Studying the dynamics of nonlinear interaction between enterprise populations
-
Received June 25, 2018;Accepted December 12, 2018;Published May 27, 2019
-
Author(s)Link to ORCID Index: http://orcid.org/0000-0002-8125-3303Link to ORCID Index: https://orcid.org/0000-0002-9444-9794
-
DOIhttp://dx.doi.org/10.21511/nfmte.7.2018.03
-
Article InfoVolume 7 2018, Issue #1, pp. 44-61
- TO CITE
- 565 Views
-
125 Downloads
This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License
The article highlights the results of a study of the dynamic evolutionary processes of trophic relations between populations of enterprises. A model based on differential equations is constructed, which describes the economic system and takes into account the dynamics of the specific income of competing populations of enterprises in relations of protocooperation, nonlinearity of growth and competition. This model can be used to analyze the dynamics of transient processes in various life cycle scenarios and predict the synergistic effect of mergers and acquisitions. A bifurcation analysis of possible scenarios of dynamic modes of merger and acquisition processes using the neural network system of pattern recognition was carried out. To this end, a Kohonen self-organizing map has been constructed, which recognizes phase portraits of bifurcation diagrams of enterprises life cycle into five separate classes in accordance with the scenarios of their development. As a result of the experimental study, characteristic modes of the evolution of economic systems were revealed, and also conclusions were made on the mechanisms of influence of the external environment and internal structure on the regime of evolution of populations of enterprises.
- Keywords
-
JEL Classification (Paper profile tab)C22, C53, D58, E11, O11
-
References32
-
Tables1
-
Figures9
-
- Figure 1. Тривимірний фазовий портрет життєвого циклу розвитку підприємства
- Figure 2. Параметричні діаграми моделі (сценарій ЖЦП «розквіт»)
- Figure 3. Параметричні діаграми моделі (сценарій ЖЦП «летальна»)
- Figure 4. Фазові портрети біфуркаційних діаграм моделі: сценарії ЖЦП а) летальна, б) народження, в) розвиток
- Figure 5. Фазові портрети біфуркаційних діаграм моделі: сценарій ЖЦП а), б) зрілість
- Figure 6. Фазові портрети біфуркаційних діаграм моделі: сценарій ЖЦП а), б), в) розквіт
- Figure 7. Компонентні фігури вагових позицій параметрів стану біфуркації ЖЦП Підприємств
- Figure 8. Діаграма влучень прикладів у нейрони гексагональної конфігурації
- Figure 9. Уніфікована матриця відстаней
-
- Tables 1. Дані для розпізнавання стану біфуркації ЖЦП підприємств
-
- Alchian, A. (2007). Неопределенность, эволюция и экономическая теория [Neopredelennost, evolyutsiya i ekonomicheskaya teoriya]. In Y. I. Kuzminov (Ed.), Istoki: iz opyta izucheniya ekonomiki kak struktury i protsessa (pp. 33-52). Moscow: GU-VShE.
- Amelkin, V. V., Lukashevich, N. A., & Sadovskiy, A. P. (1982). Нелинейные колебания в системах второго порядка [Nelineynyye kolebaniya v sistemakh vtorogo poryadka] (208 p.). Minsk: BGU.
- Arnold, V. I. (1978). Дополнительные главы теории обыкновенных дифференциальных уравнений [Dopolnitelnyye glavy teorii obyknovennykh differentsialnykh uravneniy] (304 p.). Moscow: Nauka.
- Bautin, N. N., & Shilnikov, L. P. (1980). Поведение динамических систем вблизи границ области устойчивости состояний рав¬новесия и периодических движений (опасные и безопасные границы) [Povedeniye dinamicheskikh sistem vblizi granits oblasti ustoychivosti sostoyaniy ravnovesiya i periodicheskikh dvizheniy (opasnyye i bezopasnyye granitsy)]. In Marsden, D., & Mak-Kraken, M. (Eds.), Бифуркация рождения цикла и ее приложения [Bifurkatsiya rozhdeniya tsikla i eye prilozheniya] (pp. 294-316). Moskva: Mir.
- Bazykin, A. D. (2003). Нелинейная динамика взаимодействующих популяций [Nelineynaya dinamika vzaimodeystvuyushchikh populyatsiy] (368 p.). Izhevsk: Institut kompyuternykh issledovaniy.
- Bazykin, A. D., & Buriyev, T. I. (1981). Модель динамики системы хищник-жертва с учетом насыщения хищника, конкурен¬ции хищника за жертву и конкуренции жертв [Model dinamiki sistemy khishchnik-zhertva s uchetom nasyshcheniya khishchnika. konkurentsii khishchnika za zhertvu i konkurentsii zhertv]. Studia biophysica, 83(2), 123-130.
- Bazykin, A. D., & Khibnik, A. I. (1981). О жестком режиме возбуждения автоколебаний в модели типа Вольтера [O zhestkom rezhime vozbuzhdeniya avtokolebaniy v modeli tipa Voltera]. Biofizika, 26(5), 851-853.
