Technological development and eco-efficiency: Drivers of total factor productivity in OECD countries
-
DOIhttp://dx.doi.org/10.21511/ppm.22(4).2024.14
-
Article InfoVolume 22 2024, Issue #4, pp. 174-188
- 128 Views
-
23 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
This study delves into the total factor productivity growth in OECD countries, focusing on the crucial role of technological advancement and environmental management. By utilizing the Malmquist-Luenberger index, the paper encompasses both positive and negative outputs, such as pollution, providing a comprehensive productivity analysis by breaking it down into efficiency and technical change. Data from 36 OECD countries from 2000 to 2021 were examined to uncover trends and patterns in productivity growth and its unintended environmental consequences. The results emphasize the dominant influence of technological progress, particularly after 2006, as the primary driver of productivity growth, surpassing improvements in technical efficiency. A significant increase in technical change (1.56 in 2021) compared to technical efficiency (1.05) underscores the importance of sustained investment in research and development (R&D), which correlates positively with patent generation and technological advancement. The study also illustrates that OECD countries have effectively integrated eco-efficient practices, aligning with global trends in environmentally conscious productivity analyses. By integrating environmental outputs such as PM2.5 pollution, the analysis demonstrates that countries mitigating these adverse effects achieve higher productivity growth. These findings challenge conventional productivity models, where productivity diminishes when environmental aspects are considered. The analysis emphasizes the necessity for tailored policy approaches to address disparities in R&D investments, technological adoption, and eco-efficiency among countries. Countries with more significant R&D investments consistently demonstrate superior technological advancement in patents (0.745). Policymakers are urged to prioritize long-term strategies that foster technological innovation and environmental sustainability to ensure sustained productivity growth and economic resilience.
- Keywords
-
JEL Classification (Paper profile tab)O32, O44, O47, O57, Q55
-
References38
-
Tables7
-
Figures2
-
- Figure 1. Decomposition of the ML index in OECD
- Figure 2. Comparison between M and ML index in OECD
-
- Table 1. Study variables
- Table 2. Descriptive statistics
- Table 3. Average values by variable and country
- Table A1. Malmquist-Luenberger Index (ML)
- Table A2. Technical Efficiency Change (MLTEC)
- Table A3. Technical Change (MLTC)
- Table A4. Malmquist Index (M)
-
- Álvarez, I. C., Barbero, J., & Zofío, J. L. (2020). A data envelopment analysis toolbox for MATLAB. Journal of Statistical Software, 95(3), 1-49.
- Aparicio, J., Pastor, J. T., & Zofio, J. L. (2013). On the inconsistency of the Malmquist-Luenberger index. European Journal of Operational Research, 229(3), 738-742.
- Bampatsou, C., & Halkos, G. (2017). Energy and CO 2 emissions as the determinants of countries’ productivity with different levels of economic development. International Journal of Global Energy Issues, 40(5), 277-293.
- Basu, S., Fernald, J. G., & Shapiro, M. D. (2001). Productivity growth in the 1990s: Technology, utilization, or adjustment? (NBER Working Paper Series No. 8359). Cambridge, MA: National Bureau of Economic Research.
- Bianchini, S., Damioli, G., & Ghisetti, C. (2023). The environmental effects of the “twin” green and digital transition in European regions. Environmental and Resource Economics, 84(4), 877-918.
- Bosworth, S. J., & Snower, D. J. (2024). Technological advance, social fragmentation and welfare. Social Choice and Welfare, 62(2), 197-232.
- Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51(3), 229-240.
- Ciarli, T., Kenney, M., Massini, S., & Piscitello, L. (2021). Digital technologies, innovation, and skills: Emerging trajectories and challenges. Research Policy, 50(7).
- Emrouznejad, A., & Yang, G.-l. (2016). A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries. Energy, 115, 840-856.
- European Central Bank, Kindberg-Hanlon, G., Dieppe, A., & Francis, N. (2021). Technology and demand drivers of productivity dynamics in developed and emerging market economies. European Central Bank.
- Foster, L., & He, A. (2022). Technology and productivity growth. Business Economics, 57(3), 111-119.
- Fuglie, K. O., & Echeverria, R. G. (2024). The economic impact of CGIAR-related crop technologies on agricultural productivity in developing countries, 1961–2020. World Development, 176, Article 106523.
- Fulgenzi, R., Gitto, S., & Mancuso, P. (2024). Information and communication technology and labour productivity growth: A production-frontier approach. Annals of Operations Research, 333(1), 123-156.
- Halkos, G., & Argyropoulou, G. (2021). Modeling energy and air pollution health damaging: A two-stage DEA approach. Air Quality, Atmosphere and Health, 14(8), 1221-1231.
