The effect of the government bond value on the intermediary function of banks in the capital market of Indonesia
-
DOIhttp://dx.doi.org/10.21511/bbs.15(3).2020.17
-
Article InfoVolume 15 2020, Issue #3, pp. 199-206
- Cited by
- 774 Views
-
132 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
The distribution of funds becomes the identity and function of banks. By performing this function well, the banks can get profit to survive. One of the considered factors affecting this channeling function is the issuance of government bonds to finance the state budget, which may be harmful to this bank channeling function. Therefore, to prove this situation, it is necessary to check a causal relationship between the government bond value and the bank intermediary function through this study, adding bank size and loans as a control variable.
This study utilizes the banks listed on the capital market of Indonesia as the population. Furthermore, the Slovin formula and a simple random sampling method are employed to determine the number of banks to be the samples and take them. Also, the regression model with pooled data and the t-statistic test are used to estimate its coefficients and examine the proposed hypotheses, respectively.
Overall, this study demonstrates that the government bond value positively affects the bank intermediary function. This indicates that the crowding-out does not exist. By this evidence, the government does not need to worry because this debt does not disturb the bank function to deliver the credit to society. Likewise, bank size and bad loans have a positive impact on this function. Thus, banks must be able to diversify risks among their assets and restructure bad loans when performing this function.
- Keywords
-
JEL Classification (Paper profile tab)G20, G21, G28
-
References35
-
Tables5
-
Figures0
-
- Table 1. Research variables and their measurement
- Table 2. Bank names serving as a sample
- Table 3. Descriptive statistics outcome of the research variables
- Table 4. The outcome of the classical assumption tests
- Table 5. Pooled regression model estimation outcome: determinants of bank intermediary function
-
- Abbas, S. M., & Christensen, J. E. (2007). The role of domestic debt markets in economic growth: An empirical investigation for low-income countries and emerging markets (IMF Working Papers WP/07/127).
- Adzis, A. A., Sheng, L. E., & Bakar, J. A. (2018). Bank lending determinants: Evidence from Malaysia commercial banks. Journal of Banking and Finance Management, 1(3), 36-48.
- Akbar, M., & Mentayani, I. (2010). Faktor-faktor yang mempengaruhi intermediasi: Studi pada bank umum swasta Kalimantan Selatan tahun 2007–2009. Jurnal Manajemen dan Akuntansi, 11(2), 107-116.
- Akpansung, A. O. (2018). Analysis of the impacts of domestic debts on private sector credit, lending rate, and real output: Evidence from Nigeria. Journal of Finance and Economics, 6(3), 111-123.
- Altaylıgil, Y. B., & Akkay, R. C. (2013). The effect of the domestic debt on the financial development: A Case Study for Turkey. International Journal of Economics and Finance, 5(5), 64-74.
- Anyanwu, A., Gan, C., & Hu, B. (2017). Government domestic debt, private sector credit, and crowding out effect in oil-dependent countries. Journal of Economic Research, 22, 127-151.
- Benayed, W., & Gabsi, F. B. (2020). Domestic public debt and financial development in Sub-Saharan Africa: Is there an inverted-U relationship? Economics Bulletin, 40(1), 846-854.
- Boako, G., Acheampong, I. A., & Ibrahim, M. (2017). Determinants of bank credit in Ghana: A bounds-testing cointegration approach. African Review of Economics and Finance, 9(1), 33-61.
- Chagwiza, W. (2014). Zimbabwean commercial bank liquidity and its determinants. International Journal of Empirical Finance, 2(2), 52-64.
- Christensen, J. (2005). Domestic Debt Markets in Sub-Saharan Africa. IMF Staff Paper, 52(3), 518-538.
- Cucinelli, D. (2015). The impact of non-performing loans on bank lending behavior: Evidence from the Italian banking sector. Eurasian Journal of Business and Economics, 8(16), 59-71.
- DeBonis, R., & Stacchini, M. (2013). Does government debt affect bank credit? International Finance, 16(3), 289-310.
- El-Chaarani, H. (2019). Determinants of bank liquidity in the Middle East region. International Review of Management and Marketing, 9(2), 64-75.
- Ghozali, I. (2016). Aplikasi Analisis Multivariate dengan Program IBM SPSS 23 (8 ed.). Semarang: Badan Penerbit Universitas Diponegoro.
