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Abstract

The authors consider Lévy processes with conditional distributions belonging to a gen-
eralized hyperbolic family and compare and contrast full density-based Lévy-expected 
shortfall (ES) risk measures and Lévy-spectral risk measures (SRM) with those of a 
traditional tail-based unconditional extreme value (EV) approach. Using the futures 
data of leading markets the authors find that ES and SRM often differ in recognizing 
the risk profiles of different assets. While EV (extreme value) is often found to be more 
consistent than Lévy models, Lévy measures often perform better than EV measures 
when compared with empirical values. This becomes increasingly apparent as inves-
tors become more risk averse. 

Sharif Mozumder (Bangladesh), M. Humayun Kabir (New Zealand),  
Michael  Dempsey (Vietnam)

BUSINESS PERSPECTIVES

LLC “СPС “Business Perspectives” 
Hryhorii Skovoroda lane, 10, Sumy, 
40022, Ukraine

www.businessperspectives.org

Do Coherent Risk Measures 

Identify Assets Risk Profiles 

Similarly? Evidence from 

International Futures 

Markets

Received on: 20th of August, 2017
Accepted on: 4th of October, 2017

INTRODUCTION

In the last few decades, we have experienced an increased level of fi-
nancialization and securitization, and convergence between banking, 
insurance and security markets. This trend has led to a significant 
increase in financial risk and unpredictability of extreme events re-
sulting in large losses faced by individual and institutional investors. 
Under such circumstances, the determination of the level of risk, and 
the management of risk have become even more challenging. With the 
advent of Value-at-Risk (VaR), both academicians and practitioners 
have been trying to devise models to measure risk more effectively. 
The VaR as a popular risk measure has the advantage of simplicity, but 
comes with inherent weaknesses. Specifically, the VaR does not satisfy 
the subadditivity requirement, which is an important property for a 
coherence risk measure (Artzer et al., 1999). VaR fixes tail events cor-
responding to a given confidence level, and considers the conditional 
likelihood of tail events while ignoring the actual size of extreme cata-
strophic events. Thus, VaR gives a partial snapshot of potential losses 
and fails to take into account the actual size of extreme losses after the 
point of cut-off. 

In order to overcome this weakness and to ensure the subadditivity 
(and hence coherence) requirement is met, an expected shortfall (ES) 
measure has been proposed. ES estimates the potential loss by averag-
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ing all the possible losses in the tail of the distribution1. However, the ES gives all tail losses an equal 
weight implying that the individual is risk neutral at the margin between better and worse tail outcomes 
(Grootveld & Hallerbach, 2004; Cotter & Dowd, 2006). On the other hand, the spectral risk measure 
(SRM) proposed by Acerbi (2002, 2004) is independent of any particular extreme event and requires 
that catastrophic tail events and usual non-tail events have different weights and that the weight of the 
catastrophic tail events are allowed to vary according to how averse an investor is towards the risk. In 
contrast, extreme value (EV) models use only the data remaining in the tail of the distribution after the 
cut-off point. The SRM provides investors with the flexibility to choose their individual degree of aver-
sion to risk; but this flexibility comes at a greater computational cost2. A number of studies examine 
the SRM in the context of portfolio optimization, and the relation between risk aversion and the SRM 
(Giannopoulos & Tunaru, 2005; Inui & Kijima, 2005; Adam et al., 2008; Chen & Wang, 2008; Deng et 
al., 2009; Wächter & Mazzoni, 2013). Sorwar and Dowd (2010) estimate ES and SRM for various opo-
tion positions. Cotter and Dowd (2006) use tail density based extreme value ES and SRM risk measures 
and compare the precision of the estimates of these risk measures. They find the ES standard errors are 
higher than the VaR for S&P 500, FTSE100, DAX, and Hang Seng except Nikkei 225 futures contracts. 
However, the ES has higher coefficient of variations and narrower confidence intervals suggesting that 
they are more precisely estimated. On the other hand, the SRM has significantly wider confidence in-
tervals than the VaR and ES. 

In this paper, we focus on estimating coherent risk measures ES and SRM for both Lévy and EV models. 
A Lévy process is characterized by stationary independent increments and the distribution is infinitely 
divisible so as to represent skewness and excess kurtosis in the data. Moreover, Lévy models use the en-
tire data or full density to estimate the model parameters in contrast to an EV model that uses only the 
tail density of the distribution. 

1 Recently, Acharya et al. (2010, 2012) have introduced marginal expected shortfall (MES) as a measure of losses faced by a firm in the tail 
of the aggregate sector’s loss distribution, as well as a systemic expected shortfall (SES), which increases with the firm’s leverage and with 
its expected loss in the tail of the system’s loss distribution. For more detail on the estimation, see Brownlees and Engle (2012).