- Hawash, R., & Lang, G. (2020). Does the digital gap matter? Estimating the impact of ICT on productivity in developing countries. Eurasian Economic Review, 10(2), 189-209.
- Herrero, S., Torrent, J., & Aguirre, K. (2023). Robots and inequality in Latin America: Whose wages improve when automation is imported? Research Square.
- Kumar, S. (2006). Environmentally sensitive productivity growth: A global analysis using Malmquist–Luenberger index. Ecological Economics, 56(2), 280-293.
- Liang, C., & Wang, Q. (2023). The relationship between total factor productivity and environmental quality: A sustainable future with innovation input. Technological Forecasting and Social Change, 191, Article 122521.
- Mao, C., Koide, R., Brem, A., & Akenji, L. (2020). Technology foresight for social good: Social implications of technological innovation by 2050 from a Global Expert Survey. Technological Forecasting and Social Change, 153, Article 119914.
- Misra, K., Memili, E., Welsh, D. H. B., Reddy, S., & Sype, G. E. (2015). Cross-country technology gap in Latin America Growth accounting and non-parametric approaches. Cross Cultural Management: An International Journal, 22(4), 630-648.
- Morales-Piñero, J., Niño-Muñoz, D., & Lesmes-Cardenas, D. (2022). Gestión pública o privada de las universidades: ¿Cuál es la opción más eficiente para una política pública en educación superior en Colombia? [Public or private management of universities: Which is the most efficient option for a public policy in higher education in Colombia?]. Education Policy Analysis Archives, 30(161). (In Spanish).
- Nava, A. (2023). Nuevas tecnologías digitales y su impacto en el poder de negociación del mundo del trabajo: El caso de Argentina [New digital technologies and their impact on the bargaining power of the world of work. The case of Argentina]. Revista de Sociologia, 108(2), Article e3092. (In Spanish).
- OECD. (2024a). Main Economic Indicators – Complete database. Main Economic Indicators (Database).
- OECD. (2024b). Main Science and Technology Indicators. OECD Science, Technology and R&D Statistics (Database).
- Oh, D. (2010). A global Malmquist-Luenberger productivity index. Journal of Productivity Analysis, 34(3), 183-197.
- Pieri, F., Vecchi, M., & Venturini, F. (2018). Modelling the joint impact of R&D and ICT on productivity: A frontier analysis approach. Research Policy, 47(9), 1842-1852.
- Pine, K. H., Hinrichs, M. M., Wang, J., Lewis, D., & Johnston, E. (2020). For impactful community engagement: Check your role. Communications of the ACM, 63(7), 26-28.
- Rivera, T. (2019). Efectos de la automatización en el empleo en Chile [Effects of automation on employment in Chile]. Revista de Análisis Económico, 34(1), 3-49. (In Spanish).
- Schiff, M., & Wang, Y. (2023). North-south trade-related technology diffusion and the East Asia-Latin America productivity gap. World Trade Review, 22(3-4), 348-358.
- Tamberi, M. (2020). Productivity differentials along the development process: A “MESO” approach. Structural Change and Economic Dynamics, 53, 99-107.
- Utku-İsmihan, F. M. (2019). Knowledge, technological convergence and economic growth: A dynamic panel data analysis of Middle East and North Africa and Latin America. Quality & Quantity, 53(2), 713-733.
- Vallés-Giménez, J., & Zárate-Marco, A. (2016). Productivity and growth. In A. Marciano & G. Ramello (Eds.), Encyclopedia of Law and Economics (pp. 1-8). Springer.
- Vergès, C. (2022). Precarización laboral, desigualdad y nuevas tecnologías [Job insecurity, inequality and new technologies]. Revista Colombiana de Bioética, 17(1). (In Spanish).
- Xu, N., Zhang, F., & Xuan, X. (2021). Impacts of industrial restructuring and technological progress on PM2.5 pollution: Evidence from prefecture-level cities in China. International Journal of Environmental Research and Public Health, 18(10), Article 5283.
- Yang, C., Li, T., & Albitar, K. (2021). Does energy efficiency affect ambient PM2.5? The moderating role of energy investment. Frontiers in Environmental Science, 9.
- Yilanci, V. (2023). Perspectives on Ecological Degradation and Technological Progress. IGI Global.
- Zhang, Y., Shuai, C., Bian, J., Chen, X., Wu, Y., & Shen, L. (2019). Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. Journal of Cleaner Production, 218, 96-107.
- Zhu, Q., Li, X., Li, F., Wu, J., & Zhou, D. (2020). Energy and environmental efficiency of China’s transportation sectors under the constraints of energy consumption and environmental pollutions. Energy Economics, 89, Article 104817.