Longevity risk management through Machine Learning: state of the art
-
DOIhttp://dx.doi.org/10.21511/ins.11(1).2020.02
-
Article InfoVolume 11 2020, Issue #1, pp. 11-20
- Cited by
- 977 Views
-
364 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
Longevity risk management is an area of the life insurance business where the use of Artificial Intelligence is still underdeveloped. The paper retraces the main results of the recent actuarial literature on the topic to draw attention to the potential of Machine Learning in predicting mortality and consequently improving the longevity risk quantification and management, with practical implication on the pricing of life products with long-term duration and lifelong guaranteed options embedded in pension contracts or health insurance products. The application of AI methodologies to mortality forecasts improves both fitting and forecasting of the models traditionally used. In particular, the paper presents the Classification and the Regression Tree framework and the Neural Network algorithm applied to mortality data. The literature results are discussed, focusing on the forecasting performance of the Machine Learning techniques concerning the classical model. Finally, a reflection on both the great potentials of using Machine Learning in longevity management and its drawbacks is offered.
- Keywords
-
JEL Classification (Paper profile tab)C6, G22, J11
-
References44
-
Tables0
-
Figures0
-
- Alpaydin, E. (2010). Introduction to Machine Learning (2nd ed.). Cambridge: Massachusetts Institute of Technology Press.
- Biffis, E. (2004). Affine processes for dynamic mortality and actuarial valuations. Insurance: Mathematics and Economics, 37(3), 443-468.
- Biffis, E., Blake, D., Pitotti, L., & Sun, A. (2014). The cost of counterparty risk and collateralization in longevity swaps. The Journal of Risk and Insurance, 83(2), 1-33.
- Blake, D., Cairns, A. J. G., Dowd, K., & MacMinn, R. (2006). Longevity bonds: Financial engineering, valuation and hedging. Journal of Risk and Insurance, 73(4), 647-672.
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
- Brouhns, N., Denuit, M., & Vermunt, J. K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics, 31(3), 373-393.
- Cairns, A. J. G., Blake, D., & Dowd, K. (2006). Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk. ASTIN Bulletin, 36(1), 79-120.
- Carracedo, P., Debon, A., Iftimi, A., & Montes, F. (2018). Detecting spatio-temporal mortality clusters of European countries by sex and age. International Journal for Equity in Health, 17, 38.
- Cocco, J. F., & Gomes, F. J. (2012). Longevity risk, retirement savings, and financial innovation. Journal of Financial Economics, 103(3), 507-529.
- CRO Forum. (2010). Longevity (CRO Briefing Emerging Risks Initiative Position Paper).
- Currie, I. D., Durban, M., & Eilers ,P. H. C. (2004). Smoothing and Forecasting Mortality Rates. Statistical Modelling, 4(4), 279-298.
- Currie I. D., Durban M., & Eilers P. H. C. (2006). Generalized Linear Array Models with Applications to Multidimensional Smoothing. Journal of the Royal Statistical Society, 68(2), 259-280.
- Dahl, M. (2004). Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts. Insurance: Mathematics and Economics, 35(1), 113-136.
- Deloitte. (2018). AI and you. Perceptions of Artificial Intelligence from the EMEA financial services industry.
- Deprez, P., Shevchenko, P. V., & Wüthrich, M., (2017). Machine learning techniques for mortality modeling. European Actuarial Journal, 7(2), 337-352.
- Eilers, P. H. C., & Marx, B. D. (1996). Flexible Smoothing with B-splines and Penalties. Statistical Science, 11(2), 89-102.
- Ferrario, A., Noll, A., & Wüthrich, M. V. (2020). Insights from Inside Neural Networks.
- Friedman, J. H. (2001). Greedy function approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189-1232.
- Gabrielli, A., Richman, R., & Wüthrich, M. (2019). Neural Network Embedding of the Over-Dispersed Poisson Reserving Model. Scandinavian Actuarial Journal, 1, 1-29.
- Haberman, S., & Renshaw, A. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 48(1), 35-55.
- Hainaut, D. (2018). A neural-network analyzer for mortality forecast. ASTIN Bulletin, 48(2), 481-508.
- Hastie, T., Tibshirani, R., & Friedman, J. (2016). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). New York: Springer.
- Huang, F., & Browne, B. (2017). Mortality forecasting using a modified Continuous Mortality Investigation Mortality Projections Model for China I: Methodology and country-level results. Annals of Actuarial Science, 11(1), 20-45.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical Learning: With Applications in R. New York: Springer.
- Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting US mortality. Journal of the American Statistical Association, 87(419), 659-671.
- Levantesi, S., & Nigri, A. (2019). A random forest algorithm to improve the Lee-Carter mortality forecasting: impact on q-forward. Soft Computing, 12.
- Levantesi, S., & Pizzorusso, V. (2019). Application of Machine Learning to Mortality Modeling and Forecasting. Risks, 7(1), 26.
- Loeys, J., Panigirtzoglou, N., & Ribeiro, R. (2007). Longevity: A Market in the Making. In Global Market Strategy. London: J. P. Morgan Securities Ltd.
- Maier, M., Carlotto, H., Sanchez, F., Balogun, S., & Merritt, S. (2019). Transforming Underwriting in the Life Insurance Industry. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9373-9380.
- Marino, M., & Levantesi, S. (2020). Measuring longevity risk through a Neural Network Lee-Carter Model. SSRN.
- Milevsky, M. A., & Promislow, S. D. (2001). Mortality derivatives and the option to annuitise. Insurance: Mathematics and Economics, 29(3), 299-318.
- Nigri, A., Levantesi, S., & Marino, M., (2020). Forecasting life expectancy and lifespan disparity: a long short-term memory approach. Scandinavian Actuarial Journal.
- Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., & Perla, F. (2019). A deep learning integrated Lee-Carter model. Risks, 7(1), 33.
- Noll, A., Salzmann, R., & Wüthrich, M. V. (2020). Case Study: French Motor Third-Party Liability Claims. SSRN.
- Piscopo, G. & Resta, M. (2017). Applying spectral biclustering to mortality data. Risks, 5(2), 24.
- Pitacco, E. (2020). Enterprise Risk Management (ERM) and Quantitative Risk Management (QRM). In ERM and QRM in Life Insurance. Springer Actuarial. Springer, Cham.
- Plat, R. (2009). On stochastic mortality modeling. Insurance: Mathematics and Economics, 45, 393-404.
- Renshaw, A. E., & Haberman, S. (2003). On the Forecasting of Mortality Reduction Factors. Insurance Mathematics and Economics, 32(3), 379-401.
- Renshaw, A. E., & Haberman, S. (2006). A Cohort-Based Extension to the Lee-Carter Model for Mortality Reduction Factors. Insurance: Mathematics and Economics, 38, 556-570.
- Richman, R., & Wüthrich, M. (2018). A Neural Network Extension of the Lee-Carter Model to Multiple Populations. SSRN.
- Schrager, D. F. (2006). Affine stochastic mortality. Insurance: Mathematics and Economics, 38(1), 81-97.
- The Life & Longevity Markets Association. (2010). Technical note: the q-forward.
- Villegas, A. M., Kaishev, V. K., & Millossovich, P. (2015). StMoMo: An R package for stochastic mortality modelling.
- Wüthrich, M. V., & Christoph, B. (2019). Data Analytics for Non-Life Insurance Pricing (Swiss Finance Institute Research Paper No. 16-68).