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Abstract

This article studies the derivatives pricing using a method of spectral analysis, a theory of 
singular and regular perturbations. Using a risk-neutral assessment, the authors obtain 
the Cauchy problem, which allows to calculate the approximate price of derivative 
assets and their volatility based on the diffusion equation with fast and slow variables of 
nonlocal volatility, and they obtain a model with multidimensional stochastic volatility. 
Applying a spectral theory of self-adjoint operators in Hilbert space and a theory of 
singular and regular perturbations, an analytic formula for approximate asset prices is 
established, which is described by the CEV model with stochastic volatility dependent 
on -fastl  variables and -slowlyr  variables, 1, 1,l r≥ ≥  , l N r N∈ ∈  and a 
local variable. Applying the Sturm-Liouville theory, Fredholm’s alternatives, as well as 
the analysis of singular and regular perturbations at different time scales, the authors 
obtained explicit formulas for derivatives price approximations. To obtain explicit 
formulae, it is necessary to solve 2l Poisson equations.
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INTRODUCTION

The constant elasticity of variance (CEV) model is a generalization of 
geometric Brownian motion models. This model has been introduced by 
Cox and Ross (1976) for pricing European call options. The CEV model 
is based on the assumption that the risk-neutral process that describes 
the stock price S  has the form: ( ) ,dS r q Sdt S dzασ= − +  where r  – 
risk interest rate, q  – dividend yield, σ  – parameter of volatility, α  

– positive constant, dz  – Wiener process. For 1,α =  the СЕV model 
coincides with the model of the geometric Brownian motion, if 1,α <  
then, with the reduction of asset value, its volatility increases, if 1,α >  
then, with the increase in the asset value, its volatility also increases. 
This corresponds to volatility smile and means that volatility is an 
increasing function depending on the asset price.

Comparing with the models of the geometric Brownian motion, the ad-
vantages of a CEV model lie in the fact that the instability ratio correlates 
with the price of risky assets and may explain empirical bias, such as the 
volatility smile (Schroder, 1989). The CEV model is usually applied to cal-
culate the theoretical price, sensitivity and expected volatility of options 
(Emanuel & MacBeth, 1982; Fouqueet at al., 2000). In recent years, the 
problem of a pension fund investment is very urgent, it turns out that the 
CEV model has been successfully applied to study the effective invest-
ment strategy (Davydov & Linetsky, 2001; Davydov & Linetsky, 2003).

At the end of the last century, the attention of financial scientists was 
drawn to the problem of relationship between the asset price and its 
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volatility (Schroder, 1989). It was found that the asset price behaves like volatility. According to a Black-
Scholes model, volatility is constant (Black & Scholes, 1973). As a result, this led to a series of works to 
expand this model. Empirical studies have found that volatility is a random variable dependent on time. 
Hull and White (1989), Stein and Stein (1991), Heston (1993) introduced analytical models with stochastic 
volatility. Carr and Linetsky (2006), Aboulaich et al. (2013) investigated the stochastic volatility model 
with jumps. The CEV model is a generalization of dynamic volatility models. In particular, it provides 
an opportunity to examine the asset price that changes continuously over time. There is a series of works 
dedicated to this problem (Andersen & Piterbarg, 2007; Lindsay & Brecher, 2012). In this article, we 
consider the CEV model with multidimensional stochastic volatility. Using a spectral theory of self-
adjoint operators in Hilbert space and a theory of singular and regular disturbances, an analytic formula 
for the approximate asset prices is established, which is described by the CEV model with stochastic 
volatility dependent on -fastl  variables and -slowlyr  variables, 1,  r 1,l ≥ ≥  , l N r N∈ ∈  and a local 
variable. The theorem of closeness in estimation of financial instruments prices approximation is proved.

1. RESEARCH METHODOLOGY

The purpose of the article is to establish the 
approximate derivative prices, which are defined 
by CEV model with stochastic multidimensional 
volatility and depend on many factors of a spectral 
theory and a theory of perturbations.

