Feasible portfolios under tracking error, β, α and utility constraints
-
DOIhttp://dx.doi.org/10.21511/imfi.15(1).2018.13
-
Article InfoVolume 15 2018, Issue #1, pp. 141-153
- Cited by
- 1289 Views
-
275 Downloads
This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License
The investment nous of active managers is judged on their ability to outperform specified benchmarks while complying with strict constraints on, for example, tracking errors, β and Value at Risk. Tracking error constraints give rise to a tracking error frontier – an ellipse in risk/return space which encloses theoretically possible (but not necessarily efficient) portfolios. The β frontier is a parabola in risk/return space and defines the threshold of portfolios subject to a specified β requirement. An α - TE frontier is similarly shaped: portfolios on this frontier have a specified TE for a maximum TE. Utility and associated risk aversion have also been explored for constrained portfolios. This paper contributes by establishing the impossibility of satisfying more than two constraints simultaneously and explores the behavior of these constraints on the maximum risk-adjusted return portfolio (defined arbitrarily here as the optimal portfolio).
- Keywords
-
JEL Classification (Paper profile tab)C52, G11
-
References23
-
Tables1
-
Figures6
-
- Figure 1. Positions of portfolios P0 and P1 on the efficient frontier and the gain , G = rp − rb the fund manager’s outperformance target
- Figure 2. TE frontier, TE -constrained portfolio and constant TE frontier (with TE = 5%). (a) shows the naïve portfolio: excess return is maximised for a given TE constraint. (b) shows Jorion’s (2003) suggestion: observe constraints from (a), but restrict
- Figure 3. (a) Position of β frontier for β = 0.9, 1.0 and 1.1 and (b) maximum and minimum β values for changing tracking errors
- Figure 4. The α-TE frontier for various levels of α. Other frontiers are shown for comparison. Levels of α are indicated on the graph. TE = 5%, rf = 2%
- Figure 5. (a) Utility function tangential to the maximum Sharpe ratio portfolio on the constant TE frontier and (b) θ as a function of tracking error and risk-free rate
- Figure 6. (a) Maximum Sharpe ratio as a function of tracking error and risk-free rate and (b) utility function (risk aversion) as a function of tracking error and portfolio risk
-
- Table 1. Properties of portfolios 0 and 1 in terms of a, b and c
-
- Alexander, G. J., & Baptista, A. M. (2010). Active portfolio management with benchmarking: a frontier based on alpha. Journal of Banking and Finance, 34(9), 2185-2197.
- Ammann, M., & Zimmermann, H. (2001). Tracking error and tactical asset allocation. Financial Analysts Journal, 57(2), 32-43.
- Bertrand, P. (2005). A note on portfolio performance attribution: taking risk into account. Journal of Asset Management, 5(6), 428-437.
- Bertrand, P. (2009). Risk-adjusted performance attribution and portfolio optimisations under tracking-error constraints. Journal of Asset Management, 10(2), 75-88.
- Bertrand, P. (2010). Another look at portfolio optimization under tracking error constraints. Financial Analysts Journal, 66(3), 78-90.
- Bertrand, P., Prigent, J-L., & Sobotka, R. (2001). Optimisation de portefeuille sous contrainte de variance de la tracking-error. Banque & Marchés, 54(1), 19-28.
- Clarke, R., de Silva, H., & Thorley, S. (2002). Portfolio constraints and the fundamental law of active management. Financial Analysts Journal, 58(5), 48-66.
- El-Hassan, N., & Kofman, P. (2003). Tracking error and active portfolio management. Australian Journal of Management, 28(2), 183-207.
- Fama, E., & French, K. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1-22.
- Jansen, R., & van Dijk, R. (2002). Optimal benchmark tracking with small portfolios. Journal of Portfolio Management, 28(2), 33-39.
- Jorion, P. (1992). Portfolio optimization in practice. Financial Analysts Journal, 48(1), 68-74.
- Jorion, P. (2003). Portfolio optimization with tracking-error constraints. Financial Analysts Journal, 59(5), 70-82.
- Karp, A., & van Vuuren, G. (2017). The Capital Asset Pricing Model and Fama-French three factor model in an emerging market environment. International Business & Economics Research Journal, 16(3), 231-256.
- Larsen, G. A., & Resnick, B. G. (2001). Parameter estimation techniques, optimization frequency, and portfolio return enhancement. Journal of Portfolio Management, 27(4), 27-34.
- Menchero, J., & Hu, J. (2006). Portfolio risk attribution. The Journal of Performance Measurement, 10(3), 22-33.
- Palomba, G., & Riccetti, L. (2013). Asset management with TEV and VAR constraints: the constrained efficient frontiers.
- Plaxco, L. M., & Arnott, R. D. (2002). Rebalancing a global policy benchmark. Journal of Portfolio Management, 28(2), 9-22.
- Riccetti, L. (2010). Minimum tracking error volatility (Quaderno di Ricerca n°340 del Dipartimento di Economia dell Università Politecnicadelle Marche., Working paper, 340).
- Rodposhti, F., & Sharareh, G. (2015). Active portfolio management with benchmarking: adding a Value-at-Risk constraint. Financial engineering and securities management, 6(24), 91-113.
- Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio Management, 18(4), 13-22.
- Stowe, D. L. (2014). Tracking error volatility optimization and utility improvements (Working paper).
- Stowe, D. L. (2017). Portfolio mathematics with general linear and quadratic constraints.
- Wu, M., & Jakshoj, C. (2011). Risk-adjusted performance attribution and portfolio optimisation under tracking-error constraints for SIAS Canadian Equity Fund (Masters dissertation, Simon Fraser University, Canada).