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About polluting eco-industries: optimal provision of abatement 

goods and Pigouvian fees 

Abstract 

In this article, the authors introduce a polluting eco-industry. Depending on the level of damage, there are two optimal 

equilibria. If the damage is low, one generalizes the usual results of the economic literature to the polluting eco-industry: the 

dirty firm partially abates their emissions, only efficient eco-industry firms produce and the abatement level increases with 

the damage. However, very specific results are obtained if the damage is high. In this case, not all efficient eco-industry firms 

produce. The abatement level and the number of active eco-industry firms both decrease as the damage increases. The 

authors finally show that a well-designed Pigouvian tax implements these equilibria in a competitive economy.  
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Introduction 5 

Pharmaceuticals and other organic wastewater 

contaminants are found in treated wastewater in 

Europe (Ternes, 1998; Comoretto & Chiron, 2005), 

the US (Boyd et al., 2003) and Asia (Nozaki et al., 

2000). These observations suggest that wastewater 

treatment plants do not totally abate pollution; they 

are only partially efficient. Moreover, their 

production process may also be polluting. 

According to Kyung et al. (2013), wastewater 

treatment plants (and incineration facilities) have 

been reported to emit significant amounts of 

GHGs, and water treatment plants have also been 

categorized as one of the significant public facilities 

emitting important amounts of CO2 by consuming 

immense amounts of electricity and chemicals 

(Raucher et al., 2008; Rothausen & Conway, 

2011). Along the same lines, a debate has 

emerged about the energy balance of the 

photovoltaic industry. This raises the question of 

grey energy. Grey energy is the hidden energy 

associated with a product, meaning the total 

energy consumed throughout the product life 

cycle from its production to its disposal. The issue 

is whether the reduction in pollution is greater 
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than the grey energy consumed. If this is the case, 

we can infer that the eco-industry is efficient. 

Wastewater treatment, air treatment, waste 

treatment plants and the photovoltaic industry are 

all part of the eco-industry sector. This is a new 

industrial sector covering pollution and resource 

management activities, ranging from the 

development of clean technologies to the 

optimization of methods for monitoring and 

managing environmental impacts6

1 It appears that 

this sector can be partially efficient and polluting. 

This point is crucial for policy-makers, because 

the emergence of eco-industry firms is often 

conditional on environmental policy. 

The eco-industry is well-documented in the 

economic literature, but nevertheless mainly 

focuses on the fact that it is highly concentrated. 

The research can be divided in two main 

branches. The first branch considers innovative 

firms investing in R&D to obtain a patent for a 

pollution-reducing new technology. The 

performance of taxes and tradable permits are 

compared in various contexts. Denicolo (1999) 

and Requate (2005) make these comparisons 

under different timing and commitment regimes. 

A threat of imitation is introduced by Fisher et al. 

(2003), while Perino (2008) studies green 

horizontal innovation, where new technologies 

reduce pollution of one type while causing a new 

type of damage. More recently, Perino (2010a) 

focuses on the second-best policies for all 

combinations of emission intensity and marginal 

abatement costs. 

                                                      
1 See Ernst and Young (2006), Sinclair-Desgagné (2008), European 

Commission Report (1999, 2007, 2009) and OECD (1999) for an 

analysis and description of eco-industry. 

http://creativecommons.org/licenses/by-nc/4.0
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The second branch analyzes how eco-industry 

modifies the usual results of the economic literature. 

It takes market power as a given and suggests the 

optimal design of environmental policy within this 

context. Most of these papers consider the 

Pigouvian tax as environmental policy tool: see, for 

instance, Canton (2008), Canton et al. (2007), 

Canton et al. (2012), David and Sinclair-Desgagné 

(2005, 2010), David et al. (2011), Nimubona (2012) 

and Nimubona and Sinclair-Desgagné (2005, 2010). 

Greaker (2006) and Greaker and Rosendahl (2008) 

introduce non-tradable quotas, while Schwartz and 

Stahn (2014) study a pollution permit market. 

None of the studies mentioned above explores 

polluting eco-industry. The aim of this paper is to 

investigate whether the standard results in economic 

literature are challenged if the eco-industry is 

polluting. Following almost all the papers cited, we 

consider a vertical structure composed of a 

downstream polluting sector and an upstream eco-

industry. Contrary to the existing literature, in this 

article, eco-industry firms are polluting and 

heterogeneous, i.e., they are more or less polluting. 

This situation may correspond to different generations 

of plants having different technologies. We also 

assume that they cannot reduce their emissions. To 

focus on this original assumption, we do not consider 

market power. Under these new assumptions, we first 

seek to define the centralized solution. Next, we 

examine whether this optimal policy can be 

decentralized using a traditional economic instrument: 

the Pigouvian tax. On these points, our article is in 

keeping with the second branch of the economic 

literature described above. 

We find that two kinds of equilibrium can emerge. The 

first equilibrium occurs if the marginal damage is not 

too high. In this case, we extend the usual results of the 

economic literature to polluting eco-industry. We find 

that the optimal level of abatement is such that the 

marginal social benefit and marginal social cost of 

abatement are equal to the marginal damage. The dirty 

firm partially abates its emissions and only efficient 

eco-industry firms produce. The greater the marginal 

damage, the less the dirty firm produces and the higher 

the abatement level. 

The second kind of equilibrium occurs if the marginal 
damage is high: the dirty firm abates all its emissions 
and not all active firms in the first equilibrium 
produce. As pollution is very harmful for the 
environment, the only way to prevent even more 
damage is to reduce the pollution produced by eco-
industry. To do this in an efficient way, the regulator 
should not only reduce the number of active firms, but 
also modify the distribution of abatement in the eco-
industry. We also find the counter-intuitive result that 

the number of active firms and the level of abatement 
decrease with the marginal damage. The optimal 
abatement level is such that the marginal social benefit 
is equal to the marginal social cost, but they are both 
lower than the marginal damage. This second 
equilibrium is very specific to polluting eco-industry. 