- Hanson, J. A. (2007). The growth in government domestic debt: Changing burdens and risks (Policy Research Working Paper No. 4348).
- Hartono, J. (2012). Metodologi penelitian bisnis: Salah kaprah & pengalaman-pengalaman (5 ed.). Yogyakarta: Badan Penerbit Fakultas Ekonomi Universitas Gadjah Mada.
- Ivanović, M. (2016). Determinants of Credit Growth: The Case of Montenegro. Journal of Central Banking Theory and Practice, 2, 101-118.
- Kartini, K., & Nuranisa, A. (2014). Pengaruh capital adequacy ratio (CAR), non-performing Loan (NPL), pertumbuhan dana pihak ketiga (DPK), biaya operasional terhadap pendapatan operasional (BOPO) terhadap likuiditas yang diukur dengan loan to deposit ratio pada perusahaan perbankan yang ter. Unisia, 36(81), 142-156.
- Kembuan, D. T., Rahman, I. F., & Setiawan, N. (2018). Analisis pengaruh karakteristik spesifik bank terhadap fungsi intermediasi pada perbankan yang terdaftar di Bursa Efek Indonesia tahun 2013 sampai tahun 2017. Jurnal Riset Akuntansi dan Keuangan, 6(2), 187-210.
- Khanal, S. (2019). Determinants of liquidity in commercial banks of Nepal. International Journal of Economics and Management Studies, 6(8), 11-16.
- Mwakalila, E. (2020). Crowding out of private sector in Tanzania: Government Expenditure, Domestic Borrowing, and Lending Rates. Emerging Economy Studies, 6(1), 123-135.
- Nachrowi, N., & Usman, H. (2006). Pendekatan Populer dan Praktis Ekonometrika Untuk Analisis Ekonomi dan Keuangan. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia.
- Rabab’ah, M. (2015). Factors Affecting the Bank Credit: An Empirical Study on the Jordanian Commercial Banks. International Journal of Economics and Finance, 7(5), 166-178.
- Shah, S. Q. A., Khan, I., Shah, S. S. A., & Tahir, M. (2018). Factors affecting liquidity of banks: Empirical evidence from the banking sector of Pakistan. Colombo Business Journal, 9(1), 1-18.
- Siringoringo, R. (2017). Analisis Fungsi Intermediasi Perbankan Indonesia (Studi Kasus Bank Umum Konvensional yang Tercatat di BEI Periode 2012–2016). Jurnal Inspirasi Bisnis dan Manajemen, 1(2), 135-144.
- Somantri, Y. F., & Sukmana, W. (2019). Analisis faktor-faktor yang mempengaruhi financing to deposit ratio (FDR) pada bank umum syariah di Indonesia. Berkala Akuntansi dan Keuangan Indonesia, 4(2), 61-71.
- Suliyanto. (2009). Metode Riset Bisnis. Yogyakarta: Penerbit ANDI.
- Surjaningsih, N., Yumanita, D., & Deriantino, E. (2014). Early Warning Indicator Risiko Likuiditas Perbankan (Working Paper WP/1/2014).
- Świtała, F., Kowalska, I., & Malajkat, K. (2020). Size of banks as a factor which impacts the efficiency of the bank lending channel. Financial Internet Quarterly, 16(1), 36-44.
- Tran, D. V. (2019). Ownership structure and bank lending. Economics Bulletin, 39(4), 3011-3023.
- Uchida, H., Udellb, G. F., & Watanabe, W. (2008). Bank size and lending relationships in Japan. Journal of the Japanese and International Economies, 22(2), 242-267.
- Utari, G. A. D., Kurniati, I. N., & Surjaningsih, N. (2011). Dampak penerbitan SUN domestik terhadap perkembangan sektor perbankan. Jurnal Badan Pendidikan dan Pelatihan Keuangan, 2, 81-100.
- Vodová, P. (2011). Liquidity of Czech commercial banks and its determinant. International Journal of Mathematical Models and Methods in Applied Science, 5(6), 1060-1067.
- Wibowo, B. (2018, October 15). Crowding out pemerintah dan swasta. (T. Adi, Editor).
- Wibowo, B., Passagi, H., & Prasetyo, M. B. (2018). Uji empirik crowding out surat utang pemerintah dan korporasi di pasar modal Indonesia. Jurnal Ekonomi Kuantitatif Terapan, 11(1), 19-33.