Thus, when a CEV model with stochastic 
multidimensional volatility is adequate for 
describing the dynamics of an underlying, the 
spectral method outlined above serves as a 
powerful tool for analytically pricing derivatives 
on that underlying. Among the topics that have 
been addressed by applying spectral methods with 
multidimensional diffusions are option pricing 
(both vanilla and exotic), mortgages valuation, 
interest rate modeling, volatility modeling, and 
credit risk.

The necessity to have stock price diffusions that 
don’t jump to zero in order to default and still have 
a non-zero probability of falling to zero leads us to 
naturally consider CEV processes. Moreover, CEV 
models have the advantage to provide closed-form 
formulae for European vanilla options and for the 
probability of default.

In particular, many problems related to the pricing 
of derivative assets have been solved analytically by 
using methods from spectral theory. An overview 
of the spectral method applied to derivative 
pricing is as follows.

We consider the probability space 

( ), , Q F P  with systems of Wiener motion 

( )1 1,  ,…,  ,  ,…, l ryy z zxB B B B B  and an 
exponential random variable ( )1 ,  ~ Expη  which 
is independent of ( )1 1,  ,…,   ,…, ., l ryy z zxB B B B B  
We consider a homogeneous Markov 
process, which depends on 1l r+ +  factors 

1 1, , …, , ,…, ,l rX Y Y Z Zχ =  which is defined 
in some state space ,l rR  H  R  R= ⋅ ⋅  where 

( )1, …, ,l

lY Y R∈  ( )1,…, r

rZ Z R I∈  is the 
interval in R  with points 1,a  and 2 ,a  such that 

1 2 .a a−∞ < < < ∞  Let that χ  has a beginning at 
R  and instantly disappears as soon as X  goes 
beyond H . In particular, the dynamics of χ  with 
physical measure P  is as follows:

( )

1 1, , …, , ,…, ,  ,
 

, ,

0: ,

t t lt t rt H

t

H

H t

X Y Y Z Z  t

                                         t  

inf t X H

θ
χ

∆ θ

θ

>
=  ≤
= > ∉

where 1 1, , …, , ,…, l rX Y Y Z Z  are set

( ) ( )
( )1 1, …, , ,…, ,

t t t

x

t lt t rt t

dX v X dt a X

f Y Y Z Z dB

= + ×

×
 

( ) ( )1 1
,  1, jy

jt j jt j jt t

j j

dY Y dt Y dB j .lα β
η η

= ⋅ + ⋅ =

( ) ( ) ,  i 1, iz

it i i it i i it t dZ k Z dt g Z dB r.γ γ= + =
 

( ), ,  1, j

j

yx

xy
t

d B B dt j l.ρ= =
 

( ), ,  1, i

i

zx

xz
t

d B B dt i r.ρ= =
 

( ) ,   1, 1, ,j i

j i

y z

y z
t

d B B dt j l ,   i r.ρ= = =
 

( ), ,   1, , 1, j r

j s

y y

y y
t

d B B dt j l s l.ρ= = =
 

( ), ,  1, 1, i k

i k

z z

z z
t

d B B dt i n,   k r.ρ= = =
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l r
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x y y z z R

=

= ∈  

where 0,
j sy yρ =  , j r  ≠  0,

i kz zρ =  
,  , ,

j i j ixy xz y z i kρ ρ ρ≠  meet the condition 

, , 1,
j i j ixy xz y z ρ ρ ρ ≤  and a correlation matrices 

of a form: 1

1

1

j i

j j i

i i j

xy xz

y x y z

z x z y

ρ ρ

ρ ρ

ρ ρ

 
 
 
 
 
 

 

semi positively defined, i.e. 
2 2 21 2 0,

j i j i j i j ixy xz y z xy xz y zρ ρ ρ ρ ρ ρ⋅ ⋅+ ⋅ − − − ≥  

1, ,j l=  
 .1,i r=  

In changing from the physical probability measure 
to the risk-neutral pricing measure, we consider a 
class of market prices of risk that is general enough 
to treat credit, equity, and interest rate derivatives 
in a single framework.