Finally, we show that a competitive economy reaches 

these optimal equilibria if the regulator implements a 

Pigouvian tax. The rule is very simple, because it is the 

same whatever the level of the damage: the Pigouvian 

tax must be equal to the marginal damage. However, 

depending on the damage level, the functioning of the 

economy will be different, as we will see in the paper. 

In section 1, we present the model. Section 2 defines 

the social benefits and social costs of pollution 

abatement. In section 3, we determine the efficient 

level of abatement. Policy issues are presented in 

section 4 and some concluding remarks are given in 

last section. Proofs are relegated to the Appendix. 

1. The basic assumptions 

To keep the assumptions as simple as possible, we 

assume that the standard polluting industry is 

characterized by a representative firm that produces a 

quantity Q  at a given cost )(QC . This cost is 

increasing and convex (i.e., 0>)(QC '  and 

0>)(QC '' ) and inaction is allowed (i.e., 0=(0)C ). 

This activity is polluting. Emissions are given by 

)(Q , an increasing and convex function (i.e.,

0>)(Q'  and 0>)(q'' ) with 0=(0) . This 

“end-of-pipe” pollution can be reduced by an 

abatement activity provided by the specialized external 

firms which comprise the eco-industry. So if we 

denote by A  the total abatement realized by the 

polluting firm, the remaining pollution will be 

{ },0-)(max AQε  . 

The eco-industry is composed of a continuum  0,1  of 

firms indexed by i
2.7 Each of them supplies )(ia  

pollution reduction services produced at some cost 

 )(ia . They share the same increasing and convex 

cost function and inaction is allowed (i.e., 0>)(a' , 

0>)(a''  and 0=(0) ) We also assume that 

0=(0)'  in order to ensure that there is, in a 

competitive setting, an offer for each positive price3. 

                                                      
2 This continuum assumption is essentially introduced to simplify the 

treatment of an industry composed of heterogeneous agents. The same 

arguments hold with a finite number of firms. 
3 A discussion about the emergence of an eco-industry related to the fact 

that 0>(0)'  can be found in Canton et al. (2007). 



Environmental Economics, Volume 8, Issue 3, 2017 

 48

However, we assume that this activity pollutes and 

that these firms are heterogeneous with respect to 

their emissions. Emissions of firm i  are a proportion 

 maxmin ,)(  i  of its production and are 

considered as unavoidable (they cannot be abated). 

Since one unit of abatement goods sector reduces 

the pollution of the downstream firm in the same 

proportion, the coefficient )]([1 i  measures the 

net contribution of firm i  to pollution reduction. 

Firms in the abatement good sector are also 

heterogenous: they are ranked from the least to the 

most polluting. We also assume that :

[ ]→0,1 max , min ββ  is a continuous and 

differentiable function, and because they are ranked, 

0>)(i' . 

Finally, we assume 1<minβ  to ensure that at least 

some firms have a net contribution to global 

pollution reduction. 1>maxβ  means that at least 

some of these firms contribute to pollution 
abatement in an inefficient way, since their global 
contribution to the emissions reduction per unit of 

output, ,))i(β(1  is negative. 

The global emissions, { } ∫
1

)()(+,0-)(max=
0

diiaiβAQε  E , 

are comprised of the remaining pollution from the 

dirty industry and the emissions generated by the 

abatement activity. This means that we can have 

situations in which the “dirty” industry is clean and 

some pollution remains. So, contrary to most of the 

literature which does not consider polluting eco-

industry, it is now crucial to take into account the fact 

that the abatement activity becomes inefficient when 

the pollution of the dirty industry is completely 

removed. We assume that these emissions create social 

damage, measured by EvED .=)(  with 0>v . 

Hence, v  is the marginal damage. 

Finally, to close the model, we introduce an inverse 

demand function for the polluting goods )(QP . 

This function is decreasing (i.e., 0<)(QP ' ) and 

verifies that  =)(lim 0 QPQ  and 

0=)(lim QPQ  . 

2. Social benefits and costs from pollution 

abatement 

This section is rather traditional. We fix a 

production level A  of the abatement good and 

define, within our setting, the social benefits and 

costs of this abatement choice. The main 

difference with the usual approach is that the eco-

industry is polluting. This has two features: (i) 

these goods only reduce the emissions of the 

polluting industry and (ii) the residual pollution 

must be included in the social cost of the 

abatement production. We then obtain the 

marginal social benefit and marginal social cost of 

abatement. 

2.1. The social benefit of abatement. The social 

benefit from a level A  of pollution abatement is 

obtained by choosing the production of the dirty 

industry. This production level maximizes the 

welfare of consumers net of the production costs 

and of the pollution induced by this activity. This 

function is given by: 

 ,0)(max)()(max=),(
00

AQvQCdqqPvASB
Q

Q






 


 .                             (1)

This definition of the social benefit is very 

conventional, especially for “end-of-pipe” 

pollution. But in most treatments of this 

problem, the condition stating that the emission 

of the dirty industry must be non-negative (i.e.,

 ,0)(max AQ   in our article) is quickly 

forgotten simply because this corner solution in 

which no pollution occurs is not really 

interesting. However, this is far from being the 

case when the eco-industry also pollutes, 

because there is now a possible arbitrage 

between upstream and downstream pollution, 

i.e., between the emissions of the abaters and 

those of the final goods producers. This is why 

we have to solve this non-smooth optimization 

problem globally. The method (see the proof of 

Lemma 1 in the Appendix) essentially makes use 

of the sub-differential introduced by Rockafellar 

(1979). In any event, non-smooth optimization 

involves case studies and thresholds. In this 

article, if we solve this program for all levels of 

pollution abatement A , there are three 

possible outcomes. 

