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Abstract

This study provides an empirical analysis back-testing the implementation of a 
dispersion trading strategy to verify its profitability. Dispersion trading is an arbitrage-
like technique based on the exploitation of the overpricing of index options, especially 
index puts, relative to individual stock options. The reasons behind this phenomenon 
have been traced in literature to the correlation risk premium hypothesis (i.e., the hedge 
of correlations drifts during market crises) and the market inefficiency hypothesis. 
This study is aimed at evaluating whether dispersion trading can be implemented with 
success, with a focus on the Standard & Poor’s 100 options. The risk adjusted return 
of the strategy used in this empirical analysis has beaten a buy-and-hold alternative 
on the S&P 100 index, providing a significant over-performance and a low correlation 
with the stock market. The findings, therefore, provide an evidence of inefficiency in 
the US options market and the presence of a form of “free lunch” available to traders 
focusing on options mispricing.
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INTRODUCTION

Traditionally, volatility has been regarded as a measure of risk in port-
folio management; however, since the seminal works by Black and 
Scholes (1973) and Merton (1973), investment strategies focused on 
volatility have been the object of study both by scholars and practi-
tioners. The presence of liquid derivatives markets and the availabil-
ity of seemingly unlimited computing power have made possible the 
practical implementation and testing of complex quantitative ap-
proaches and the development of a whole new category of investment 
techniques: volatility trading (Sinclair, 2013). These techniques aim at 
taking profit, regardless of price movements, from the increment or 
reduction of volatility of listed securities by making use of derivatives. 
One of these techniques is dispersion trading, defined as the practice 
of selling index volatility while buying the volatility of its constituents 
at the same time (Ren, 2010). Plain vanilla options are the instruments 
most widely used by dispersion traders, but more complex and exotic 
derivatives, such as variance swaps, can be used for this trading strat-
egy (Hilpisch, 2017).

Due to the absence of empirical analyses of the practical viability of 
dispersion trading during the last decade, it is an open issue whether 
it can be still used with success. As a consequence, the implementation 
of dispersion trading requires a deeper investigation and this article 
is aimed at evaluating it in a realistic framework, using more recent 
data than the ones available in literature. In particular, this empirical 
analysis is focused on the US derivatives market. 
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The article is organized as follows. The first section describes dispersion trading, taking into account 
the factors underlying its rationale and the relevant literature. Its first sub-section is devoted to the 
theoretical foundations of this technique, while the second sub-section illustrates the technical 
problems encountered in the practical implementation of this trading strategy according to the relevant 
literature. The second section provides an empirical analysis and is divided into three sub-sections: the 
first one defines the time series of daily market data; the second provides a step-by-step description 
of the methodology followed in order to implement a simulation of dispersion trading in a realistic 
environment; the third discusses the results. Conclusions are outlined in the last section.

1. LITERATURE REVIEW

An in-depth analysis of dispersion trading re-
quires a review of the available literature, taking 
into account both its theoretical and technical 
aspects.

1.1. Theoretical foundations

Dispersion trading is an arbitrage-like technique, 
which is based on the exploitation of the overpric-
ing of index options, especially index puts, rela-
tive to individual stock options. This mispricing 
in the options market has been empirically prov-
en in several past studies, among which we recall 
Bakshi and Kapadia (2003), Bollen and Whaley 
(2004), Dennis et al. (2006), and Driessen et al. 
(2009), and its causes have been traced back to an 
overestimation of index volatility with respect to 
the volatilities of its constituents.

These analyses compare the differences be-
tween implied volatility and sample volatility 
of indices and stocks to verify if there is inco-
herence in the pricing of index and stock op-
tions. Despite their different methodological 
approaches and samples (the Standard & Poor’s 
500 or the Standard & Poor’s 100), these stud-
ies reach uniform conclusions. They show that 
the difference between implied and sample vari-
ances is larger for index options than for stock 
options. Driessen et al. (2009) have measured 
the implied volatility on the S&P 100 options 
to be higher than the sample variance by about 
3.89% annually between 1996 and 2003, and by 
2.47% on single stocks. In comparison, Bakshi 
and Kapadia (2003) covered the period between 
1991 and 1995 and found an implied volatility 
on stock options in excess of about 1% per year 
compared to the sample one, significantly lower 
than the 3.3% measured on the S&P 500. Bollen 

and Whaley (2004) confirmed these findings 
and reported a more pronounced volatility 
skew for the S&P 500 options when compared 
to stock options; therefore, implied volatility is 
less stable across maturities for index options 
than for the options written on its constituents.

