George Thomas
-
1 publications
-
1 downloads
-
6 views
- 103 Views
-
0 books
-
Exploring the nexus of artificial intelligence in talent acquisition: Unravelling cost-benefit dynamics, seizing opportunities, and mitigating risks
Problems and Perspectives in Management Volume 22, 2024 Issue #1 pp. 462-476
Views: 326 Downloads: 184 TO CITE АНОТАЦІЯThe rise in talent management complications led organizations to rely on the latest technologies to automate their routine HRM tasks through AI. This study proposed to examine fundamental aspects of AI in talent acquisition (cost-benefit, opportunities, and risk factors) from the context of strategic analysis and decision-making. 52 respondents from HRM and the information technology departments from fifteen large dairy enterprises, each with more than one thousand employees, were included in the focus group discussion. Both departments were included in the focus group discussion as they heavily employ AI in talent acquisition. The opinions were collected in multiple rounds based on the cost, benefit, opportunity, and risk criteria using the analytical hierarchy process, a multi-criteria decision-making framework. The findings demonstrated that most respondents opinioned AI supports talent acquisition with many opportunities (38.7%) that involve the identification of the best applicants (18.7%) and different benefits (33.2%) to the organization in the form of saving time and cost (16.1%) leading to higher efficacy. The study infers that the application of AI in HRM significantly contributes to talent acquisition, streamlining processes, improving efficiency, and enhancing decision-making. The study recommends that implementing AI in talent acquisition requires a strategic approach, and organizations need to consider factors such as data privacy, ethical use of AI, and ongoing training to ensure successful integration into their hiring processes. Additionally, regular monitoring and adjustments are essential to optimize the effectiveness of AI tools in talent acquisition.
Acknowledgment
The authors of this article would like to thank Prince Sultan University for its financial and academic support for this publication.