The first situation, the usual one, is characterized by 

partial abatement: 0>)( AQ  . In this case, the 

first order condition is given by 

0=)(.)()( QvQCQP ''  . If we set 

)(

)()(
=)(

Q

QCQP
Q

'

'


 

, the optimal level of 

production )v(ξ=Q 1  that solves this condition is 

simply a decreasing function of the marginal 

damage v . But this solution only occurs if 
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0,>)( AQ   which requires that 

)(>)( 11 Av    or that the fixed level of 

abatement good verifies  )(< 1 vA  . The 

second situation corresponds to full abatement of 

the emissions of the downstream industry: 

)(= 1 AQ  . This requires that the previous 

condition is not met, i.e., )()( 11 Av     or 

 )(1 vA   . But if we now bear in mind that 

this full abatement condition means that 

{ } 0=,0-)(max AQε , this production level is 

optimal as long as we do not reach the production 

level 
maxQ which is efficient when there is any 

damage. In other words, this also requires that 

0))()((
)(1=
  AQ

' QCQP


 or that ( ).< maxQεA

Finally, if  maxQA  , the optimal production 

level that solves program (1) will be equal to 

maxQ . As we will see later, this last case never 

occurs simply because pollution is not taken into 

account. It is given here for the sake of 

completeness. 

From all these observations, we can construct the 

social benefit ),( vASB  of pollution abatement. It 

is a piecewise continuous function depending on 

the fixed level of abatement A . However, what 

really matters is the marginal social benefit: 

A

vASB


 ),(

: 

 if there is only partial reduction, this marginal 

benefit will be, as usual, equal to the marginal 

damage v ; 

 if there is full abatement with )(> maxQA  , 

additional abatement is fully inefficient, since the 

optimal production level does not depend on A . 

The marginal social benefit is clearly 0 ; 

 if there is full abatement with 

( )[ ))(,)(∈ maxQεvQεA , the optimal 

production level is positively correlated with A . 

The   social  marginal   benefit   is   then    given   by  

,))((ξ=
))((

))(())(( 1-
1-'

1-'1-

Aε
Aεε

AεCAεP

       

(2) 

and we know that this case occurs if 

)()( 11 Av    , which is equivalent to 

))((≥ 1- Aεξv  . In this last case, the marginal 

social benefit is therefore smaller than the 

marginal damage.  

More formally, we can state that: 

Lemma 1. If ,
)(

)()(
=)(

Q

QCQP
Q

'

'


 

 inspection of 

program 1 shows that: 

(i) the optimal production level is given by:  

{ } ( )
( )≥

<)(),(ξmax
=),(

maxmax

max
1-1-

QεA if Q

QεA if  Aεv   
AvQ ,    (3) 

(ii) the marginal social benefit is given by:  

{ }{ }0,))((,minmax=
 ∂

),(∂ 1-   Aεξv    
A

A v  SB
.      (4) 

2.2. The social cost of abatement. The social cost 

induced by the production of abatement goods in 

quantity A is obtained, as usual, by choosing an 

optimal distribution of the production between the 

different plants, which comprise the eco-industry. 

But, in our case, this process involves not only the 

cost structure of these firms, but also their pollution 

structure. This cost is defined by: 

  diiaivdiiaASC
a

)()()(min=)(
1

0

1

00)(

  


,       (5) 

Adi ia to subject =)(∫
1

0

.                                    (6) 

If we denote by   the Lagrangian multiplier 

associated with the constraint, the first order 

conditions of this convex minimization problem are 

given by: 

[ ]

=)(

0>

0≥λ)(-+))((0,1∈∀

∫

'

 Adiia  and

a ifequality  with

  iβviaκ,i

1

0

i .                                      (7) 

From these FOC, we see that a given firm i  is 

active if 0>)(iv    and, in this case, its 

production level is of    )(
1

iv'  


. Since the  

emissions of these firms are increasing with their 
index i , this also means that there exists a pivotal 

firm 

















max

1

0 ,min= 
v

i , which is the first for 
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which it is optimal to stop the production8

4. If we 
now keep bear in mind that the total production 
level A  of abatement goods is given, the index of 
this firm can be obtained by making sure that the 

total level of production of firms 
0ii   is equal to 

A . 

In other words, even if these firms share the same 

cost function, the optimal distribution of the global 

production is not symmetrical, because they are 

heterogeneous in their contribution to pollution. We 

can therefore expect that not all firms will be 

selected at the optimal allocation. In order to define 

this allocation, we also need some information about 

the marginal social cost of the production of an 

additional unit of abatement goods. This quantity is 

given by 
A

AvSC


 ),(

. Since the constraint to the 

problem is Adiia =)(
1

0 , the envelop theorem 

immediately tells us that the social marginal cost is 

equal to the Lagrangian multiplier associated with 

this program. 

More precisely, we can say: 

Lemma 2. If 0=A  then 0=)(ia  for almost all i  

and  min.,)(  vA   and for :0>A  

(i) The production levels of abatement goods are 
given by: 

   












 



else 0

 if )(),(
=),,(

11

v
iivvA

vAia
'  ,(8) 

(ii) ),( vA  is implicitly defined by:  

    Adiiv'v =)(
1,

max
min1

0

























 ,            (9) 

(iii) the marginal social cost is given by: 

),(=
),(

vA
A

AvSC 



.                                         (10) 

As we have defined the marginal social cost and 

benefit, it remains for us to find the optimal level of 

abatement. 

                                                      

4As long as
0i  is smaller than one. Therefore, we introduce the 









max,min 
v

 in the definition of this pivotal firm. 

3. The optimal outcome 

With regard to our previous results, let us first 

identify the optimal provision of abatement goods. 