The variance of returns of an index can be esti-
mated as follows:
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where iw  and iσ  are the weight of the i-th stock 
in the index and its standard deviation, respec-
tively, and ,i jρ  is the correlation between the i-th 
and j-th constituents.

As a consequence, the variance of the index de-
pends not only upon the variances of its constitu-
ents, but also their correlations. The same relation-
ship in equation (1) theoretically applies not only 
for the sample estimates, but also for the variances 
implied in index options and the options written 
on its constituents. As noted, this is not empiri-
cally proven and, on the contrary, the overesti-
mation of the implied variance of index options 
can be traced back to an excess implied correla-
tion among its constituents. Implied correlation, 
which is in a way a mean of all the possible corre-
lations between couples of stocks in an index, can 
be calculated as follows:
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where Iσ  and iσ  are the standard deviation im-
plied in the index options and in the options writ-
ten on its i-th constituent, respectively. Despite the 
fact that Pearson’s correlation index is bounded in 
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the [−1, +1] interval, this formulation of the index’s 
implied correlation can, and often does, reach val-
ues above +1, stressing the evidence of its overesti-
mation by the options market.

Dispersion trading exploits this mispricing by 
opening trades when the difference between the 
implied volatility of the index options and its 
theoretical value (i.e. the actual volatility of the 
index returns) is at its maximum, aiming at a 
convergence between these two measures before 
the expiry of the derivative contracts used for 
this strategy. This convergence can also be the 
result of a reversal of the implied correlation to 
its long-term mean. Usually, a dispersion trade 
is made of a short position on the index’s implied 
volatility by using a short straddle on its options 
and a long position on the implied volatility of its 
constituents, achieved by opening a long straddle 
on the constituents’ options. In other cases, the 
implied volatility of index options can be lower 
than its theoretical value and, therefore, dispersion 
trading is implemented the opposite way, that is, 
by going long on an index straddle and shorting 
straddles on its constituents.

Deng (2008) has empirically measured a system-
atic and significant profitability of dispersion trad-
ing on the US stock market until 2000, but also a 
relevant decrease in the trading results after this 
year. Meanwhile, Marshall (2009) has shown that 
a profitable use of dispersion trading was also pos-
sible after the year 2000 by making use of some 
simple indicators.

The factors underlying this phenomenon have 
been traced in literature to the risk premium and 
market inefficiency hypotheses.

The first hypothesis was put forward by Bakshi 
and Kapadia (2003), Driessen et al. (2009), and 
Bollerslev and Todorov (2011). Based on this hy-
pothesis, the index options’ overpricing in relation 
to the options on the index’s constituent stocks is 
caused by the presence of a risk premium for the 
increase of correlation among these constituents. 
Investors diversify their portfolio to reduce risk. 
Diversification benefits result from the imperfect 
correlation of assets and therefore, portfolio vari-
ance is lower than the sum of the variances of its 
constituents (subadditivity property).

However, contextual increases in both the volatil-
ity and correlations among stocks during market 
downturns are a known and proven phenomenon 
(Ang & Chen, 2001). A possible explanation may 
be identified in the so-called “panic-selling” that 
is derived from a sudden increase in investors’ risk 
aversion, which causes a phase-locking and in-
crease of correlations (correlations drift) and con-
versely, a reduction of diversification benefits and 
an increase in market volatility.

If we apply the usual portfolio variance formula by 
using the implied volatilities of index constituents 
as inputs as shown below:
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it becomes apparent that implied volatilities and 
prices of index options will be affected by both 
the increase of variance in single stocks and 
the phase-locking of correlations. As noted by 
Driessen et al. (2009), the index options’ over-
valuation is due to an overestimation of correla-
tions among constituents and this excess of im-
plied correlation includes the risk premium for 
correlation risk, that is, the risk of increases in 
correlations among the index constituents. Said 
differently, index options can be regarded as a 
form of hedge on this source of risk and, there-
fore, dispersion traders are protection sellers 
and their exposure to correlation risk is remu-
nerated by the premium paid by hedgers.