Process X  can represent many economic 
phenomena and processes, which describe the 
optimal investment strategies. For example, the 
stockpiles, the index price, a risk-free short-
term interest rate, etc. Even more broadly, X  is 
an external factor that characterizes the cost 
of any of the abovementioned processes. We 
are considering the process X  with stochastic 
volatility ( ) ( )1 1, …, , ,…, 0,t t lt t nta X f Y Y Z Z >  
which contains both components: local ( )ta X  
and nonlocal ( )1 1, …, , ,…, .t lt t ntf Y Y Z Z  Note 
that the infinitesimal generators (Infiniti zed) for 

jY  and iZ  have the form ,  .i j∀

( ) ( )2 21 1
,

2

j

j j jj j j y y j j y

j

YP y y
η β α

η
 = ⋅ ∂ + ∂ 
 

 

( ) ( )2 21
,

2
i

i i i iZ i i i z z i i zg z cP z
δ γ  = ⋅ ∂ + ∂ 

 
 

are characterized by the values 1 j/ η  and ,iγ  
respectively. Thus, 1, …, lY Y  and 1,…, nZ Z  have 
an internal time scale 0jη >  and 1 0.i/ γ >  We 
consider 1jη <  and 1,iγ <  so that the internal 
time scale jY  is small, and the internal time scale 

iZ  is large. Consequently,  ,jY  1, j l=  are fast 
variables, and ,iZ  1, i n=  are slowly variables. 
Note that j

jYP
η

 and i

iZP
δ  have the form

( ) ( ) ( )2 21
,

2
xx xL a x b x k x= ⋅ ∂ + ∂ −

  ( )1 2, ,x a a∈  ( ) 0,k x =  

for all ,x I∈  are always self-conjugated in a 
Hilbert space ( )2 , ,H L h p=  where H R∈  is the 
interval terminating at 1a  and 2a  and p  is a dif-
fusion density rate.

The boundary conditions for 1a  and 2a  are imple-
mented on the output, input and regular bounds.

We evaluate the derivative security with payoff at 
time 0,t >  which may depend on trajectory .X  
In particular, we will consider the forms of payoff:

( ) ,t tPayoff H X Iθ >= ⋅  

where θ  is a random moment of time dur-
ing which there is a failure to make a payment 
of premium. Since we are interested in deriva-
tives estimates, we must determine the dynamics 

( )1 1, , …, , ,…, l rX Y Y Z Z  with risk-neutral mea-
sure estimate, which we denote as P .  We have the 
following dynamics:
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where

dB dB

v X b X

a X f Y Y Z Z

Q Y

t

x

t

x

t t

t t lt t nt
� … …: , , , , , � �

� � � � �
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�

�
1 1

11 1t lt t rtY Z Z

dt

, , , , , 

,

… …� �

�

�

�
�
�

�

�

�
�
�

 

dB dB Y Y Z Z dtt

y

t

y

j t lt t rt

j j� … …: , , , , , ,� � � ��
1 1

 

dB dB Y Y Z Z dtt

z

t

z

i t lt t rt

i
i� … …: , , , , , ,� � � ��

1 1

 

where 0,
j sy yρ =  ,j s≠  0,

i kz zρ =  .i k≠  

We implement such conditions so that the system 
(1) has the only strong solution.

Random time τ  is the time of a derivative asset. In 
our case, a default can occur in neither of two ways:

when X  is beyond the interval ;H

at random time ,hθ  which is managed by risk level 

( ) 0.th X ≥

This can be expressed as follows:

{ }

( )

( )
0

1 1

,

0: ,

0: 

, , …, , ,…, 

H h

H t

t

s

H
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inf t  X H

t h X ds
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θ τ τ
θ
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=
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Note that the random variable η  is independent 
of 1 1, , …, , ,…, .l nX Y Y Z Z

We will calculate the derivative asset of some 
payoff using risk-free pricing and Markovian 
chain ,X  the price ( )1 1, , ,…, , ,…, ,

l rw t x y y z zη γ ′  
of some derivative assets at the initial moment of 
time has the form:

w t x y y z z
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where ( )1,…, ,lη η η=  ( )1,…, ,r   γ γ γ=′  and 

( )1 1, ,…, , ,…, l rx y y z z E∈  is a starting point of 
the process  ( )1 1, , …, , ,…, l rX Y Y Z Z  applying 
the Feynman-Kats formula, we can show that 

