“A study of dynamics in market volatility indices between US and Taiwan”

| AUTHORS | Yen-Hsien Lee
| | Jui-Cheng Hung
| | Yi-Hsien Wang
	Chin-Yen Huang
JOURNAL	"Investment Management and Financial Innovations"
FOUNDER	LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES	0
NUMBER OF FIGURES	0
NUMBER OF TABLES	0

© The author(s) 2018. This publication is an open access article.
A study of dynamics in market volatility indices between the US and Taiwan

Abstract

This study first investigates the long-run equilibrium by cointegration test and also explores the causality, asymmetry and jump intensity relationship by Correlated Bivariate Poisson Jump (hereafter CBPJ) model between the US and Taiwan volatility index (hereafter VIX and TVIX). The empirical results found the long-run equilibrium relationship between VIX and TVIX. The volatility persistence of the changes in VIX is greater than TVIX and the changes in VIX have the volatility asymmetry. The two volatility indices have the individual jump and the joint jump behavior, and then the change in the TVIX has highly jump risk.

Keywords: volatility index, causality test, CBPJ model.

JEL Classification: C21, G15.

Introduction

In recent years, the volatility index, which represents the investor’s expectations with respect to price changes in the future as observed by Whaley (2000), has played an important role in financial markets and has been viewed as an indicator of investor sentiment; therefore, the volatility index is regarded as the investor fear gauge. As far back as 1993, the Chicago Board Options Exchange (CBOE) launched a volatility index which was published based on the S&P100 index, and then the CBOE in 2003 introduced a new volatility index (hereafter referred to as the VIX) which was based on options on the S&P500 index. In 2008, Futures Industry Association statistics revealed that TAIX Options (TXO) amounted to 92,757,254 contracts thereby ranking the TXO as the 15th largest commodity contract market in the world. The Taiwan Futures Exchange (TAIFEX) also created the Taiwan volatility index (TVIX) that enabled investors to verify the accuracy and reliability of the information. Whaley (2000) noted that investigating the issue of the volatility indices in different countries would become a major topic for research, and it is for this reason that this study examines the market volatility indices between the US and Taiwan.

Most existing studies focus on whether the US stock dominates the Taiwan stock market based on the Granger causality test and whether there exists a long-run relationship between the two markets based on the cointegration test. This would imply that this relationship is an important producer of information affecting their markets and that the international diversification between the two markets is effective. Various studies (Kwan et al., 1995; Cha and Cheung, 1998; Ding, 2010 and Baharumshah et al., 2003) have found that, in terms of the US stock market’s impact on the Taiwan stock market, there is evidence of market integration between the US and Taiwan. However, other studies point out that the Taiwan stock market is not influenced by the US stock market (Cheung and Mak, 1992; Ghosh et al., 1999; Sheng and Tu, 2000) and there is a lack of cointegration between the two stock markets (Chan et al., 1992; Cheung and Mak, 1992; Dunis and Shannon, 2005; Jeaynthi and Pandian, 2008). Therefore, different opinions exist over the extent of the linkages between the US and Taiwan markets. On the other hand, we find few studies have suggested that the VIX will affect other countries’ volatility indices, although it has been found that the VIX Granger causes the VXN (Badshah, 2009), and that the VDAX Granger causes both the VSMI and VSTOXX (Äjiö, 2008). Based on the above findings, different conclusions are reached regarding the causality and long-run relationships between the US and Taiwan stock markets. According to the above discussions and the need to respond to the dearth of research on the volatility indices between the US and Taiwan, the purpose of the present study is to explore the causality and long-run relationship between the VIX and TVIX.

Wagner and Szimayer (2004), Dotsis et al. (2007), Becker et al. (2009) and Lin and Lee (2010) have confirmed that the jump behavior of the volatility index is an important indicator, thereby implying that the jump-diffusion model can measure the capacity of the volatility index. While most other studies have researched the impact of jump behavior on the volatility index using the univariate jump model, this article by contrast considers issues related to the
jump activity between the VIX and TVIX. Many existing studies have indicated that the bi-variate jump model should be used to examine jump behavior in more than two markets, and Chan (2003) designed the Correlated Bivariate Poisson Jump (CBPJ) model to investigate both independent and joint jump behavior. Lin and Lee (2010) investigated the S&P500 and changes in the VIX and found evidence of the jump-diffusion process and joint jump behavior. Moreover, the current research hopes to fill the existing gap in the literature. To the best of our knowledge, this study is the first to utilize the CBPJ model to explore the joint jump activity between the VIX and TVIX. Many studies (Lin and Lee (2010), 2010, providing a total of 896 observations.