The second hypothesis regarding the source 
of index options’ mispricing is based on the 
assumption of market inefficiency. If the as-
sumptions of the Black-Scholes-Merton model 
were empirically verified, option prices should 
not be inf luenced by demand, but only by fac-
tors linked to the underlying security such as 
money market rates and time and therefore, the 
no-arbitrage condition should hold (Hull, 2018). 
However, Shleifer and Vishny (1997) and Liu 
and Longstaff (2004) have discovered the pres-
ence of serious limits in the practical imple-
mentation of arbitrages. For example, losses in-
curred during arbitrages can force the closing of 
the operation with a loss before the convergence 
of prices to their equilibrium level happens. 
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For the same reason, Bollen and Whaley (2004) 
stated that market makers are not willing to sell 
any amount of the same option at a constant price. 
In actuality, when the amount sold increases, the 
costs of hedging the exposure to volatility force 
the market maker to ask for a higher price for the 
option. From this it can be inferred that the supply 
curve is positively sloped (Constantinides & Lian, 
2018), that is, demand has a direct relationship 
with option prices. Gârleanu et al. (2009) have 
measured a net positive demand of index options 
and a net negative demand for individual stock 
options. The causes of this phenomenon are prob-
ably rooted in common investment funds’ policies. 
Their passive or semi-passive management styles 
require the use of index options for their hedging 
strategies, not of derivatives written on individu-
al stocks. Given this pressure on demand and the 
positive slope of the supply curve, index options 
are systematically overpriced when compared to 
stock options.

Deng (2008) provides an in-depth empirical analy-
sis of dispersion trading on the S&P 500 index and 
of its underlying factors, that is, risk premium and 
market inefficiency. The reform of the US options 
markets in 1999 (after an intervention by the SEC 
aimed at limiting anti-competitive practices) pro-
vides a “natural experiment” useful in distinguish-
ing the inefficiency factor in options pricing, given 
the dramatic contraction of transaction costs and 
of bid-ask spreads that occurred after its adoption 
(De Fontnouvelle et al., 2003). If overpricing of in-
dex options were a consequence of risk premium 
alone, the impact of the 1999 reform on the prof-
its of dispersion trading should be negligible. Deng 
(2008) has measured a mean return for this strat-
egy (implemented by buying at-the-money strad-
dles on the S&P 500 and selling straddles on each 
of its constituents) of 24% between 1996 and 2000 
and –0.03% between 2001 and 2005. This outcome 
provides strong evidence of the role of market inef-
ficiency, while it is still not entirely possible to rule 
out the presence of a limited risk premium.

1.2. Implementation  

and technical issues

Non-directional trades, such as dispersion trad-
ing, require a delta-neutral position on the returns 
of the underlying index and stocks. Delta hedg-

ing, while appealing on a theoretical perspective, 
poses serious issues when applied in practice. First 
of all, options’ delta is not constant and rebalanc-
ing is subject to transaction costs. This requires a 
reduction of its frequency which, as a consequence, 
leads to an imperfect hedge. As mentioned, dis-
persion trading can be implemented by buying 
and selling straddles and thus its initial delta is 
zero. However, in order to maximize the exposure 
to volatility, the options involved in this operation 
are at the money, which are characterized by the 
highest gamma and, at the same time, the high-
est volatility of the delta. Therefore, the efficacy of 
delta hedging is limited given the changes of delta 
before a new rebalancing, making it a suboptimal 
solution.

As previously noted, dispersion trading derives 
profit from the overpricing of index options com-
pared to stock options due to an overestimation of 
the index’s implied volatility. What makes it possi-
ble to isolate the effects of implied volatility on op-
tion prices is the greek “vega”, that is, the first par-
tial derivative of the price function with respect 
to volatility. Therefore, in order to maximize the 
return of the strategy, it is necessary to maximize 
the exposure of option prices to implied volatility 
which is the absolute value of their vega. Moreover, 
in the presence of a vega close to zero, the realign-
ment of implied volatilities with their true value 
would not have any significant impact on option 
prices and thus on the profitability of dispersion 
trading. Like delta, vega also varies with the price 
of the underlying asset: it is maximum for at-the-
money options and minimum for deep in- or out-
of-the-money options. Therefore, in order to keep 
vega as distant from zero as possible, it is neces-
sary to rebalance the portfolio towards the at-the-
money options.