2 The computational issues are discussed by Kevin and Cotter (2006) in the context of an extreme value (EV) approach. Specifically, the 
authors evaluate the integrals associated with the calculation of VaR, ES and SRM.

3 We consider futures data on the S&P 500, FTSE100, DAX, Hang Seng and Nikkei 225 indexes. The discussion on data is presented in 
section 2. 

Formally, ( )ES α  is restricted to the tail at the extreme end of the density distribution (with the confi-
dence level, α  value is as high as 0.95 or even 0.99): ( )ES α  is the value of the integral 

 ( )
1

1
.

1
VaR u du

αα
⋅ ⋅

− ∫  

However, SRM with an exponential risk aversion function is an integral of the form

 
( )

( )
1 1

0

Re

1

R u

R
VaR u du

e

− −

− ⋅
−∫  

(where R  is the Arrow-Pratt coefficient of absolute risk aversion), which is not only restricted to such a 
tail, but also embraces the data outside the tail. Cotter and Dowd (2006) focus only on EV-ES and EV-
SRM to determine the clearing house’s margin requirements.

We investigate the performance of full density based Lévy-SRM and Lévy-ES risk measures, and compare 
the results to the tail density-based EV-SRM and EV-ES. To the best of our knowledge, this is the first 
paper to apply full density-based Lévy-SRM and Lévy-ES risk measures to international futures markets.

We discuss the computational challenges that arise in the implementation of Lévy models for estimating 
the SRM. We then conduct detailed empirical analysis with international futures markets3 to determine 
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whether coverage based coherent risk measure ES and risk aversion based coherent risk measure SRM 
provide similar risk scenarios.

The Lévy approach, though mathematically elegant, comes with a major drawback, in that with few ex-
ceptions, there are no closed form formulae for risk measures. As such, even a relatively straightforward 
VaR estimation is difficult to implement. As the risk measures ES and SRM are compounded versions 
of VaR, their implementation is even more difficult. Our approach follows a procedure of fixing the tail 
as applied in EV calibration followed by calculation of ES and SRM. We then use the Lévy models from 
generalized hyperbolic class with calibration based on the entire data and calculate ES and SRM for 
these models.

The paper is structured as follows. Section 1 briefly describes the Lévy and EV frameworks. Section 
2 provides the initial data analysis. In section 3 we discuss conceptual matters regarding estimation 
and bootstrapping of ES and SRM. In Section 4, we discuss goodness of fit under Lévy and EV models. 
Section 5 presents the analysis of estimates of ES and Lévy-SRM models. Section 6 describes the empiri-
cal findings. Last section concludes the paper.

4 The theory of Lévy processes can be found in Bertoin (1996), Sato (1999), and Kyprianou (2006), amongst others.

1. CHARACTERIZATION  
IN LÉVY FRAMEWORK

The characteristic function of a stochastically con-
tinuous process starting at zero and with station-
ary independent increments can be written as

( )

{ } ( ) ( )
{ }

2 2

1,1

\ 0

2
exp ,

1

t

t

isX

X

isx

s e

s b
t ias

e isxI x dxν−
ℜ

 Φ = Ε⋅ = 
  ⋅
⋅ − +    =  

  + − −   
∫

 

(1)

for ,  0s t∈ℜ ≥  and with constants 
,  ,a b +∈ℜ ∈ℜ  where ν  is a measure defined on 

{ }\ 0ℜ  that satisfies:

( ) ( )
{ }

2

\ 0

1 .x dxν
ℜ

∧ ⋅ < ∞∫  (2)

Equation (1) is the Lévy-Khinchine representation 
of a Lévy process4. 

Given the transition density of a process on 

[ ]1 2;  ,t t  the characteristic function (1) of the con-
ditional distribution of the process at t

2
, given the 

information available at 1,t  can be obtained by a 
Fourier transform. However, the transition densi-
ty itself is sufficient for the estimation of the model 
and calculation of the risk measures. Availability 

of closed form transition density ensures that the 
underlying distribution is closed under convolution. 
However, in general, the infinite divisibility of Lévy 
processes can be used to obtain the conditional char-
acteristics of the process on an interval of length :t

( ) ( )
1

.
t

t

X Xs s Φ = Φ   (3)

Thus, an inverse Fourier transform on any time scale 
can be used to numerically obtain the transition 
density from the characteristic function (1) with the 
Lévy measure of the process. The numerical transi-
tion densities can then be used to estimate the risk 
measure under different model assumptions.