This level results from a trade-off between the 

marginal social benefit and the marginal social cost. 

It is given by: 

),(),(maxarg=)(
0

vASCvASBvA
A

opt 


.           (11) 

As expected, this program shows that the optimal 

production of abatement goods never exceed 

)( max

1 Q , the level of abatement, which 

maximizes the social benefit without damage. If the 

last case occurs, the social benefit is constant, while 

the costs are increasing with the abatement effort 

(see (ii) of Lemma 1), which contradicts optimality. 

We can also observe that the optimal provision of 

abatement goods is always positive, i.e.,

.0>)v(A opt Otherwise, the marginal cost of 

abatement is, by Lemma 2, smaller than vv <. min , 

while the marginal benefit of an additional unit of 

abatement when there is no abatement at all is of v , 

since 
 =))((lim

1
0 AA   (see Lemma 1). 

Following these observations, we can affirm that the 

FOC associated with program (11) is: 

( ){ } 0=),(-)(,min=

=
∂

),( ∂
-

 ∂

),(  ∂

1- vAλAεξv 

A 

vA SC 

A

vA SB

.                     (12) 

This condition clearly suggests that two kinds of 

efficient outcomes occur, depending on the level of 

the marginal damage. The first situation is rather 

classical: the dirty firm partially abates its emissions 

and the marginal damage of pollution is equal to 

both the marginal benefit and the marginal cost of 

abating pollution. The second case occurs if the 

pollution of the dirty industry is totally removed but 

some pollution persists due to the activity of the 

eco-industry. In this case, the marginal benefit 

remains equal to the marginal cost, but lower than 

the marginal damage induced by pollution. 

Intuition suggests that the marginal damage v  

admits a threshold for which we switch from one 

situation to the other. To get this intuition, let us 

start with a case in which there is partial abatement 

in the dirty industry or, more formally from 

Equation (12), in which   ),(=>)(1 vAvA   . By 

equation (9), we can compute the optimal provision 

)(vAopt  of the abatement good simply by replacing 

),( vA  by v . This quantity is given by: 
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     diivvA 'opt )(1=)(
111

0








               (13) 

is obviously increasing with the marginal damage. But 

this case only holds seeing that   vvAopt >))((1 . 

So if one has in mind that   is a decreasing function, 

the left hand side of the previous condition is 

decreasing in v , while the right hand side increasing. 

This rather intuitive argument therefore suggests that 

the case of partial abatement disappears for sufficiently 

high marginal damage levels. 

Lemma 3. There exists a unique threshold v  given by:  

        0=)(1)(
111

0

1 diivv ' 






      (14) 

with the property that if <v v , there is only partial 

pollution reduction in the downstream industry, while 

in other case, there is full abatement of the pollution 

emitted by the dirty industry. The pollution of the eco-

industry nevertheless remains in the last case.  

If the marginal damage of pollution is lower than v , 

we are in the standard case described by the 
literature. There is, at the optimal allocation, partial 
abatement of the pollution emitted by the dirty 
industry. The only difference is that there are now 
some additional emissions due to the eco-industry. 
The aggregated level of abatement is a usually 
chosen such that the marginal cost and benefit are 
both equal to the marginal damage of pollution and 
the aggregated level of production of the final 
industry is commonly decreasing with the marginal 
damage. In other words, there is a traditional 
arbitrage between the reduction of the final 
production and the increase in production 
abatement: both quantities are negatively correlated 
when the marginal damage v  changes. 

However, the remaining emissions of the eco-
industry contribute to a selection of which firms in 
this sector should produce. This selection is not 
based solely on private cost-minimizing 
considerations, but also takes into account the 
emissions of the eco-industry. Since the aggregated 
marginal social cost is equal to the marginal 
damage, only the firms which have a positive net 
contribution to pollution abatement (i.e.,

0>)(1 i ) produce, and because these firms are 

heterogeneous in their emissions, the less polluting 
firms contribute more. 

Moreover, since one unit of the abatement good 
removes one unit of pollution, we observe that at the 
efficient allocation, the marginal cost and benefit 
from the aggregate level of abatement are both equal 

to the marginal damage of pollution. More 
precisely, we can say that: 

Proposition 1. If the marginal damage is not too 
high, i.e., v v , only partial abatement of the 

pollution of the dirty firm occurs, and efficient 
allocation has the usual properties: 

(i) the marginal benefit and marginal cost of 

pollution abatement are both equal to the marginal 

damage of pollution, i.e.  

v
A

vASC

A

vASB optopt

=
),(

=
),(







, 

(ii) the optimal level of production )(= 1 vQ opt   is 

decreasing with the marginal damage of pollution, 

while the total production of abatement good is  

     diivvA 'opt )(1=)(
111

0








              
(15) 

and the individual production are increasing with 

the level of the marginal damage, 

(iii) all firms in the eco-industry that efficiently 

reduce pollution, i.e., 1)( i ,contribute to the 

abatement, but to different extents depending on 

their own emissions, i.e.,  11 i , 

    )(1=)(
1

ivia 'opt  


 and this quantity is 

decreasing with )(i .  