Vega plays a crucial role in dispersion trading, 
because it is the input for the calculation of 
the number of options bought for each index 
constituent in order to keep the positive vega on 
the portfolio of long straddles on stocks as close 
as possible to the absolute value of the negative 
vega on short straddles on the index. This way, 
the trade is hedged from changes in the implied 
volatilities of the individual constituents and 
the investment is exposed only to the changes 
in the implied volatility of the index resulting 
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from an increase or reduction of correlation as 
implied in the price of index options.

Theta is seldom taken into account in dispersion 
trading because of its marginal, albeit not 
irrelevant, role. Given that the passing of time 
negatively affects the price of options, the 
strategy is best kept as close as possible to a 
zero theta, taking into account the positive 
theta of the long straddles on stocks and the 
negative theta of the short straddles on the 
index. Therefore, the calculation of the number 
of options to be included in the strategy should 
take the form of a joint minimization of the 
algebraic sums both of the vegas and the thetas 
of the straddles involved.

A method to keep a perfect delta hedge and a 
high vega regardless of an option’s remaining 
time to expiry and of the price of its underlying 
asset is to make use of derivative contracts 
known as variance swaps (Nelken, 2006; Härdle 
& Silyakova, 2012). A variance swap is a forward 
contract that pays the difference between the 
realized variance (f loating leg) of the underlying 
asset and a predefined strike variance (fixed 
leg) multiplied by the notional value at maturity. 
Unlike options, variance swaps do not require the 
payment of a premium and unlike plain vanilla 
swaps they contemplate only one payment at 
expiry. Given their technical features, variance 
swaps are comparable to forward contracts and 
are also known as realized volatility forwards 
(Demeterfi et al., 1999).

Formally, the payoff of a variance swap at expiry 
is equal to:

( )2

var
,RPayoff K Nσ= − ⋅  (4)

where 2

Rσ  is the variance of the returns of the un-
derlying on an annual basis, 

var
K  is the so-called 

“delivery price” (strike variance), N  is the notion-
al value of the variance swap contract.

Given the no-arbitrage condition, the delivery 
price of variance swaps can be replicated by an op-
tions portfolio, but unlike these latter derivatives, 
variance swaps are not subject to factors different 
from volatility and time to expiry. Therefore, the 
first and clear advantage of using variance swaps 

is the absence of the practical problems typical 
of delta hedging. Moreover, as noted by Nelken 
(2006), variance swaps allow keeping a constant 
vega without the need for rebalancing.

Despite these apparent advantages, the use of 
variance swaps in dispersion trading poses some 
issues. First, the 2008 crisis has caused serious 
losses to banks selling this type of derivatives 
resulting in a sudden implosion of their market, 
especially with regard to contracts written on 
single stocks (Carr & Lee, 2009; Martin, 2013) 
that are necessary for dispersion trading. Second, 
variance swaps are over-the-counter contracts and 
thus their market is subject to serious inefficiencies 
caused by mispricing, transaction costs, and 
information asymmetry.

A last alternative technique for the implemen-
tation of dispersion trading exploits the so-
called volatility skew to enhance the return on 
this strategy. Implied volatility depends upon 
the moneyness of the option as documented in 
literature (e.g. Derman & Miller, 2016), and it 
decreases with an inverse relationship to strike 
prices. This phenomenon implies that mar-
ket operators do not follow the Black-Scholes-
Merton assumption that stock returns are log-
normally distributed; on the contrary, volatility 
skew is compatible with a negatively skewed and 
leptokurtic distribution. Consequently, disper-
sion trading techniques can take into account 
the presence of this deviation from the stan-
dard pricing model and sell strangles instead of 
straddles on the index. Specifically, the trader 
should sell short at-the-money calls and out 
of the money puts which, coherent to volatil-
ity skews, have a higher premium and thus are 
more profitable. The trade on the constituent 
stocks would be unaltered. This change in the 
strategy’s implementation enhances the return 
on diversification trading by exploiting the 
higher implied volatility of out of the money in-
dex puts.

