Zahra Safriza
-
1 publications
-
0 downloads
-
1 views
- 142 Views
-
0 books
-
Are Indonesian construction companies financially distressed? A prediction using artificial neural networks
Farida Titik Kristanti , Zahra Safriza , Dwi Fitrizal Salim doi: http://dx.doi.org/10.21511/imfi.20(2).2023.04Investment Management and Financial Innovations Volume 20, 2023 Issue #2 pp. 41-52
Views: 855 Downloads: 227 TO CITE АНОТАЦІЯConstruction companies are very dependent on the projects carried out by a company. Therefore, measuring whether a company is distressed or non-distressed can be done by looking at the ratios derived from the components of the financial statements from both the balance sheet and the company’s profit and loss. This study offers a new method for measuring financial distress in companies with Artificial Neural Networks (ANN). The model provided comes from several financial ratios in 17 construction companies listed on the Indonesia Stock Exchange. The model is expected to produce the best model by showing the lowest prediction error rate. The results showed that the best ANN model has 25 inputs, 20 hidden layer neurons, and 1 best model output. The model obtained will be tested directly on the sample used; the results are that 6 construction companies in Indonesia have financial distress and 11 non-distress problems. This result proves that the best model obtained can predict the level of financial distress of companies with a small error rate to produce 6 companies identified as financially distressed. This result can be a warning for companies to increase revenue by adding new projects to get out of financial distress status. Traditional financial distress models such as Altman, Zmijewski, Springate, and Fulmer, which have become researchers’ guidelines for measuring financial distress, can be added to the ANN 25-20-1 model as a comparison to strengthen the research results.