In this paper, our interest is limited to those mem-
bers of the generalized hyperbolic (GH) family 
of Lévy processes that have been widely used in 
financial modeling. The Lévy process has exten-
sively been used in option analysis (German, 2002; 
Fajardo, 2015; Fajardo & Mordecki, 2006, 2014; 
Fuse & Meucci, 2008; Wong & Guan, 2011). Kim 
et al. (2008) use exponential Lévy market models 
and construct a new GARCH model that incorpo -
rates volatility clustering, fat tails, and skewness 
to estimate the parameters for the S&P 500 
index and examine the out-of-sample forecasting 
performance for the GARCH models for the S&P 
500 option prices. A GH family of Lévy processes 
was originally introduced to model grain-size dis-
tribution of wind-blown sands (Barndorff, 1977). 
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Later Eberlein and Prause (2002) and Prause (1999) 
studied the whole family of GH distributions as a 
tool to model log-returns of financial assets. Some 
of its subclasses were separately studied in a finan-
cial context. Eberlein and Keller (1995), Bingham 
and Kiesel (2001) studied the hyperbolic distribu-
tion (HYP) and Barndorff (1995) applied the normal 
inverse Gaussian (NIG) to financial data. Eberlien 
and Hammerstein (2002) provide a complete and 
useful overview of limiting cases for this rich fam-
ily of processes. We focus on a subclass of Lévy 
processes – variance gamma (VG), normal inverse 
Gaussian (NIG), hyperbolic distribution (HYP) 
and generalized hyperbolic (GH)5. Restricting our-
selves to the subclasses of variance gamma (VG), 
normal inverse Gaussian (NIG), hyperbolic (HYP) 
and generalized hyperbolic (GH) allows us to ob-
tain either the transition densities across time for 
processes closed under convolution, or at least the 
densities at time 1,t =  for those which are not 
closed under convolution. Furthermore, in our 
empirical section, authors use daily return data 
for the indices under consideration and maintain 
a time scale in days, so that 1t =  in equation (3), 
which ensures that we are not required to use any 
inversion to obtain the transition densities numeri-
cally even when the underlying distribution is not 
closed under convolution.

Let, 
1 1log( / )t tX S S+=  for any non-negative in-

teger t  and characterized by the Lévy-Khintchine 
formula in equation (1). For our models, the equiv-
alent processes are given more effectively by their 
densities.

For variance gamma:
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5 Variance gamma (VG), normal inverse Gaussian (NIG) and hyperbolic distribution (HYP) are restricted versions of a GH model. So, 
though GH contains the other models, authors are interested to see the effect of full flexibility and selected restrictions for this family of 
processes. For this reason, we keep the GH model itself alongside its restricted versions.

Here IΚ  is the modified Bessel function of the 
third kind with index .I

For normal inverse Gaussian:
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For hyperbolic:
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and for generalized hyperbolic (GH):
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(7)

The availability of closed form densities makes it 
easier to obtain the standard errors of each pa-
rameter through Fisher’s information matrix.

The competing approach to Lévy idea for this pa-
per is the extreme value (EV) model, which incor-
porates only extreme returns in calibration. As 
explained in Dowd (2005), and subsequently as 
applied in Cotter and Dowd (2006), perhaps the 
most elegant approach to such objectives is to uti-
lize the peaks-over-threshold (POT). The essence 
of the POT approach lies in the fact that as the 
threshold u  becomes larger, the distribution of 
exceedances converge to a two parameter general-
ized Pareto (GP) distribution:

( )

1

,

1 1  if 0,

1 exp  if 0,

x

GP x

x

ξ

ξ β

ξ ξ
β

ξ
β

−
  − + ≥   = 

  
− − <  

 

 (8)
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where

[ )0,   if 0,

0,   if 0.
x

ξ

β ξ
ξ

 ∞ ≥
∈ −

< 
 

 (9)

The parameters ξ  and 0β >  are, respectively, 
shape and scale parameters, contingent upon the 
threshold .u

2. INITIAL DATA ANALYSIS

Our analysis is based on future contracts return da-
ta. More specifically, we study the returns based on 
the heavily traded S&P 500, FTSE100, DAX, Hang 
Seng and Nikkei 225 indices for the period from 
January 1, 1991 to December 31, 2003 collected from 
Datastream. The data refer to futures contracts that 
expire in the following trading months and rollover 
from one expiring contract to the next one at the start 
of each trading month. When dealing with bank 
holidays, Data stream considers padding the dataset 
and takes the bank holidays end-of-day price to be 
the previous trading day’s end-of-day price. Thus, we 
have the same number of daily returns for all con-
tracts (3,392). Our selection of data and sample pe-
riod is intentional so that we can compare the results 
with Cotter and Dowd (2006) who use same data 
and sample period for EV-ES and EV-SRM models. 

Figures 1 to 5 (see Appendix) show the extreme 
patterns in each futures return. The cut-off point 

in each extreme tail plot is selected according 
to the extreme value theory and is discussed in 
Cotter and Dowd (2006). Clearly, the extents of 
extremity in return corresponding to various in-
dexes are different and the visual goodness-of-fit 
of various models, both tail-based and full densi-
ty-based, are also clearly distinct. 

