (2023). Dynamics of systemic risk in European gas and oil markets under the Russia-Ukraine conflict: A quantile regression neural network approach. Energy Reports, 9, 3956-3966.