Dispersion trading: an empirical analysis on the S&P 100 options
-
Received January 16, 2019;Accepted February 7, 2019;Published March 6, 2019
-
Author(s)Link to ORCID Index: https://orcid.org/0000-0001-5318-0592Link to ORCID Index: https://orcid.org/0000-0002-7406-0650
-
DOIhttp://dx.doi.org/10.21511/imfi.16(1).2019.14
-
Article InfoVolume 16 2019, Issue #1, pp. 178-188
- TO CITE АНОТАЦІЯ
-
Cited by1 articlesJournal title: SSRN Electronic JournalArticle title: The Quest for Alpha in Equity GammaDOI: 10.2139/ssrn.4474815Volume: / Issue: / First page: / Year: 2023Contributors: Rogerio Oliveira, Gustavo Wasserstein
- 2084 Views
-
793 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
This study provides an empirical analysis back-testing the implementation of a dispersion trading strategy to verify its profitability. Dispersion trading is an arbitrage-like technique based on the exploitation of the overpricing of index options, especially index puts, relative to individual stock options. The reasons behind this phenomenon have been traced in literature to the correlation risk premium hypothesis (i.e., the hedge of correlations drifts during market crises) and the market inefficiency hypothesis. This study is aimed at evaluating whether dispersion trading can be implemented with success, with a focus on the Standard & Poor’s 100 options. The risk adjusted return of the strategy used in this empirical analysis has beaten a buy-and-hold alternative on the S&P 100 index, providing a significant over-performance and a low correlation with the stock market. The findings, therefore, provide an evidence of inefficiency in the US options market and the presence of a form of “free lunch” available to traders focusing on options mispricing.
- Keywords
-
JEL Classification (Paper profile tab)G11, G12
-
References28
-
Tables4
-
Figures1
-
- Figure 1. Timing indicator and Bollinger bands
-
- Table 1. Ranking of stocks
- Table 2. Daily returns for 20 stocks
- Table 3. Daily returns for 13 stocks
- Table 4. List of opening dates
-
- Ang, A., & Chen, J. (2001). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63(3), 443-494.
- Bakshi, G., & Kapadia, N. (2003). Volatility risk premium embedded in individual equity options: Some new insights. Journal of Derivatives, 11(1), 45-54.
- Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
- Bollen, N. P., & Whaley, R. E. (2004). Does net buying pressure affect the shape of implied volatility functions? The Journal of Finance, 59(2), 711-753.
- Bollerslev, T., & Todorov, V. (2011). Tails, fears, and risk premia. The Journal of Finance, 66(6), 2165-2211.
- Carr, P., & Lee, R. (2009). Volatility derivatives. Annual Review of Financial Economics, 1, 319-339.
- Christoffersen, P., Fournier, M., & Jacobs, K. (2018). The factor structure in equity options. The Review of Financial Studies, 31(2), 595-637.
- Constantinides, G. M., & Lian, L. (2015). The supply and demand of S&P 500 put options (NBER Working Paper, 21161).
- De Fontnouvelle, P., Fishe, R. P. H., & Harris, J. H. (2003). The behavior of bid‐ask spreads and volume in options markets during the competition for listings in 1999. The Journal of Finance, 58(6), 2437-2463.
- Demeretfi, K., Derman, E., Kamal, M., & Zou, J. (1999). A guide to volatility and variance swaps. The Journal of Derivatives, 6(4), 9-32.
- Deng, Q. (2008). Volatility Dispersion Trading (Working paper). University of Illinois.
- Dennis, P., Mayhew, S., & Stivers, C. (2006). Stock returns, implied volatility innovations, and the asymmetric volatility phenomenon. Journal of Financial and Quantitative Analysis, 41(2), 381-406.
- Derman, E., & Miller, M. B. (2016). The Volatility Smile. Hoboken: Wiley.
- Driessen, J., Maenhout, P. J., & Vilkov, G. (2009). The price of correlation risk: Evidence from equity options. The Journal of Finance, 64(3), 1377-1406.
- Garleanu, N., Pedersen, L. H., & Poteshman, A. M. (2009). Demand-based option pricing. The Review of Financial Studies, 22(10), 4259-4299.
- Hardle, W. K., & Silyakova, E. (2012). Volatility investing with variance swaps. In J. C. Duan, W. K. Hardle & J. E. Gentle (Eds.), Handbook of Computational Finance (pp. 203-219). Springer Heidelberg.
- Hilpisch, Y. (2017). Listed Volatility and Variance Derivatives. Chichester: Wiley.
- Hull, J. C. (2018). Options, Futures, and Other Derivatives (10th ed.). Upper Saddle River: Pearson.
- Liu, J., & Longstaff, F. A. (2004). Losing money on arbitrage: Optimal dynamic portfolio choice in markets with arbitrage opportunities. The Review of Financial Studies, 17(3), 611-641.
- Marshall, C. M. (2009). Dispersion trading: Empirical evidence from U.S. options markets. Global Finance Journal, 20(3), 289-301.
- Martin, I. (2013). Simple Variance Swaps (Working paper). Stanford University.
- Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141-183.
- Nelken, I. (2006). Variance swap volatility dispersion. Derivatives Use, Trading & Regulation, 11(4), 334-344.
- Ren, Y. (2010). Dispersion trading. In R. Cont (Ed.), Encyclopedia of Quantitative Finance (pp. 486-487). Chichester: Wiley.
- S&P Dow Jones Indices (2018). S&P U.S. Indices Methodology. New York: S&P Global.
- Shleifer, A., & Vishny, R. W. (1997). The limits of arbitrage. The Journal of Finance, 52(1), 35-55.
- Sinclair, E. (2013). Volatility Trading (2nd ed.). Hoboken: Wiley.
- Su, X. (2006). Hedging basket options by using a subset of underlying assets (Bonn Econ Discussion Papers). University of Bonn.