2. EMPIRICAL ANALYSIS

The following analysis provides a back-testing 
of the implementation of a dispersion trading 
strategy for the period from January 2010 to 
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December 2015 to verify its profitability. The 
index selected for this study is the Standard & 
Poor’s 100 composed of 100 companies select-
ed from the S&P 500. Companies included in 
this index are among the largest and most stable 
companies in the S&P 500 and have listed op-
tions (S&P Dow Jones Indices, 2018). The avail-
ability of listed stock and index options is the 
primary reason for the choice of the S&P 100 
in this study. The options involved are listed 
on the most efficient derivative markets world-
wide, causing two contrasting effects. On the 
one hand, transaction costs are expected to be 
limited; on the other hand, mispricing of index 
options is likely to be negligible, negatively af-
fecting the return of dispersion trading.

The strategy is implemented by selling at-the-
money straddles on the S&P 100 and buying 
at-the-money straddles on its constituents, but 
some enhancements will be applied. Particularly, 
a principal components analysis is used to limit 
the number of stocks underlying the straddles. 
Moreover, an indicator is calculated to signal the 
best timing for opening and closing the trades 
and, if necessary, to invert the strategy, that is, 
to buy straddles on the index and sell straddles 
on the constituents. Finally, delta hedging is im-
plemented to guarantee portfolio neutrality in 
terms of delta.

2.1. Data sample

An empirical analysis of diversification trading 
requires the time series of the options written 
both on the S&P 100 and on its constituents and 
of the stocks included in the index. As such, for 
each listed option with a residual life between 
one and 31 days, the following data were extract-
ed from the OptionMetrics database with a daily 
frequency:

• identification number;
• closing bid and ask prices;
• expiry date;
• strike price;
• delta;
• vega;
• 30-day implied volatility;
• daily trading volume; 
• open interest.

Daily time series data for stocks came from the 
Center for Research in Security Prices as follows:

• closing bid and ask prices;
• floating stock;
• dividends;
• splits and reverse splits.

The one-month US Dollar Libor was selected as the 
proxy for the risk-free rate and was obtained from 
the Federal Reserve Economic Research database.

2.2. Methodology

Options, even on efficient markets, are subject to 
transaction costs. One way to limit their impact is 
to reduce the number of options bought or sold by 
selecting a subsample of constituents that is suffi-
cient to explain the volatility of the index (i.e., repre-
sentative of the factor structure of the options mar-
ket). Our study makes use of principal components 
analysis, in order to reduce the dimensionality of 
the problem (Christoffersen et al., 2018). This statis-
tical procedure uses an orthogonal transformation 
to convert a sample of correlated variables into a set 
of linearly uncorrelated ones called principal com-
ponents. In this analysis we adopted the procedure 
described in Su (2006), followed also by Deng (2008).

The first step of this procedure requires the calcu-
lation of the daily continuously compounded re-
turn as follows:

,

,

, 1

ln ,
i t

i t

i t

S
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 
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where 
,i tS  is the price of the i-th stock at time .t

The covariance matrix of these returns is estimat-
ed as follows:

( )

2

1,1 1,2 1,

2* *
2,1 2,2 2,

2

,1 ,2 ,

,

k

k

k k k k

R
n

′

 
 
 = =  
 
  




   


σ σ σ
σ σ σ

σ σ σ

R R
V  (6)

where *
R  is the matrix of the centered returns calcu-

lated by subtracting the mean return of each constit-
uent from the corresponding column of the n k×  
matrix of the constituents returns, n  is the length, 
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measured in days, of the time series of returns for 
each stock, and k  is the number of stocks.

After defining the inputs, we apply the eigenvalue 
decomposition, ordering the eigenvectors of 
the covariance matrix, that is, the principal 
components, according to the share of variance 
explained. In our sample, the first seven principal 
components jointly explain 90.52% of the 
sample variance, with the first and the seventh 
components explaining 33.27% and 1.44% of the 
total, respectively.