- Danilov, Y. A. (2006). Лекции по нелинейной динамике [Lektsii po nelineynoy dinamike] (208 p.). Moscow: KomKniga.
- Gauze, G. F., & Vitt, A. A. (1934). О периодических колебаниях численности популяций. Математическая теория релаксаци¬онного взаимодействия между хищниками и жертвами и ее применение к популяции двух простейших [O periodicheskikh kolebaniyakh chislennosti populyatsiy. Matematicheskaya teoriya relaksatsionnogo vzaimodeystviya mezhdu khishchnikami i zhertvami i eye primeneniye k populyatsii dvukh prosteyshikh]. Izvestiya AN SSSR. Otdeleniye meditsinskikh, matematicheskikh i estestvennykh nauk, 10, 1551-1559.
- Gayko, V. A. (2011). Глобальный бифуркационный анализ квартичной модели «хищник – жертва» [Globalnyy bifurkatsionnyy analiz kvartichnoy modeli «khishchnik – zhertva»]. Kompyuternyye issledovaniya i modelirovaniye, 3(2), 125-134.
- Grime, J. P. (1979). Plant strategies and vegetation processes (222 p.). Chichester: John Wiley & Sons.
- Hainzl, J. (1988). Stability and Hopf bifurcation in a predator-prey system with several parameters. SIAM Journal on Applied Mathematics, 47, 170-190.
- Ivanchenko, G. F., & Dalayin, B. O. A. (2016). Синергетична когерентність біфуркаційних еволюційних процесів злиття та погли¬нання підприємств [Synerhetychna koherentnist bifurkatsiinykh evoliutsiinykh protsesiv zlyttia ta pohlynannia pidpryiemstv]. Problemy ekonomiky, 3, 293-299.
- Ivanchenko, G. F., Dalayin, B. O. A., & Ivanchenko, N. O. (2016, January 25). Ukrainian Patent No. UA 104435 U. Kyiv: Ukrainian Institute of Intellectual Property.
- Khibnik, A. I. (1989). LINLBF: A program for continuation and bifurcation analysis of equilibria up to codimension three. In Roose, D., De Dier, B. & Spence, A. (Eds.), Continuation and Bifurcations: Numerical Techniques and Applications (pp. 283-296). Dordrecht: Kluwer Academic Publishers.
- Khibnik, A. I., Kuznetsov, Y. A., Levitin, V. V., & Nikolaev, E. V. (1993). Continuation techniques and interactive software for bifurcation analysis of OEDs and iterated maps. Physica, 62, 360-371.
- Khodakіvskiy, Y. І., Grabar, І. G., & Tsal-Tsalko, Y. S. (2007). Авторитаризм, синергетика руйнувань і позитивних змін [Avtoritarizm, sinergetyka ruynuvan і pozytyvnykh zmіn] (206 p.). Zhytomyr: Ruta.
- Khodzhson, J. (2003). Экономическая теория и институты: Манифест современной институциональной экономической теории [Ekonomicheskaya teoriya i instituty: Manifest sovremennoy institutsionalnoy ekonomicheskoy teorii] (464 p.). Moscow: Delo
- Khodzhson, J. (2008). Эволюционная и институциональная экономика как новый мейнстрим? [Evolyutsionnaya i institutsionalnaya ekonomika kak novyy meynstrim?]. Ekonomicheskiy vestnik Rostovskogo gosudarstvennogo universiteta, 6(2), 8-21.
- Kolesov, Y. S., & Shvitra, D. I. (1979). Автоколебания в системах с запаздыванием [Avtokolebaniya v sistemakh s zapazdyvaniyem] (146 p.). Vilnyus: Mokslas.
- Maltus, T. R. (1993). Опыт о законе народонаселения [Opyt o zakone narodonaseleniya] (380 p.). Petrozavodsk: Petrokom.
- Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change (536 p.). Cambridge: Belknap Press of Harvard University Press.
- Nozdracheva, V. P. (1982). Бифуркация негрубой петли сепаратрисы [Bifurkatsiya negruboy petli separatrisy]. Differentsialnyye uravneniya, 18(9), 1551-1558.
- Schumpeter, J. A. (1911). The Theory of Economic Development. Cambridge: Harvard University Press.
- Schumpeter, J.A. (1954). History of Economic Analysis. New York: Oxford University Press.
- Shilnikov, L. P. (1980). Теория бифуркаций и модель Лоренца [Teoriya bifurkatsiy i model Lorentsa]. In Marsden, D., & Mak-Kraken, M. (Eds.), Бифуркация рождения цикла и ее приложения [Bifurkatsiya rozhdeniya tsikla i eye prilozheniya] (pp. 317-336). Moscow: Mir.
- Silverberg, D., & Verspagen, B. (1995). Экономическая динамика и адаптация поведения: приложения к одной эволюционной моде¬ли эндогенного роста [Ekonomicheskaya dinamika i adaptatsiya povedeniya: prilozheniya k odnoy evolyutsionnoy modeli endogennogo rosta]. In Эволюционный подход и проблемы переходной экономики [Evolyutsionnyy podkhod i problemy perekhodnoy ekonomiki] (pp. 149-175). Moscow: IEKRAN.