This paper applies the CBPJ model by Chan (2003) and jump relationships between the changes in to investigate the relationships between the VIX and TVIX. First of all, if \(\beta \neq 0 \) and \(d_1 = 0 \) (\(d_2 \neq 0 \)), this means that the changes in the VIX (VIX) will affect the changes in VIX (TVIX). Second, \(\beta \neq 0 \) and \(d_2 \neq 0 \) refers to the feedback relationship between the changes in VIX and TVIX. Finally, if \(\beta = 0 \) and \(d_2 = 0 \), this means that there is a non-causal relationship between the changes in VIX and TVIX.

The error term and the jump component are assumed to be independent, that is \(E(\varepsilon_t, J) = 0 \). The error term \(\varepsilon_{1,t} (\varepsilon_{2,t}) \) has a bivariate normal distribution with zero mean and conditional covariance matrix \(\mathbf{H}_\varepsilon \); besides, the jump component \(J_{1,t}(J_{2,t}) \) also has a bivariate normal distribution with zero mean and conditional covariance matrix \(\Delta \). In a bivariate framework, the jump component \((J_t) \) is defined as:

\[
J_t = \left[\sum_{i=1}^{n_1} Y_{t_{1,i}} - E_{t-1} \left(\sum_{i=1}^{n_1} Y_{t_{1,i}} \right) \right] \\
\sum_{i=1}^{n_2} Y_{t_{2,i}} - E_{t-1} \left(\sum_{i=1}^{n_2} Y_{t_{2,i}} \right)
\]

(3)

where \(n_1 \) and \(n_2 \) denote the summation of \(n \) jumps or the jump intensity for \(r_{1,t}(r_{2,t}) \) over any period \(t \). In addition, each stochastic variable \(Y_t \) follows a normal distribution with mean \(\theta \) for its intercept term and variance \(\sigma^2 \); in other words, the bivariate jump intensities can be described as:

\[
Y_{t_{1,i}} \sim N(\theta_1, \sigma_1^2) \quad \text{and} \quad Y_{t_{2,i}} \sim N(\theta_2, \sigma_2^2).
\]

(4)

In equation (3) the variables \(n_{1,t} \) and \(n_{2,t} \) both denote individual counting variables of jump intensity in that the two variables are constructed by the independent Poisson variables. Each one of these variables has a probability density function given by:

\[
P(n_{it} = j | \Phi_{t-1}) = \frac{e^{-\lambda_{it}} \lambda_{it}^j }{j!}.
\]

(5)

According to Chan (2003), the jump intensity parameter is the time-varying jump intensity, \(i = 1, 2, 3 \), and is defined as:

\[
\lambda_{1,t} = \lambda_0^2 + \eta_1^2 r_{1,t-1}^2,
\]

(6)

\[
\lambda_{2,t} = \lambda_0^2 + \eta_2^2 r_{2,t-1}^2,
\]

(7)

\[
\lambda_{3,t} = \lambda_0^3 + \eta_3^3 r_{1,t-1}^2 + \eta_4^3 r_{2,t-1}^2,
\]

(8)

where \(r_{1,t-1} \) and \(r_{2,t-1} \) denote the changes in the US’s and Taiwan’s VIX at time \(t - 1 \), respectively. The individual jump intensities \(\lambda_{1,t}, \lambda_{2,t} \) are assumed to

be related to market conditions which are reflected in $r_{i,t-1}^2(r_{j,t-1}^2)$ as an approximation of the last period’s volatility. Similarly, the covariance λ_{ij} is governed by the variations in the last period’s volatilities from both series. By combining the GARCH model with the CBP function, the probability density functions both for $r_{i,t-1}$ and $r_{j,t-1}$ are defined by:

$$f(X_i|\theta_i = i, n_{2i} = j, \Phi_{i,j}) = \frac{1}{2\pi} \exp\left[-u_{i,j}^T H_{i,j}^{-1} u_{i,j}\right]$$

$$u_{i,j} = \begin{bmatrix} r_{i,t} - E_{i-1}(r_{i,t}) - i \theta_1 + (\lambda_1 + \lambda_2) \theta_2 \[r_{j,t} - E_{j-1}(r_{j,t}) - i \theta_2 + (\lambda_1 + \lambda_2) \theta_2 \end{bmatrix},$$