The next step necessary for the practical implemen-
tation of the model is the selection of the stocks that 
mimic the seven principal components, based on 
the following procedure for each constituent stock:

1) estimate the Pearson correlation coefficient of 
each of the seven principal components;

2) calculate the weighted arithmetic mean of the 
squared correlations using the ratio between 
the percentage of variance explained by each 
component and the sum of the seven selected 
components (for example, for the first one, the 
weight is 33.27%/90.52% = 36.75%)1;

3) order the stocks based on their mean calcu-
lated in step 2 and select the first 20 stocks in 
the ranking (Table 1);

4) regress, without intercept, the daily returns 
of the index on those of the 20 selected stocks 
(Table 2);

5) discard the stocks, seven in this case, with a 
significance of at least 1%;

6) repeat step 4 for the remaining stocks, 13 in 
this case (Table 3).

By applying this procedure, it is possible to iden-
tify the stocks that best explain index volatility 
and as a consequence, dispersion trading can be 
implemented by buying or selling straddles writ-
ten only on them and not on the 100 constituents 
of the selected index.

1 With respect to this step, we depart from Su (2005) wherein the arithmetic mean correlations were not weighted. Our decision is based 
on the assumption that it is more useful to select stocks that are highly correlated with the most relevant principal components given the 
large dispersion in explained variances.

Table 1. Ranking of stocks

No Ticker Constituent name Weighted mean 
correlation

1 HON Honeywell International 0.353839326
2 MET Metlife 0.348578960
3 WFC Wells Fargo 0.333608035
4 JPM JPMorgan Chase 0.329813444
5 USB US Bancorp 0.324702226
6 BK Bank of New York Mellon 0.321710049
7 CVX Chevron 0.318882532
8 SLB Schlumberger 0.316688635
9 EMR Emerson Electric 0.316600419

10 BLK Blackrock 0.314560849
11 XOM Exxon 0.314519303
12 C Citigroup 0.314214965
13 UTX United Technologies 0.310955303
14 CAT Caterpillar 0.309998038
15 MMM 3M 0.308558810
16 OXY Occidental Petroleum 0.307202009
17 GE General Electrics 0.305588500
18 BAC Bank of America 0.292363556
19 RF Regions Financial 0.284197114
20 AXP American Express 0.280715103

Table 2. Daily returns for 20 stocks

Residuals

Min 1Q Median 3Q Max

–0.0109757 –0.0014596 0.0001633 0.0016881 0.0120707

Coefficients

Estimate Std. error t-value Pr(> |t|)

HON$return 0.090480 0.009609 9.416 < 2e-16***

MET$return 0.025418 0.006572 3.868 0.000115***

WFC$return 0.042460 0.009078 4.677 3.17e-06***

JPM$return 0.034257 0.008279 4.138 3.70e-05***

USB$return 0.035095 0.009796 3.582 0.000351***

BK$return 0.011631 0.007444 1.563 0.118373

CVX$return 0.045261 0.009928 4.559 5.55e-06***

SLB$return 0.013548 0.006135 2.208 0.027386*

EMR$return 0.014589 0.007825 1.864 0.062468.

BLK$return 0.053779 0.006315 8.516 < 2e-16***

XOM$return 0.119519 0.010833 11.033 < 2e-16***

C$return 0.018132 0.006103 2.971 0.003016**

UTX$return 0.062428 0.009637 6.478 1.26e-10***

CAT$return 0.010254 0.006640 1.544 0.122735

MMM$return 0.084748 0.009544 8.879 < 2e-16***

OXY$return 0.008785 0.006718 1.308 0.191225

GE$return 0.064843 0.007763 8.352 < 2e-16***

BAC$return 0.004717 0.005811 0.812 0.417023

RF$return –0.011055 0.004850 –2.279 0.022783*

AXP$return 0.061899 0.006739 9.185 < 2e-16***

Notes: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; 
residual standard error: 0.002603 on 1,512 degrees of 
freedom (1 observation deleted due to missingness); multiple 
R-squared: 0.9292; adjusted R-squared: 0.9283; F-statistic: 
992.1 on 20 and 1,512 DF,   p-value: < 2.2e-16.
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Table 3. Daily returns for 13 stocks

Residuals

Min 1Q Median 3Q Max

–0.0106540 –0.0014540 0.0001440 0.0016900 0.0103740

Coefficients

Estimate Std. error t-value Pr(> |t|)