The second case in which the marginal damage is 

higher than the threshold ( )v  is less usual. Its 

interpretation largely depends on the assumption 

that the eco-industry pollutes. In this situation, it 

becomes optimal to remove all the emissions of the 

upstream industry, even if some pollution persists 

due to the activity of the eco-industry. As this 

irreducible pollution is harmful, this may not be 

sufficient to improve the environment. This is why 

it is also optimal (i) to reallocate the production of 

abatement goods toward the less polluting firms in 

the eco-industry and (ii) to slow down the 

production of abatement goods and therefore also 

the production of the final good, since the emissions 

from this activity are totally abated thanks to the 

eco-industry production. So it is not really 

surprising that (i) the number of active firms 

decreases with the marginal damage, contrary to the 

previous case in which all efficient firms produce, 

and (ii) the level of final production is now 

positively correlated with the level of abatement, 

simply because the maximal abatement level is 

reached and both are decreasing with the level of 

marginal damage. 
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What is perhaps more surprising is that the marginal 
cost and benefit from abatement are now lower than 
the marginal damage of pollution. In order to 
understand this property, let us start with a level of 
production in the eco-industry corresponding to the 
total abatement, for which the marginal social 
benefit of pollution reduction is equal to the 
marginal damage. If the damage is high, this 
often requires a large reduction in  the final 
output. So it is possible that the marginal social 
cost of producing enough abatement goods to 
totally remove downstream emissions remains 
lower than the marginal damage of the 
pollutants. This provides an incentive to produce 
more abatement goods and to expand the 
production of the final good in a way that 
ensures full upstream emission abatement. More 
precisely, we observe that: 

Proposition 2. If the marginal damage is high, i.e., 
vv > , the pollution of the dirty firm is totally abated. 

The efficient allocation has the following less usual 
properties: 

(i) the marginal benefit remains equal to the marginal 
cost of abatement, but this value is now smaller than 
the marginal damage:  

vv
A

vASC

A

vASB opt
optopt

<)(=
),(

=
),( 







,      (16) 

(ii) the optimal level of production 

)(= 1 optopt AQ   is now positively correlated with 

the optimal level of abatement. The total 
production of abatement goods is now decreasing 
with the marginal damage, since the pollution of 
the eco-industry can only be reduced by reducing 

the production of these goods, i.e. 0
)(


dv

vdQ opt

  

and ,0≤
)(

dv

vdAopt

 

(iii) some firms that can reduce pollution efficiently 
are not active at the optimal allocation. The firm i  

is   active   if    1<
)(

<)(
v

v
i

opt' .    Moreover,   the 

number of active firms decreases with the marginal 

damage: 








v

v
vi

opt'
opt )(

=)( 1   verifies 0.<
)(

dv

vdiopt

 

However, their contribution to the production of 

abatement good    )()(=)(
1

ivvia opt'opt  


, 

remains decreasing with their emission rate. 

(iv) the Lagrangian multiplier  vvvopt ,)( min   

is the unique solution to:  

     diiv'v )(=)(
1

1

0

1 













  .           (17) 

It remains for us to analyze how to decentralize 

these two optimal equilibria. 

4. The policy issues 

We have shown that the model exhibits two kinds 

of efficient allocation, depending on the level of 

the marginal damage ( v ) and that these 

allocations have rather different properties. In this 

section, we investigate whether a standard 

instrument like the Pigouvian tax can implement 

each of these equilibria in a competitive setting. 

This last point will be verified in two steps. We 

first assume that there is a price signal   

representing the emission tax and we compute the 

competitive allocation for each value of  . In the 

second step, we determine the level of the 

Pigouvian tax that implements the efficient 

allocation in each case. 

4.1. The competitive behaviors. We first analyze 

the competitive behavior of the dirty firm, and 

then that of the eco-industry firms. Lastly, we 

expose the equilibrium of the abatement market. 

4.1.1. The dirty firm. So let us start with the dirty 

firm. If there is a price signal   associated with 

the emission of pollution, this firm will choose its 

production supply and its demand for the 

abatement good by solving the profit equation: 

  
























),,(=

00

,0)(maxmin)(max=),(

Q
a

p
A

C

a
AQ

AQApQCQpAQ




  

.                         (18) 

We see that the objective function is linear in A  on 

 )(0, Q . This implies that the optimal conditional 

demand for abatement goods will be 0  if >ap , 

)(Q  if <ap , and any quantity within  )(0, Q  

if =ap . It follows that the abatement cost is 

given by   )(,min=),,( QpQpC aaA    and 

that the FOC characterizing the product  

supply is: 
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  )0> ifequality (with   0)(,min)( QQpQCp '

a

'  
.                       

(19) 

Since we know that the inverse demand is given by 

)(QP , the quantity which clears the commodity 

market is obtained by: 

   ,min=),( 1

aa ppQ 
,                             (20) 

while the demand for abatement goods is:
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4.1.2. The eco-industry firms. Let us now  study 

the  supply of  the  abatement  good.   Each  firm 
 0,1i  in  the eco-industry  maximizes its 

profit: 

 )()())(()(max=))((
0)(

iaiiaiapia a
ia

i 


 ,                                       (22) 

the first-order condition of which is given by:

)0>)( ifequality (with   0)())(( iaiiap '

a  
                                 

(23) 

So, if min<ap , no abatement good is supplied 

while if  maxap  each firm produces and  

its production level is given  

by    )(=)(
1

ipia a

'  


. Finally if 

  maxmin ,ap , only the firms with an index 







 


 ap

i 1
 produce. Hence, the aggregated 

supply of abatement goods is: 
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.                            (24)

4.1.3. The abatement good market. It now remains 

for us to study the equilibrium of the abatement 

good market for any given price   of pollution. So 

let us denote by ),(),(=),(  a

s

a

d

a pApApz   

the excess demand correspondence. A first look at this 

correspondence tells us that for any >ap  there is 

always an excess supply: when the price of the 

abatement good is higher than  , nobody is willing to 

buy abatement goods and therefore no equilibrium can 

be reached. We can now investigate whether =ap  

and  ap<min
 can each be an equilibrium. 

We begin by analyzing if =ap  clears the market. 

This requires that the upper bound of the demand 

   1  at price   is higher than the supply at this 

price, i.e.: 

        dii' )(1
111
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1 






  .          (25) 

This conditions is similar to condition (14). This 

means that there exists a threshold v= , with the 

property that for all implicit pollution prices v  , 

=ap  is the market clearing price of the 

abatement good market. With this observation we 

can affirm that: 

Lemma 4. If vt  , the equilibrium production levels 

of the aggregated market are given by   1=)( cQ  

and 
     diiA 'c )(1=)(

111

0








 .  