(9)

(10)

where X_i denotes $r_{i,t}$ and $r_{j,t}$, and $u_{i,j}$ is the error term. $H_{i,j}$ is the covariance matrix of $r_{i,t}$ and $r_{j,t}$. $H_{i,j}$ is the summation of the covariance matrix for the normal disturbance \tilde{H}_i component and the jump $\Delta_{i,j}$. The covariance matrix for the normal disturbance \tilde{H}_i is defined as:

$$\tilde{H}_i = \begin{bmatrix} \sigma_{11,i}^2 & \sigma_{12,i}^2 \\ \sigma_{12,i}^2 & \sigma_{22,i}^2 \end{bmatrix},$$

(11)

where $\sigma_{11,i}^2(r_{i,t}^2)$ and $\sigma_{12,i}^2$ are defined as:

$$\sigma_{11,i}^2 = \omega_1 + \phi_1 \sigma_{11,t-1}^2 + \phi_2 \sigma_{12,t-1}^2 + \psi_1 \sigma_{11,t-1}^2 I_{1,t-1},$$

(12)

$$\sigma_{12,i}^2 = \omega_2 + \phi_2 \sigma_{12,t-1}^2 + \phi_1 \sigma_{11,t-1}^2 + \psi_2 \sigma_{12,t-1}^2 I_{2,t-1},$$

(13)

where

$$I_{1,t-1} = 1, \text{if } \varepsilon_{1,t-1} > 0$$

$$I_{1,t-1} = 0, \text{if } \varepsilon_{1,t-1} \leq 0$$

$$I_{2,t-1} = 1, \text{if } \varepsilon_{2,t-1} > 0$$

$$I_{2,t-1} = 0, \text{if } \varepsilon_{2,t-1} \leq 0,$$

and

$$\sigma_{12,i} = \sqrt{\sigma_{11,i}^2 \sigma_{22,i}^2},$$

(14)

Here $\varepsilon_{1,t}$ and $\varepsilon_{2,t}$ are the error terms of the changes in the VIX and TVIX. If the error terms are greater, imply actual fear volailty large than expected volailty so as this is bad news to the market. Conversely, if the the error terms are smaller, this is also good news to the market. ω_{12} denotes the diffusion correlation coefficient. Therefore, the covariance matrix for the jump component $\Delta_{i,j}$ can be presented as:

$$\Delta_{i,j} = \begin{bmatrix} i \delta_{1}^2 & \rho_{i,j} \sqrt{i \delta_{1} \delta_{2}} \\ \rho_{i,j} \sqrt{i \delta_{1} \delta_{2}} & i \delta_{2}^2 \end{bmatrix},$$

(15)

where the parameter $\rho_{i,j}$ denotes the jump correlation coefficient of $Y_{i,t}$ and $Y_{j,t}$. The covariance matrix of the CBP GARCH model is denoted by the summation of \tilde{H}_i and $\Delta_{i,j}$. Finally, the conditional density function is defined as:

$$P(X_i|\Phi_{i,j}) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f(X_i|n_{2i} = i, n_{2j} = j, \Phi_{i,j}).$$

(16)

The log likelihood function is the sum of the log conditional densities:

$$L = \sum_{i=1}^{N} \ln P(X_i|\Phi_{i,j}).$$

(17)

The CBPJ model would reduce to a bivariate GARCH (BGARCH) model if one set $\theta_1 = \theta_2 = \delta_1 = \delta_2 = \rho_{12} = \lambda_1 = \lambda_2 = \eta_1 = \eta_2 = \eta_3 = \eta_4 = 0.$

2. Empirical results

Table 1 presents the basic statistics of the changes in the VIX and TVIX (Figure 1). The means (standard errors) of the changes in the VIX and TVIX are 0.0757 and 0.0106 (7.4756 and 5.6556). The investor fear gauge in the US market exhibits a larger variation than that in Taiwan, implying that the change in the VIX involves greater risk. In terms of skewness and kurtosis, the changes in the VIX and TVIX are significantly reflected by right skewed and leptokurtic distributions. Moreover, the Jarque-Bera test results are 658.1634 and 3281.0030 for the changes in two indices and the null hypothesis of the normal distribution is rejected, implying that the changes in the VIX and TVIX are non-normally distributed. The Ljung-Box Q and Q² statistics for the changes in VIX and TVIX are significant at the 1% level, indicating that the changes in VIX and TVIX exhibit autocorrelation and linear dependence. We can see that the VIX and TVIX move together in Figure 1 and the changes in the VIX and TVIX are consistent with the steady-state phenomenon in Figure 2.