HON$return 0.102563 0.009296 11.033 < 2e-16***

MET$return 0.028279 0.006402 4.417 1.07e-05***

WFC$return 0.042243 0.008918 4.737 2.38e-06***

JPM$return 0.036541 0.007994 4.571 5.25e-06***

USB$return 0.029818 0.009602 3.105 0.001935**

CVX$return 0.058902 0.009407 6.262 4.95e-10***

BLK$return 0.056575 0.006229 9.082 < 2e-16***

XOM$return 0.127405 0.010695 11.913 < 2e-16***

C$return 0.020944 0.005662 3.699 0.000224***

UTX$return 0.067742 0.009499 7.132 1.53e-12***

MMM$return 0.089705 0.009478 9.464 < 2e-16***

GE$return 0.069196 0.007741 8.939 < 2e-16***

AXP$return 0.062760 0.006750 9.298 < 2e-16***

Notes: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; 
residual standard error: 0.002621 on 1,519 degrees of 
freedom (1 observation deleted due to missingness); multiple 
R-squared: 0.9279; adjusted R-squared: 0.9273; F-statistic: 
1,503 on 13 and 1,519 DF, p-value: < 2.2e-16.

An additional requirement for an optimal 
implementation of dispersion trading is the 
construction of a timing indicator that provides 
entry signals for this strategy. As previously 
discussed, Deng (2008) has measured a 
sharp decrease in performance since the year 
2000, but, as noted by Marshall (2009), profit 
opportunities have also lasted after that date 
provided that trades are opened and closed 
following correct timing.

This empirical analysis is primarily based on 
the premise that dispersion trading is founded 
upon the difference between the correlation 
among constituents implicit in index options 
and the actual correlation. Therefore, the timing 
indicator is calculated, on a daily basis, as the 
difference between the implicit correlation of 
S&P 100 options and the sample correlation 
of the 13 stocks selected, measured on 30-day-
rolling windows. Specifically, the implied 
volatility is calculated as the mean between 
the implied volatilities of the at-the-money call 
and put on each stock. Thereafter, to identify a 

proxy of the mean level of correlations among 
constituents implied by option prices, equation 
(2) is modified as follows:
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where 
,I tσ  is the 30-day implied volatility 

of index options at time ,t  
,i tσ  is the 30-day 

implied volatility of stock options on the i-th 
constituent at time ,t  iw  is the weight in the 
index of the i-th stock, calculated as in Table 3.

Then, for each day t, the 30-day correlation 
between the returns of each couple of the 
13 selected constituents is estimated and, 
following equation (7), the aggregated measure 
of correlation is calculated as follows:
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where 
, ,i j tρ  is the correlation coefficient 

between the returns of the i-th and j-th stocks 
estimated on the preceding 30 days.

Finally, the timing indicator is calculated as the 
difference between (7) and (8):

.
impl sam

t t tIndicator ρ ρ= −  (9)

When the indicator is high, a long position in 
dispersion trading is opened, selling a straddle 
on the S&P 100 and buying a straddle on the 
subsample of 13 constituents, because, this 
way, we invest in a reduction of the implied 
correlation, converging toward the sample one. 
An opposite position is taken when the indicator 
is low, opening a short dispersion trade.

The identification of “high” and “low” levels of 
the timing indicator requires the use of Bollinger 
bands, calculated as the 30-day moving average 
of the indicator plus and minus 1.5 times its 
30-day standard deviation (Figure 1). Long and 
short dispersion trades are opened when the 
indicator breaks above the upper band or breaks 
under the lower band, respectively. The list of 
the opening dates is provided in Table 4.
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Table 4. List of opening dates

No Date Position
1 22/03/2010 Long
2 05/05/2010 Short
3 13/07/2010 Long
4 03/12/2010 Short
5 06/01/2011 Long
6 09/03/2011 Short
7 25/04/2011 Long
8 02/06/2011 Short
9 23/09/2011 Long

10 01/12/2011 Short
11 12/01/2012 Long
12 27/03/2012 Short
13 22/05/2012 Long
14 26/06/2012 Short
15 26/07/2012 Long
16 07/09/2012 Short
17 19/10/2012 Long
19 24/12/2012 Long
20 06/06/2013 Short
21 24/07/2013 Long
22 16/09/2013 Short
23 10/10/2013 Long
24 11/10/2013 Short
25 20/11/2013 Long
26 19/12/2013 Short
27 11/03/2014 Long
28 17/04/2014 Short
29 27/05/2014 Long
30 01/08/2014 Short
31 15/09/2014 Long
32 09/10/2014 Short
33 19/11/2014 Long
34 09/01/2015 Short
35 19/02/2015 Long
36 01/04/2015 Short
37 29/04/2015 Long
38 11/06/2015 Short
39 03/08/2015 Long
40 27/08/2015 Short
41 15/10/2015 Long
42 07/12/2015 Short