The equilibrium prices are    1=)( Ppc  and 

 =)(c

ap . Moreover, each efficient firm in the eco-

industry is active and its production is given by 

    )(1=),(
1

iia 'c  


.  

In the opposite case, i.e., v> , the equilibrium 

price of the abatement good market is lower than 

 , but nevertheless higher than min , because 

there is no supply of abatement at any price lower 

then min  (see equation (24)). In fact, this price 

solves: 
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     (26) 

This also implies (i) that not all efficient firms in 
terms of pollution reduction are active at 
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equilibrium since 1<


ap
 and (ii) the pollution of 

the dirty downstream firm is completely abated. 
More precisely, we can say: 

Lemma 5. If v> , the price of the abatement 

goods )(c

ap  is the unique solution to equation 

(26) and is lower than the implicit price for 

emissions. The quantities traded on the markets are 

given by: 
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The number of active firms in the eco-industry is 

given by 1<
)(

=)( 1





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
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c
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i  each of them 

producing    )()(=),(
1

ipia c

a

'c  


. 

Finally, the equilibrium of the commodity market 

is ( ).τQPτp cc )(=)(  

4.2. The level of the Pigouvian tax. In the 
previous section we analyzed competitive 
behaviors following the implementation of a 
Pigouvian tax. In this section, we ask if there is a 
tax rate which implements the efficient allocation 
obtained either in Proposition 1 or Proposition 2. 

If the level of the damage is such that it is optimal to 
partially abate the pollution of the dirty downstream 

firm ( )vv  , we are back to the traditional case largely 
covered by the literature: the Pigouvian tax has to be 

equal to the marginal damage. If vv = , the 

quantities traded at the competitive equilibrium ( )(vQ c

, )(vAc

 and ),( via c

 in Lemma 4) are exactly the 
same as the optimal quantities obtained in proposition 1. 
In this case, the price of the abatement good also reflects 

the marginal damage, since 
vvpc

a =)(
. 

If the marginal damage is higher than the threshold 

identified in Lemma 3 ( )> vv , the value of   is less 
obvious. Assuming that the policy maker keeps the 

same rule (i.e., v= ). Eq. (26) tells us that the 
equilibrium price of the abatement good has to be 
equated with the optimal Lagrangian multiplier 
representing the marginal social cost (see Eq. (17) in 
Proposition 2). Hence, the quantities traded at the 
competitive equilibrium are exactly the same as the 
efficient quantities (see Lemma 5). In other words, the 
policy rule remains the same, but the mechanism 
leading to the efficient allocation is totally different. 
By   setting   the   Pigouvian   tax   at  the level  of   the 

marginal damage, the adjustment of the abatement 
good market results in a price corresponding to the 
social cost of abatement. Hence, the ratio between this 
equilibrium price and the Pigouvian tax selects the 
number of active firms in an optimal way. 

Proposition 3. As usual, the efficient allocation is 

reached if the Pigouvian tax is set at the level of the 

marginal damage. However, if the marginal damage is 

high ( vv > ), this tax is higher than the marginal 

benefit from abatement, which is given by the 

equilibrium price of the abatement good. 

Conclusion 

In this article, we have investigated whether the 
hypothesis of a polluting eco-industry challenges the 
usual results in economic literature. To this purpose, 
we considered a vertical structure composed of a 
polluting downstream firm and an upstream eco-
industry. We assumed that eco-industry firms are 
heterogeneous and that they cannot reduce their 
pollution level. Under these assumptions, we obtained 
two kinds of equilibrium. The first equilibrium, with a 
lower level of damage, extended the standard results of 
economic literature to the case of a polluting eco-
industry, but our results are very different when the 
damage is high. In this case, the dirty firm must totally 
abate its emissions. To reduce the remaining pollution, 
produced by the eco-industry, not all efficient eco-
industry firms produce and the level of production 
among these firms is different to that of the first 
equilibrium. We found that the greater the damage, the 
lower the abatement level and the smaller the number 
of producing eco-industry firms. 

We finally show that both equilibria can be 
decentralized in a competitive economy by means of a 
Pigouvian tax. Whatever the equilibrium, the regulator 
can follow a very simple rule, because the Pigouvian 
tax should always be equal to the marginal damage. 
However, this rule plays a different role in reaching 
each equilibrium. 

Our results suggest that a polluting eco-industry is not a 
problem for the regulator, because the competitive 
equilibrium selects the right firms to be in production, 
provided that the regulator sets the correct level of the 
Pigouvian tax. However, this optimistic conclusion 
depends on the crucial assumption of perfect 
information that we implicitly make in our model. In the 
real world, the regulator cannot define this tax so well, 
and our results may not hold. Moreover, eco-industry is 
characterized by the fact that it is highly concentrated. 
In this respect, one may wonder what level of the 
Pigouvian tax would decentralize the optimum. Finally, 
this article takes as given the pollution features of each 
firm. Taking into account the innovative process would 
make it possible to endogenize the pollution distribution 
among firms. Further research is needed to investigate 
these different questions. 
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Appendix 

A. Proof of Lemma 1 

Step 0: Some notations. 

(i) 
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Q  is given by 0=)()( maxmax QCQP
' . This quantity exists

and is unique, since  )()( QCQP
'  is, under our assumptions, a continuous and decreasing function with 
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 (28) 

and  =)(lim 0 QQ   and 0=)( maxQ . 

Step 1: The existence of a solution ),( AvQ  to program (1). 

To prove this point, let us verify that we maximize (i) a strictly concave function on (ii) a domain which can 

be reduced to the compact convex set  max0,Q .