<table>
<thead>
<tr>
<th>Index</th>
<th>VIX Mean</th>
<th>TVIX Mean</th>
<th>Standard error</th>
<th>VIX 5.6556</th>
<th>TVIX 5.6556</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>0.6437**</td>
<td>0.6288**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurtosis (excess)</td>
<td>6.9989**</td>
<td>12.2952**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JB</td>
<td>658.1634**</td>
<td>3281.0030**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q(25)</td>
<td>55.9560**</td>
<td>45.2030**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q(25)</td>
<td>117.6000**</td>
<td>95.2320**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: ** denotes significance at the 1% level. The Jarque-Bera statistic is used to determine whether the data come from a normal distribution. Q (25) and Q² (25) are Ljung-Box Q test statistics for serial correlation in the standardized residuals and in the squared standardized residuals.
This paper uses the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) methods of unit root tests to determine the series is stationary or not. In Table 2, ADF and PP tests are unable to reject the null hypothesis of unit root on the VIX and TVIX, and the KPSS test is significant rejected the null hypothesis of stationary at the 5% significance level. We find the VIX and TVIX are non-stationary; therefore, we take first differences on the series and then repeat the unit root tests. The ADF and PP tests of the changes in VIX and TVIX are significant rejected unit root at 1% level but KPSS test is unable to reject the null hypothesis of stationary. From the above, the VIX and TVIX are I(1) and stationary after first order difference. Hence, we further analyze long-run relationship between VIX and TVIX. The results of Johansen cointegration test are showed in Table 3. An empirical result of Trace and Max-Eigen statistics are 29.38476 and 23.67614 at the 5% level of significance. Hence, in the remainder of the paper we further analyze the long-run relationship between changes in the VIX and changes in the TVIX – τ₁ and τ₂ in equations (1) and (2) above.

<table>
<thead>
<tr>
<th>Model</th>
<th>VIX</th>
<th></th>
<th></th>
<th>TVIX</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Index level</td>
<td>First differences</td>
<td>Index level</td>
<td>First differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>-0.7151</td>
<td>(4)</td>
<td>-16.8240** (3)</td>
<td>-0.6127</td>
<td>(3)</td>
<td>-21.9004** (2)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.2646</td>
<td>(4)</td>
<td>-18.5234** (3)</td>
<td>-2.1827</td>
<td>(3)</td>
<td>-21.8882** (2)</td>
</tr>
<tr>
<td>Trend & intercept</td>
<td>-2.1767</td>
<td>(4)</td>
<td>-18.5275** (3)</td>
<td>-2.2268</td>
<td>(3)</td>
<td>-21.9102** (2)</td>
</tr>
<tr>
<td>PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>-0.8038</td>
<td>(20)</td>
<td>-36.3268** (20)</td>
<td>0.6078</td>
<td>(37)</td>
<td>-35.2383** (35)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.6004</td>
<td>(14)</td>
<td>-36.3113** (20)</td>
<td>-2.5244</td>
<td>(26)</td>
<td>-35.2139** (35)</td>
</tr>
<tr>
<td>Trend & intercept</td>
<td>-2.5603</td>
<td>(13)</td>
<td>-36.3508** (20)</td>
<td>-2.5316</td>
<td>(26)</td>
<td>-35.5745** (36)</td>
</tr>
<tr>
<td>KPSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.6914*</td>
<td>(23)</td>
<td>0.0771</td>
<td>0.6664*</td>
<td>(23)</td>
<td>0.1504</td>
</tr>
<tr>
<td>Trend & intercept</td>
<td>0.4930**</td>
<td>(23)</td>
<td>0.0372</td>
<td>0.6565**</td>
<td>(23)</td>
<td>0.0333</td>
</tr>
</tbody>
</table>

Notes: * and ** denote significance at the 5% and 1% levels, respectively. Figures in parentheses denote the lag length.