The first step before the actual implementation 
of the back-testing is to verify that every option, 
bought or sold, both on the S&P 100 and on its 
subsample of constituents, has the same expi-
ry date. The second step is the calculation of the 
number of stock options required to be bought or 
sold for each index option.

Therefore, for each opening date shown in Table 4, 
a dispersion trade is opened only if there are cou-
ples of put and call options with the same expiry 
and with residual life not less than 10 days. This 
additional constraint is included because of the er-
ratic trend typical of options close to expiry.

The number of contracts is calculated to minimize 
the difference between the vega of the S&P 100 op-
tions and the vega of the portfolio of options on 
the 13 selected constituents in order to hedge an 
increase or decrease in the volatilities of the con-
stituents themselves. The practical implementa-
tion requires the calculation of the vega on S&P 
100 options and then the theoretical vega of each 
option according to the weight of the i-th stock in 
the index iw  as follows:

Vega th
i,t

=w
i
 ∙ Vega S&P100

t
 (10)

Finally, the number of options bought or sold for 
each i-th stock is the ratio between the theoretical 
vega and the measured vega on the i-th constituent:

Figure 1. Timing indicator and Bollinger bands
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Dispersion trades are then closed when the op-
tions are at seven days from expiry, or when an 
opposite trade should be opened according to 
the timing indicator.

Moreover, dispersion trading is tested by taking 
into account delta hedging given the deltas cal-
culated at market close. The trade is rebalanced 
once daily. The delta for the index and each of 
its 13 selected constituents is the algebraic sum 
of the deltas of calls and puts, taking into ac-
count the long or short position of the trade. 
The profit and loss of the delta hedging is cal-
culated as the summation of the products of the 
daily variation of the delta and the price (value) 
of the corresponding stock (index).

3. RESULTS

The return of the strategy of dispersion trading im-
plemented in this empirical analysis is 23.51% per 
year compared to the 9.71% return of the S&P 100 
index in the same time span. Given an annual stan-
dard deviation of 9.42% and a risk-free rate of 0.21%, 
the Sharpe ratio of the strategy is significant and 
equal to 2.47.

Another interesting feature is the extremely low cor-
relation coefficient between the returns of this strat-
egy and those of the S&P 100 equal to a mere 0.0372. 
It is clear that dispersion trading is able to provide a 
performance completely independent from the stock 
market; therefore, with a very limited systematic risk.

These outcomes are coherent with the findings on 
dispersion trading provided by earlier literature, as 
reported in section 1, in particular with Deng (2008) 
and Marshall (2009). 

CONCLUSION

This article has provided a review of the theoretical basis for dispersion trading and has clarified its in-
terpretation as an arbitrage on the mispricing of index options with regard to the overestimation of the 
implied correlations among its constituents. The empirical analysis showed how a simple version of dis-
persion trading, implemented using at-the-money plain vanilla straddles on the S&P 100 and a represen-
tative subsample of constituents, has significantly over performed the stock market, showing almost no 
correlation to the chosen index.

While the empirical results show a strong predominance of dispersion trading if compared to a 
simple buy-and-hold strategy, a limitation of this analysis is the assumption of the absence of 
transaction costs. If we ignore slippage (the difference between the expected price of a trade and 
the price at which it is executed), only a market maker could have replicated the performance of 
our back-testing. Another limitation of the present analysis is the rather simplified delta hedging 
technique based upon a simple daily rebalancing. An optimized hedge would have gained higher 
returns, therefore compensating, at least partially, transaction costs. As a consequence, these two 
limitations of this study, while present, have opposing effects, and their combined impact is ex-
pected to be negligible, especially given the low number of qualified trades (just 29 in six years) and 
their brief mean length (only 16.31 days).

Therefore, our analysis provides a strong evidence of inefficiencies in the US options market and the 
presence of a form of “free lunch” available to traders focusing on options mispricing.
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