(i) Let us first observe that 




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
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
 )()(

0
QCdqqP

Q

 is a strictly concave function since its second derivative 

is given by   0<)(")( QCQP
'  . Now, note that   AQ   is convex in Q  while  ,0max xv  is

convex and increasing in x  (for 0>v ), hence, their combination    ,0max AQv    is convex. We

therefore conclude that:  

   ,0max)()(=),;(
0

1 AQvQCdqqPvAQ
Q






 





  (29) 

is strictly concave. 

(ii) By (i) of step 0, and since    ,0max AQv    is not decreasing in Q , ),;(1 vAQ  decreases after 

maxQ . We can therefore reduce the maximization domain to  max0,Q . 

Step 2: The characterization of the solution ).,( AvQ  

Even if this problem is non-smooth, but nevertheless concave, we can always define the subdifferential (see 

Rockafellar 1979 part V) of ),;(1 vAQ  (see Eq. (29)) with respect to Q . This quantity is given by: 

  
 




















)(>  if  )()(

)(=  if  ))(())((,)())(())((

)(<  if  )()(

=
1

111111

1

1

AQQvQCQP

AQACAPAvACAP

AQQCQP

''

'''

'

Q





 . (30) 

Since a maximum is reached if and only if 10 Q , this one is given by: 

 
 



















0>)())(())(( if )(

0)())(())(( and 0))(())((if )(

0<))(())((if

=),(
1111

111111

11

max

AvACAPv

AvACAPACAPA

ACAPQ

AvQ
''

'''

'





. (31) 
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Now note that: 

 
   max

111 )(0))(())(( QAACAP
'    

 (by (i) of step 0) 

     )()(0)())(())(( 11111
vAAvACAP

''      (by (ii) of step 0) 

Thus, we deduce that: 

 



 )( if  )(),(max

)(> if 
=),(

max

11

maxmax

QAvA

QAQ
AvQ




.        (32) 

Step 3: The computation of .
),(

A

vASB




 

If we replace Q  by ),( AvQ in ),;(1 vAQ (see Eq (29)) and remember, by step 0, that 0>v , 

max

1 <)( Qv
 , we obtain: 

    

  




















































)(> if  )()(

)(,)(  if  ))(()(

)(<  if  )())(()(

=),(

maxmax

max

0

max

11
)(1

0

111
)(1

0

QAQCdqqP

QvAACdqqP

vAAvvvCdqqP

vASB

Q

A

v











. (33) 

Moreover, if we differentiate this function piecewise with respect to A , we can see that: 

 
 

   













 







)(>  if  0

)](,)(  if   
)(

))(()(

)(< if  

=
),(
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1

1

11

1

QA

QvA
A

ACAP

vAv

A

vASB
'









 (34) 

is a continuous function (remember step 0) which can be summarized by 

  ,0))((,minmax=
),( 1

Av
A

vASB 


  . 

B. Proof of Lemma 2 

Step 1: The solution to program (5). 

Let us remember that the FOCs of program (5) are given by: 

  )0> if  (  0)())((,0,1 i

'
aiviai    (35) 

Adiia =)(
1

0  (36) 

It is a matter of fact to observe that if 0=A , almost all 0=)(ia , and Eq. (35) requires that 
min  v ,

since, 0=(0)'  and )(i  are increasing. So let us us concentrate on the situations in which 0>A  and 

min>  v . From Eq. (35), we observe (i) that for
max<  v , only the firms 














 

v
i

 10,  produce 

while, for 
max  v , each firm is active, and (ii) that their individual production is given by

   )(
1

iv
'  


. It remains to use Eq. (36) to get  . This quantity is implicitly defined by:  

    0=)(=),,(
1max

,min1

0
2 diivAvA

'v 
























 . (37) 
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Let us now note that 0),( vA , (i) 0>=lim 2min
Av  , (ii)  =lim 2  since 

 =)(lim a
'

a   and (iii) this function is continuous and decreasing in   since: 

      0<)("=
11max

,min1

0
2 diiv

'v


















  





  (38) 

for 
max. v (remember that   0=0' ). It therefore exists a unique ),( vA

,
 which solves Eq. (37) for 

each ),( vA  and the optimal solution to program (5) is given by: 

     


























else 0

,min if  )(),(
=),,(,0,1 max

11


v
iivvA

vAiai
'

. (39) 

Step 2: The computation of 
A

vASC


 ),(

. 

   di
A

vAia
ivvAia

A

vASC 'v

vA






 





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
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





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),(
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),(1
),(1=
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
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v
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

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








 

But for max

),(
< 

v

vA
, 








v

vA
i

),(
= 1   is the pivotal agent so that 0=),,( vAia

  and since 0=(0) , the 

second term vanishes. Moreover, by Eq. (35): 

di
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vAia
Av
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
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
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




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

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
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
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),(=
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,
),(

min1

0


  

AdivAiaAv v
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


















  

Step 3: Additional results for latter use. 

Let us observe that for ,βv<λ max
 we have: 

 
      0<)("=

),,( 11
1

0

2 diiv
vA 'v













 


 



(remember that 0=(0)' ). 

 
0>1=

),,(2

A

vA


 

 
      0>)(")(=

),,( 11
1

0

2 diivi
v

vA 'v













 

 


(remember that 0=(0)' ). 

It follows that: 

0>
)v,A,λ(φ∂

1
=

A∂
)A,v(λ∂

and0>
)v,A,λ(φ∂
)v,A,λ(φ∂

=
v∂

)A,v(λ∂
2λ2λ

2v
    .   (40) 



Environmental Economics, Volume 8, Issue 3, 2017 

59 

C. Proof of Lemma 3 

Step 1: There exists a unique threshold v .