- Smith, J. M. (1974). Models in Ecology (184 p.). New York: Cambridge University Press.
- Veblen, T. (1984). Теория праздного класса [Teoriya prazdnogo klassa] (368 p.). Moskva: Progress.
- Verhulst, P. F. (1838). Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique, 10, 113-121.
- Yorke, E., & Yorke, A. (1981). Метастабильный хаос: переход к устойчивому хаотическому поведению в модели Лоренца [Metastabilnyy khaos: perekhod k ustoychivomu khaoticheskomu povedeniyu v modeli Lorentsa]. In A.N. Kolmogorov & S.P. Novikov (Eds.), Strannyye attraktory. Seriya «Matematika. Novoye v zarubezhnoy nauke», 22 (pp. 193-213). Moskva: Mir.
- Zhang, W.-B. (1991). Synergetic Economics. Time and Change in Nonlinear Economics. Berlin: Springer-Verlag.
-
Not dead yet: the rise, fall and persistence of the BCG Matrix
Dag Øivind Madsen doi: http://dx.doi.org/10.21511/ppm.15(1).2017.02Problems and Perspectives in Management Volume 15, 2017 Issue #1 pp. 19-34 Views: 4964 Downloads: 2703 TO CITE АНОТАЦІЯThe BCG Matrix was introduced almost 50 years ago, and is today considered one of the most iconic strategic planning techniques. Using management fashion theory as a theoretical lens, this paper examines the historical rise, fall and persistence of the BCG Matrix. The analysis highlights the role played by fashion-setting actors (e.g., consultants, business schools and business media) in the rise of the BCG Matrix. However, over time, portfolio planning models such as the BCG Matrix were attacked and discredited by a host of different actors, and gradually fell out of favor. Even though the BCG Matrix has fallen from grace, it is still alive and has left an imprint on management education and practice. Despite being largely discredited in academic circles, many practitioners still view it as an important corporate portfolio planning technique.
-
Modern technologies of detection and prevention of corruption in emerging information society
Natalia Maslii , Natalia Zakharchenko , Viktoriia Butenko , Oksana Savastieieva , Tetiana Butenko , Liudmyla Shyriaieva doi: http://dx.doi.org/10.21511/ppm.16(1).2018.06Problems and Perspectives in Management Volume 16, 2018 Issue #1 pp. 58-67 Views: 1997 Downloads: 424 TO CITE АНОТАЦІЯWith the development of the information society, there has been rapidly growing number of international research on the role of various (information, innovation, intelligent) technologies as a catalyst to fight corruption. As you know, the problems posed by corruption are economic, social and political consequences. In recent years economists and various researchers have shown increasing interest in studying the phenomenon of corruption. Many researchers in the field of studying corruption phenomenon are of theoretical nature, which studied different behaviors without having developed effective methods and technologies to identify and prevent corruption in the various spheres of government. In this regard, there is a need to study the world experience of application of technologies in the prevention of corruption and anti-corruption platform in Ukraine. This will allow to adapt them to positive experience in the implementation of mechanisms to identify and prevent corruption in Ukraine. The authors believe that to obtain a more accurate picture of the corruption situations that provide characteristics and its quantitative description is possible only by means of modelling the corruption phenomenon. In this regard, the analysis of theoretical models of corruption was made: the modelling made by the mathematical notation of the models and conclusions on the effectiveness of their application in management. Using simulation, the authors came to the conclusion that the detection and prevention of corruption should be carried out with the use of technologies and the system approach: from the study of statistics and use of anti-corruption platforms, public registers and databases to logical and probabilistic (LP) risk models of corruption.
-
Data science methods for comprehensive assessment of regional economic development
Liubov Chagovets , Svitlana Prokopovych , Viktor Kholod doi: http://dx.doi.org/10.21511/dm.18(2).2020.05The paper deals with the assessment of the socio-economic development of Ukrainian regions using Data Science methods and multidimensional analysis, including taxonomy, n-dimensional classification, and ensemble decision trees methods. The methodological bases of economic regions devel¬opment by the economic and mathematical modeling methods were investigated. The necessity of improving and further developing estimation models of the regional economic development using business analytics tools and multidimensional scaling methods was investigated.
The ensemble decision trees methods was applied for the classification model of economic development of the Ukrainian regions according to the conceptual base of the research on regional econom¬ic development. It will increase the quality level of administrative decisions making on regional de¬velopment asymmetry equalization. It is determined that in Ukraine, there is a significant imbalance of regions clusters with high and low economic level. Here was investigated the relationship between the two groups of economic development indicators – the indicators of the economic development regional performance and the group of economic potential. The results of the classification model allow identifying the set of indicators that have significant impact on the overall economic development. The developed ensemble model allows carrying out qualitative recognition and prediction of the state probability of economic development. It will improve the quality of decision making pro¬cesses on equalization of regional development asymmetry.
The further research gives the possibility to develop the system of levers directions of regional development imbalance equalization, to determine priority vectors of sustainable development of both the regions and the country.