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>Trace statistic</th>
<th>5% critical value</th>
<th>Null hypothesis</th>
<th>Max-Eigen statistic</th>
<th>5% critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r = 0</td>
<td>29.3847**</td>
<td>25.8721</td>
<td>r = 0</td>
<td>23.6761**</td>
<td>12.5179</td>
</tr>
<tr>
<td>r ≤ 1</td>
<td>5.7086</td>
<td>12.5179</td>
<td>r = 1</td>
<td>5.7086</td>
<td>12.5179</td>
</tr>
</tbody>
</table>

Note: ** denotes significance at the 1% level.
Table 4 reports the results of a comparison between the BGARCH and CBPJ models. The Ljung-Box Q and Q^2 tests are not statistically significant in the BGARCH and CBPJ models, implying that standardized residual and square residual series do not exhibit serial correlation of intertemporal dependence. Therefore, the two models are good at measuring fitness capacity. Owing to the ability of the CBPJ model to analyze the jump relationship between the changes in the VIX and TVIX, we apply the LR test to compare the BGARCH and CBPJ models. The result of the LR test is significant, indicating that the CBPJ model is better than the BGARCH model. As a consequence, we further analyze the causality, asymmetry and jump intensity relationship between the changes in the VIX and TVIX using the CBPJ model.

Table 5 presents the estimated results for the CBPJ model. In Panel A of Table 5, the estimated coefficient of the error correction term measures the speed of adjustment to restore equilibrium in the dynamic model. Through the error correction term, the changes in the VIX and TVIX will finally revert back to the equilibrium.

Table 5. Results for the models and the Granger causality test

<table>
<thead>
<tr>
<th>Items</th>
<th>BGARCH</th>
<th>CBPJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log likelihood</td>
<td>L-B Q(25)</td>
<td>L-B Q(25)</td>
</tr>
<tr>
<td></td>
<td>VIX</td>
<td>TVIX</td>
</tr>
<tr>
<td>L-B Q(25)</td>
<td>24.127</td>
<td>34.376</td>
</tr>
<tr>
<td>L-B Q(25)</td>
<td>17.715</td>
<td>30.720</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-5714.05</td>
<td>-5372.4572</td>
</tr>
<tr>
<td>LR test</td>
<td>683.185**</td>
<td></td>
</tr>
</tbody>
</table>

Notes: ** denotes significance at the 1% level. The LR test is the likelihood-ratio test.

Table 5 presents the estimated results for the CBPJ model. In Panel A of Table 5, \(a_1 \) and \(a_2 \) are -0.1444 and -0.0550 and are respectively significant at the 5% level, indicating that the lagged-one and lagged-two changes in the VIX have a negative influence on the current change in the VIX. The \(\beta_1 \) and \(\beta_2 \) are insignificant, indicating that the change in the current VIX is not affected by the lagged changes in the TVIX. \(d_1 \) is 0.18531 and is significant at the 1% level, also indicating that the change in the current TVIX is positively influenced by the lagged-one changes in the VIX. However, it is not affected by the lagged-one and lagged-two changes in the TVIX (\(e_2 \)) or by the lagged-two change in the VIX (\(d_2 \)). Hence, we further investigate the lead-lag relationship between the changes in the VIX and TVIX by performing the Granger causality test in the CBPJ model. In Panel B of Table 5, the change in the TVIX has an insignificant impact on the change in the VIX; however, the change in the VIX has a significant impact on the change in the TVIX. This implies that the change in the VIX exerts an influence on the TVIX.

The coefficients \(r_1 \) and \(r_2 \) capture the speed of adjustment back towards the long-run equilibrium. We find that the parameters of \(r_1 \) and \(r_2 \) are significant at the 5% level, and that the signs of the coefficients are also both negative and positive, implying that there will be a tendency to move toward the equilibrium in the long-run relationship. Then, the estimated coefficient of the error correction term measures the speed of adjustment to restore equilibrium in the dynamic model. Through the error correction term, the changes in the VIX and TVIX will finally revert back to the equilibrium.

