The solution of optimization problems in the economy by overlaying integer lattices: applied aspect
-
Received December 12, 2018;Accepted March 4, 2019;Published June 10, 2019
- Author(s)
-
DOIhttp://dx.doi.org/10.21511/ed.18(1).2019.05
-
Article InfoVolume 18 2019, Issue #1, pp. 44-55
- TO CITE
- 732 Views
-
54 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
The results of generalization of scientific approaches to the solution of modern economic optimization tasks have shown the need for a new vision of their solution based on the improvement of existing mathematical tools. It is established that the peculiarities of the practical use of existing mathematical tools for solving economic optimization problems are caused by the problems of enterprise management in the presence of nonlinear processes in the economy, which also require consideration of the corresponding characteristics of nonlinear dynamic processes. The approach to solving the problem of integer (discrete) programming associated with the difficulties that arise when applying precise methods (methods of separation and combinatorial methods) is proposed, namely: a fractional Gomorrhic algorithm – for solving entirely integer problems (by gradual "narrowing" areas of admissible solutions of the problem under consideration); the method of branches and borders - which involves replacing the complete overview of all plans by their partial directional over. Illustrative examples of schemes of geometric programming, fractional-linear programming, nonlinear programming with a non-convex region, fractional-nonlinear programming with a non-convex domain, and research on the optimum model of Cobb-Douglas model are given. The advanced mathematical tools on the basis of the method of overlaying integer grids (OIG), which will solve problems of purely discrete, and not only integer optimization, as an individual case, are presented in the context of solving optimization tasks of an applied nature and are more effective at the expense of reducing the complexity and duration of their solving. It is proved that appropriate analytical support should be used as an economic and mathematical tool at the stage of solving tasks of an economic nature, in particular optimization of the parameters of the processes of organization and preparation of production of new products of the enterprises of the real sector of the economy.
- Keywords
-
JEL Classification (Paper profile tab)C61
-
References12
-
Tables0
-
Figures9
-
- Figure 1. Схема нумерації Z
- Figure 2. Схема побудови шарів цілих точок
- Figure 3. Зображення бруса Bar(1, 4)
- Figure 4. Графічне зображення області допустимих значень і цілочислової сітки
- Figure 5. Зображення бруса Bar(1,4)
- Figure 6. Зображення бруса Bar(2,3)
- Figure 7. Накладання цілочислової сітки
- Figure 8. Накладання цілочислової сітки
- Figure 9. Накладання цілочислової сітки
-
- Cobb, C. W., & Douglas, P. H. (1928). A Theory of Production. American Economic Review, 18, 139-165.
- Daffin, R., Piterson, E., & Zener, К. (1972). Геометрическое программирование [Geometricheskoe programirovanie] (312 p.). Moscow: Mir.
- Ershov, Yu. L. (1977). Теория нумераций [Teoriya numertsiy] (416 p.). Moscow: Nauka.
- Gabasov, R., Kirillova, F. M., Alsevich, A. I., Kalinin, V. V., Krakhotko, V. V. & Pavlenok, N. S. (2011). Методы оптимизации [Metody optimizatsii] (474 p.). Minsk: Chetyre chetverti.
- Korbut, А. А., & Finкеlshtеyn, Yu. Yu. (1969). Дискретное программирование [Diskretnoye programmirovaniye (Sеriya: «Eкоnоmiко-маtеmаtichеsкаya bibliоtека»)] (368 p.). Moscow: Nauka.
- Kormen, T., Leizerson, Ts., & Ryveсst, R. (2001). Алгоритмы: построение и анализ [Аlhorytmy: postroenye i analiz] (960 p.). Moscow: МTSNМО.
- Kurbаtоvа, Е. А. (2006). МATLAB 7. Самоучитель [МATLAB 7. Sаmоuchitеl] (256 p.). Moscow: Izdаtеlsкiy dоm «Vilyams».
- Rvаchеv, V. L. (1982). Теория R-функций и некоторые ее приложения [Теоriya R-funкtsy i nекоtоryе еye prilоzhеniya] (552 p.). Kiev: Nаuкоvа duмка.
- Senchukov, V. F. (2014). Цілочислові сітки на площині в задачах дискретної оптимізації [Tsilochislovi sitky na ploshchyni v zadachakh dyskretnoi optymizatsii]. Ekonomika rozvytku, 3(71), 107-112.
- Senchukov, V. F. (2015). Метод накладання цілочислових сіток в економічних задачах дискретної оптимізації [Mеtоd nakladannia tsilоchyslovykh sitoк v ekonomichnykh zadachakh dyskretnоi optymizatsii]. In Materialy Mizhnarodnоi naukovo-praktychnoi konferentsii «Suchasni problemy upravlinnia pidpryiemstvamy: teоriia ta praktykа», Kharkiv, 26–27 bereznia 2015 (pp. 241-244).
- Senchukov, V. F. (2015). Просторові цілочислові сітки в задачах дискретної оптимізації [Prostorovi tsilochislovi sitky v zadachakh dyskretnoi optyminizatsii]. Upravlinnia rozvytkom, 2(180), 116-123.
- Serpinskiy, V. (1961). Сто простых, но одновременно трудных вопросов арифметики [Sto prostykh i odnovremenno trudnykh voprosov arifmetiki] (76 p.). Moscow: Uchpedgiz.