( )1 1, , ,…, , ,…, ,

l rw t x y y z zη γ ′  satisfies the 
following Cauchy problem (Linetsky, 2007):

( ) 0,, ,

t P w  η γ η γ′ ′−∂ + =

( )1 1,…, , ,…, ,l r y y z z R∈  , t R+∈
 (1)
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l rw x y y z z  H x  η γ ′ =  (2)
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We assume that the diffusion with the infinitesimal 
generator 1

jYP  has an invariant distribution H  
with density ( ).j jyπ
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Besides the initial condition (3), function 

( )1 1, , ,…, , …, ,

l rw t x y y z , zη γ ′  must meet 
boundary conditions at the points 1a  and 2a  of 
interval .H  The boundary conditions at points 1a  
and 2a  belong to domain ,Pη γ ′  and will depend 
on the nature of process X  on the points of H  
and are classified as natural, output, input or 
regular (Borodin & Salminen, 2002). The Cauchy 
problem (1)-(2) for
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has no analytical solution. However, for fixed ,γ ′  
conditions containing η  and deviate arbitrarily 
small in η  axis, which leads to singular 
perturbations.

For fixed jη  conditions containing iγ  are small 
for some small s,-axiγ ′  which causes regular per-
turbations. Thus, the -axisη  and is-axγ ′  initiate 
a combined singular-regular perturbation of the 
operator 2 .P  In order to find the asymptotic so-
lution of the Cauchy problem (2)-(3), we develop 

,wη γ ′  in orders jη  and :iγ
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Approximate price is calculated as follows:
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The choice of development in half-integer orders 

jη  and iγ  is natural for .,Pη γ ′

By carrying out an analysis of singular 
perturbations at corresponding levels, we obtain 
that 
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1,…, .l y y  The main results of asymptotic analysis 
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0 1 23 0 2 0 1 0

1 11 0

10 0 1 0
,  0 0,

j j j

kj
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j j t, , ,

k i,
k j i j
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≠

′

′

′
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′

+ + −∂ + +

+ +

…

=

==

∑ ∑
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(4)

1 0 10 1 0 0kj

k j

�
�

�
�
�

�

�
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,  , , , . .…
�

…
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From the analysis of regular perturbations, we 
obtain

( ) 0 02 0 1' i
i

t i z ,,
P w v w ,′−∂ + = ∂  

( )10 1
0, , ,…, z 0,

'
i

r,
w x z =

 

1, .i r=
 (5)

Operators 2 ,P  ,jw  iv  та 
iz∂  are set by the 

formulae:

( ) ( ) ( )( ) ( )2 2 2

2

1
,

2
xx xP a x b x fQa x k xσ= ⋅ ∂ + − ∂ −  

( )1 2, ,x a a∈  

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

3 2

2 1 ,

j j x xx j xx

j x x j x

a x a x a x

a x a x a x  

ν ν= − ∂ ∂ − ∂

− ∂ ∂

−

− ∂



 

 

( )1 0i i x ií a x ν= − ∂ −  and ,
i iz z fQ

fQ'σσ∂ = ∂ ∂ + ∂  

1 : ,
ii i xzg fν ρ=  

0 ,i igν Ψ=  

1,  i n∀ =  and the norm function

( ) ( )1: ,l j j jj
y , y y dyπ= ∫ …   1, , j l∀ =  

( ) ( ) ( )

( ) ( ) ( )
2

1 1 1 2 2 1 21 2 1

1 1 1 1
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,
l
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R
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−
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∫

∫
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

 

1
,

l ,l−
=   : ,fQ fQ=  2 2f .σ=  

We find solutions to the equations (3)-(5) on the 
basis of Eigen functions, eigenvalues of the operator 

2 ,P  each of which satisfies a corresponding 
Poisson equation:

2 2

01 1 1
,P v f f   = −  

P v f f

P v f fl l l l l l

02 2

2

1

2

1 2

0

2

2 1

2

1

� � �

� �
� � �

,

, ,

, ,


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η η

η
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Theorem 1: Let the equation be:

2 ,n n nP v vµ− =  ( )2 ,nv dom P∈  (6)

and .h H∈  Then, the solution 
0 0,

w ′  has the form:

0 0
1

,n n n,
n

w k v T  
∞

′
=

=∑  ( ), ,n nk v h=  .nt

nT e
µ−=   (7)

Theorem 2: Let ,nk  ,nv  nT  be equations (6)-(7):

( ): ,jk ,n k j nv , v=   : .k n
k ,n

k n

T T
M

µ µ
−

=
−

  (8)

Then, the solution 
1 0j ,

w ′  of equation (4) has the form:

1 0
.

j
n jk ,n k k ,n n jn ,n n n,

n k n n

w k v M k v tT
≠

′ = −∑∑ ∑    (9)

Note that 
1 0j ,

w ′  is linear in the parameter group 

( )3 2 2 1, , , .j j j ju uϑ ϑ

Theorem 3: Let ,nk  nv  and nT  are set by (6)-(7) 
and , k nM  from (8)-(9), then:
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Then, the solution 
0 1'

i,
w  has the form:
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We proved that 
0 1'

i,
u  are linear in 

( )1 1 0 0,  ,  ,  .i i i i'  b fQ b ' b fQν σ σ′ ′

We have obtained the approximate solution:

0 0 1 0 0 1
1 1

'
j i

l n
,

j i, , ,
j i

w w w wη γ η γ′
′ ′

= =

≈ + +∑ ∑  

for the valuation of derivative assets. For a 
more accurate result, we assume that the payoff 
function ( )H x  and its derivative are smooth and 
limited functions. Thus, we restrict our analysis 
of derivatives to a smooth and limited payoff; in 

this case, the closeness estimates is based on the 
following theorem.

Theorem 4: If there is fixed t x y y z zl r, , , , , , , ,
1 1
 � �  

then there exists a C  constant such that for all 
1,jη ≤  1,iγ ≤  the following inequality takes place:

0 0 1 0 0 1
1 1

1 1

.

'
j i

l n
,

j i, , ,
j i

l r

j i

j i

w w w w
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η γ η γ

ε δ

′
′
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′
= =

 
− + + ≤ 
 

 
≤ + 

 

∑ ∑

∑ ∑

 

Theorem 4 provides us information on how the ap-
proximate price behaves when 0jη →  and 0.iγ →  

2. APPLICATION  

OF THE DESCRIBED 

METHODOLOGY

The models developed by these scholars have their 
advantages and disadvantages, but each of them is 
used to increase the liquidity of financial markets. 
The findings are credit spread of credit market in-
struments, calculating option prices for interest 
rates, determining the risk and derivatives’ rate of 
return of the stock market financial instruments.

Using the method of Eigen function expansions, 
we derive analytical solutions for zero-coupon 
bonds and bond options under CEV processes for 
the shadow rate. This class of models can be used 
to model low interest rate regimes.

Let’s assume that the asset is defined by 

{ } .t tt
S I Xθ >=  Since S  must be positive, the space 
of states X  will be ( ) ( )1 2, 0, .a a = ∞  A multiscale 
diffusion is formed on the default leap using a 
method of continuous variations (Carr & Linetsky, 
2006). In particular, P  is the dynamics of X  be-
fore default is set:

dX bX X dt

f Y Y Z Z X X dB

t t t

l n t t t

x

� �� � �

� � �� �
� �

�

2

1 1
, , , , , ,… …

ɶ

 

( ) 2 .k

t th X bXν= +  

For ease of calculation, the risk-free interest rate is 
zero: 0.r =  Let’s calculate the approximate price 
of a European option, which is described by .S  
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We write down the operator 2P  and associated 
with it densities at a rate ( ):p x

( ) ( )2 2 2 2 2 2

2

1
,

2
xx xP x bx x bxκ κ κσ ν ν+= ⋅ ∂ + + ∂ − +   (10)

( ) ( )2

2

22 2
2

2
,

b

p x x exp Wx κσ κ

σ
−− −= ⋅  

2
.W

ν
σ κ

=  

We consider the diffusion operator (10), the end 
of the interval 2a = ∞  is a natural boundary. 
However, the classification of end point 1 0a =  
depends on the value of k  and 

2
,

b

σ
 i.e.:

1) 
2

1
,

2

b

σ
≥  0,k <  1 0a =  is a trivial case;

2) 
2

1
0, ,

2
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 
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2
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,  0 ,

2

b
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number plays a role of a starting point;
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2
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2

b

σ
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 

 
2

1
,

2

b
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σ
< −  1 0a =  at such a 

condition, the start of the interval is constant.