As to the parameters of the conditional variance between the VIX and TVIX (\(\omega_1, \omega_2, \phi_1, \phi_2, \) and \(\psi_1 \)), these are significant at the 1% or 5% levels. The

Note: * and ** denote significance at the 5% and 1% levels.

1 The estimated coefficient of the error correction term will be corrected by a negative \(r_1 = -2.1875 \) and a positive \(r_2 = 1.2102 \) when there is a positive departure from the equilibrium between the VIX and TVIX in the previous period, and vice versa.
volatility persistence of the changes in the VIX is $\phi_1 + \phi_2 = 0.8613$ and in the TVIX is $\phi_2 = 0.1516$, clearly revealing that the volatility persistence of the changes in the VIX is greater than that of the changes in the TVIX. The volatility persistence of the changes in the VIX is close to 1, indicating the existence of a high volatility clustering phenomenon. On the contrary, the change in the TVIX exhibits a low volatility clustering phenomenon. Then, the correlation coefficient of volatility ($\omega_{12} = 0.1087$) shows that there is significant positive correlation at the 5% level. In the case of volatility asymmetry ($\psi_1 = 0.0810; \psi_2 = -0.0021$), only the negative information regarding the changes in the VIX (ψ_1) exhibits significant evidence of enhancement compared to the changes in current volatility. Therefore, the US volatility index exhibits asymmetry.

In terms of the jump parameters, both of the means of the jumps are $\theta_1 = 5.5976$ and $\theta_2 = 2.6972$, which are significant at the 1% and 5% levels, respectively. That is, when there is abnormal information, the changes in the VIX and TVIX exhibit jump behavior. As for the variances in the jumps, the parameters are $\delta_1 = 7.8967$ and $\delta_2 = 10.5574$ and are significant at the 1% level, implying that the variances of the jumps will obviously be enhanced when the jump behavior occurs. Moreover, the jump variance of the change in the TVIX is greater than that of the change in the VIX.

As to the jump intensity, $\lambda_1 = 0.4395$ and $\lambda_2 = 0.2183$ are significant at the 1% level, indicating that the changes in the VIX and TVIX exhibit the jump intensity. In the case of η_1 (η_3), the jump intensity of the change in the VIX (TVIX) is insignificant at the 5% level and, moreover, the square of the prior returns does not have an impact on the individual jump intensity in the VIX (TVIX) of the change. The joint jump intensity parameter $\lambda_3 = 0.1968$ is significant at the 1% level, indicating that the changes between the VIX and TVIX exhibit joint jump behavior. However, the parameters $\eta_3 + \eta_4$ are insignificant at the 5% level, revealing that the joint jump intensity (λ_3) is not affected by the changes in the VIX and TVIX of the squared prior returns. This finding indicates that there is no time-varying joint jump intensity as the relationship changes with time between the changes in the VIX and those in the TVIX.

Conclusions

This study investigates the long-run equilibrium between volatility indices. By comparing the BGARCH model with the CBPJ model by performing the LR test, the model is found to have a good fitness capacity. In addition, this study also explores the causality, asymmetry and jump intensity relationship using the Correlated Bivariate Poisson Jump model of Chan (2003) between the US and Taiwan volatility indices.

The empirical results show that the volatility persistence of the change in the VIX is greater than that of the TVIX, and the change in the VIX exhibits volatility asymmetry. Moreover, the correlation coefficient of the volatility between the VIX and the TVIX is found to be positive. The changes in the VIX and TVIX exhibit an individual jump relationship, whereas the changes in the TVIX exhibit high jump risk. Although the changes in the two countries exhibit joint jump behavior, the results shows that the jump behavior does not change over time. Finally, the changes in the TVIX are deeply affected by the past information on the changes in the VIX by the Granger causality test in the CBJ model. Therefore, the investor fear gauge for the US will affect the investor fear gauge for Taiwan.

The results of this study also indicate that the jump dynamics in market volatility indices are strong phenomenon. Clarification of the roles of the jump dynamics in market volatility indices is helpful in clarifying the risks and is helpful in improving investment performance.

Acknowledgements

The authors are grateful to anonymous referees whose helpful comments have led to an improvement on the content and exposition of this note. Financial support from the National Science Council (NSC 99-2410-H-033-023-MY2, 101-2410-H-033-011- and NSC 99-2815-C-033-013-H), R.O.C. is gratefully acknowledged.

References