Let us verify that:  

        0=)(1)(=)(
111

0

1

3 diivvv
' 







  (41) 

admits a unique solution v . This result is rather immediate since: 

 )(3 v  is continuous and decreasing since: 

( )
( )

( ) ( )

( ) ( )( )( ) di
)i(β1vκ"κ

)i(β1

)v(ξξ
)v(ξε

=)v(φ 1'

11β

0
1'

1'

'
3 ∫ . (42) 

Moreover, we know that (i), by assumption, 0>)(Q' , (ii), by step 0 of the proof of Lemma 1, 

0<)(Q' , and (iii), by the range of the integral, 0)(1  i . Hence 0<)(3 v
' . 

   0>=)(lim max30 Qvv  . More precisely,  )(lim=)(lim
1

030 vv vv


   since 0=(0)' . Using 

again step 0, we know that 0>=(0) max

1
Q

 . The result follows. 

 0<)(lim 3 vv  . By step 0  of the proof of lemma 1, we know that  =)(lim 0 QQ  . It remains to 

remember that 0=(0)  in order to conclude that : 

      0<)(1lim=)(lim
111

0
3 diivv

'

vv










      (43) 

Step 2: If vv < , then, the optimal abatement provision only partially reduces the emissions of the dirty firm 

By contraposition, assume that the efficient solution requires full pollution abatement of the dirty industry. 

At this optimal allocation, 
opt and

opt
A  verifies: 

( ) ( ) ( ) 0=di)i(βvλκAand v≤A(εξ=λ

)v,
opt

A,
optλ(

2
φ=

opt1'v

optλ1β

0

optopt1opt ∫

)(seeEq(37)

   
  

(44) 

From the first equation, we get that v
opt   and  )(1

vA
opt   . It follows, from step 3 of the proof of 

Lemma 2, that: 

  )(=),)(,(),,(=0 3

1

22 vvvvvA
optopt   .      (45) 

Now remember by step 2 that 0=)(3 v . Since 0<)(3 v
' , this implies that vv  . 

Step 3: If vv   then the optimal abatement provision requires full pollution abatement of the dirty industry 

By contraposition, assume now that the efficient solution requires partial abatement. At this optimal 

allocation, 
opt and

opt
A  verifies: 

       diviAAv
'optoptopt 



  )(1=and(<=

111

0

1 


.      (46) 

Since now  )(< 1
vA

opt  , we can say by using the second condition and step 3 of the proof of Lemma 2 

that: 

  )(=),)(,(<),,(=0 3

1

22 vvvvvAv
opt  

.      (47) 

Now remember by step 2 that 0=)(3 v . Since 0<)(3 v
' , this implies that vv < . 
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D. Proof of Proposition 1 

Point (i): This result follows from the definition of the case. 

Point (ii): By step 0 of the proof of Lemma 1, we can say that    0<)(=
11 

v
dv

dQ '
opt

 and by 

computation: 

   
      0>

)(1"

)(1
=

1

11

0
di

iv

i
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'
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










  (48) 

since  (1)0, 1 i  we have   0>)(1 i  and 0.>"  

Point (iii): This follows from the proof of step 1 of Lemma 2 for v=  

E. Proof of Proposition 2 

Point (i): This result follows from the definition of the case. 

Point (ii): Since )(= 1 optopt
AQ

  it is obvious that if 0
)(


dv

vdA
opt

 then 0
)(


dv

vdQ
opt

. So let us check that 

0
)(


dv

vdA
opt

. To verify this point, let us remember that an optimal allocation is in this case defined by: 

  optoptoptopt
AvA

1

2 =and0=),,(  .         (49) 

By differentiation, this implies that: 

 
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)(),,(
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2
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2

0<

1

1

0<

2 dv
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vA

A

AvA
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'
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
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
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

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





(50) 

and the result follows from the proof of Lemma 1 (step 0) and Lemma 2 (step 3). 

Point (iii): Since vv
opt <)( , the proof of the first part of the result directly follows from equation (39). It

remains to verify that 0<

)(

=
)(

1

dv

v

v
d

dv

vdi
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opt 






 
. Since )(i  is increasing let us compute: 
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=

)(=
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)(=

)(,,)(,1
=

/)(,

    


 (51) 

By point (ii) of this proof and Eq. (40), we know that the first term of the previous equation is negative. 

Now let us note, by Eq. (40), that the second term can be written as: 


































 ),,(),,(),,(

= 22

1

2 vA

vv

vAvA
W (52) 

If we now replace the derivatives of 
2  by its value (see step 3 of the proof of Lemma 2), we obtain: 
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Point (iv): In this case, the marginal social benefit is )(=)))(((=
),( 1

vvA
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
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. It follows 

that   )(=)( 1
vvA
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 . We can therefore say that 

)(vopt is implicitly defined by:

      0=)()(=)(
1

1

0

1

4 diiv
'v 














  (54) 

and this equation admits a unique solution  vv ,min  since: 
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 (remember that 0<' , 0>'  and 

0>" ) 

   0>).(=)(lim min

1

4min
 vv


  because there is no production in the eco-industry (see the proof 

of Lemma 2) 
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 . In fact by Eq (47) we know that 
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 . It remains for us to 

observe that   ),)(,(=)(lim
1

24 vvvv


  . 

F. Proof of Lemma 4 

This result directly follows from our discussion. 

G. Proof of Lemma 5 

We simply have to make sure that for all v> , there exists a unique price   ,)( min c

ap , which 

solves    0=),(=),( 1
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aa pApp 
. To verify this point let us observe that: 
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A  (see Eq (24). 
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this case. 
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(remember   0)=0 , 0>" , 0>'  by assumptions and 0<'  by step 0 of the proof of 

Lemma 1. 

E. Proof of Proposition 3 

This result directly follows from our discussion. 
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