If ( ),  b , kσ  satisfy 
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1
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2

b

σ
 ∈ 
 

 and 

)
2

1
,  0 ,

2

b
k

σ
∈ −

 1 0a =  then 1a  is considered as 

a keeling boundary. In this case, we find Eigen 
functions and eigenvalues (7) boundary conditions:

0
0,n

x
limv
→

=  if 
2

1
0, 

2

b
.

σ
 ∈ 
 

The solution has the following form (Mendoza-
Arriaga et al., 2010):

( )
( ) ( ) ( ) ( )2 22

1

1
,n n

n !
v W x exp Wx L Wx
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υ
υκ κν

Γ υ
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2
1 2
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συ
κ

 +  
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where ( )
nL
υ

 are generalized Laguerre polynomials. For 
the system (10), operators j  and j  have the form:

1 2 2 2 2 2 2

3 2 ,j j x xx j xxv x x x  κ κ κν+ + += − ∂ ∂ − ∂  

1

1 0 .j j x jxκν ν+= − ∂ −  

Payoff for a European call option with the 
execution price 0K >  can be expanded as follows:

( ) ( ) { } { }( )1 .t t t t
K S K X I K Iθ θ

+ +

> >− = − + −   (11)

The first item on the right-hand side (11) is the option 
payoff before the default at time t.  The second item 
represents option pay off after the default, which 
may occur at time t.  Thus, the option value with 
execution price K  is designated by ( ), ; ,w t x Kη γ ′  
can be expressed as a sum of two parts:

( ) ( ) ( )0, ; , ; , ; ,, , ,

Dw t x K w t x K w t x Kη γ η γ η γ′ ′ ′= +  
where 
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Note that ( )21 , ,L R p+∉  we used the fact that the 
integral of Dirac’s function is equation. As payoff 
functions:

( ) ( )0H x K x
+= −  and 

H x x 4 L R p
x x1

2� � � � � � � �� �
�

� , ,  we can calculate:

( ) ( )( )0 ,,n nk v , K
+⋅= − ⋅  ( )1 , .,n n xk v δ ′=  

The coefficients can be found in Mendoza-Arriaga 
et al. (2010). 

The approximate European option price which are 
described by system (10) can now be calculated 
using theorems 1-4.

Note that volatility ç ,γσ ′
 of the option with price 

( ), ; ,w t x Kη γ ′  is solved by the formula:

( ) ( ), ; , , ; ,, BS ,w t x K w t x Kη γ η γσ′ ′=  

where ( ), , ; BS ,w t x Kη γσ ′
 is Black-Scholes price 

with volatility , .η γσ ′

Note that figures are constructed component-wise 
in each corresponding time scale, similarly to both 
components in works of Lorig (2014), Burtnyak 
and Malytska (2016).
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CONCLUSION

This paper expands the methodology of approximate pricing for a wide range of derivative assets.
Using a spectral theory of self-adjoint operators in Hilbert space and a theory of singular and regular 
disturbances, an analytic formula for the approximate asset prices is established, which is described by 
the CEV model with stochastic volatility dependent on -fastl  variables and -slowlyr  variables, 1,l ≥  

1,r ≥  ,l N∈  r N∈  and a local variable. Applying the analysis of singular and regular perturbations at 
different time scales, we obtained explicit formulas for derivatives price approximations. The theorem 
of closeness estimates of financial instruments approximate prices is proved.

The main advantage of our pricing methodology is that by combining methods from spectral theory, 
regular perturbation theory, and the theory of singular perturbations, we reduce everything to the solu-
tion of the equations to find their Eigen functions and eigenvalues.
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