In Table 1, we replicate the unconditional maxi-
mum likelihood estimates of futures indexes of 
the generalized Pareto (GP) distribution of Cotter 
and Dowd (2006), which provides a good fit to the 
data both for long and short positions. The tail in-
dices are positive except for the Nikkei 225 and 
the estimated scale parameters fluctuate around 1. 
Table 1 also provides assumed thresholds ,u  the 
associated number of exceedances ( )uN  and the 
observed exceedance probabilities (Prob). While 
the numbers and probabilities of exceedances 
change, the assumed thresholds are in the stable 
tail-index regions based on the tail index plots.

The tail-based calibration provides significantly dif-
ferent estimates for long and short positions for the 
extreme value GP model, as it makes use of only 
tail observations. For tail based EV when the left 
skewed density become right skewed, the tail obser-
vations for long and short positions could be signifi-
cantly different in numbers and hence significantly 
affect the estimates. As a result, we find tail asym-
metry of long and short positions under an extreme 
value model in Table 1. Evidently, the same cut-off 

Table 1. Generalized Pareto distribution (GDP) parameter estimates for futures indexes
Index Position Threshold

 ( )u  
Prob uN Scale

 ( )β  Tail ( )ξ  

S&P 500
Long 2 0.040 130 0.604

(0.079)
0.182

(0.099)

Short 2 0.035 118 0.759
(0.130)

0.127
(0.146)

FTSE100
Long 1.5 0.077 250 0.707

(0.074) 
0.097

(0.084)

Short 1.5 0.085 276 0.727
(0.065) 

0.022
(0.067)

DAX
Long 2 0.072 235 1.190

(0.099)
0.012

(0.052)

Short 2 0.072 237 1.000
(0.097)

0.048
(0.072)

Hang Seng
Long 2 0.111 353 1.184

(0.096)
0.127

(0.062)

Short 2 0.116 367 1.148
(0.086)

0.143
(0.055)

Nikkei 225
Long 2 0.088 277 0.891

(0.074)
–0.012
(0.058)

Short 2 0.081 255 1.045
(0.085)

–0.068
(0.052)

Notes: Unconditional maximum likelihood estimates of the GPD parameters for long and short futures positions are based 
on daily % returns. Sample size 3392,n =  threshold is ,u  probability of an observation in excess of u  is Prob, number of 
exceedances in excess of u  is ,uN  estimated tale parameter is ξ  and estimated scale parameter is .β  Estimated standard 
errors of the parameters are in brackets. Thresholds are chosen as the approximate points where QQ plots change slope. 
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point maintains a different number of left-alone ob-
servations on the tails for long and short positions, 
and this causes the parameter estimates to differ for 
different positions under EV models.

In contrast, Lévy based calibration makes use of 
the complete data of short and long positions caus-
ing the densities to be reflected along the y-axis, 
and long and short positions just alter the sign of the 
parameter characterizing the skewness of the model. 
Thus, while a particular model, for example, VG with 
a long position gives a left skewed density, the shape 
of the density remains the same but becomes right 
skewed for a short position. Long and short positions 
thereby correspond to a sign change of the skewness 
characterizing parameter. Only the return vector, 
which is used in estimation for a long position gets 
multiplied by (–1) before being used in estimation 

6 In relation to all the models, it can be said that under turbulent market conditions, investment with a short position is riskier than 
investment with a long position.

corresponding to a short position. The net effect is 
that the estimated density gets reflected along the y-
axis. As a result, only the skewness controlling pa-
rameter has the sign change corresponding to long 
and short positions6. Table 2 presents the conditional 
maximum likelihood estimate of parameters for all 
five indexes for the four separate Lévy models. We 
report only the estimates of long positions for the 
brevity in the table. The skewness parameter is θ for 
VG, β for NIG, HYP and GH models. For short posi -
tions, this parameter is negative.

While the tail masses for observations in excess 
of thresholds are observed to be different for EV 
and Lévy models, different Lévy models that cor-
respond to the same threshold, the tail masses ex-
hibit further differences. These differences possibly 
explain how different Lévy models feed informa-

Table 2. Conditional maximum likelihood estimates for futures indexes

Panel A: variance gamma (VA)

Index u  Prob σ θ  ν  

S&P 500 2 0.03 1.09 (0.02) –0.04 (0.02) 0.83 (0.06)

FTSE100 1.5 0.08 1.16 (0.02) –0.02 (0.02) 0.47 (0.05)

DAX 2 0.08 1.51 (0.03) –0.03 (0.03) 0.74 (0.05)

Hang Seng 2 0.11 1.91 (0.03) –0.05 (0.03) 0.81(0.05)

Nikkei 225 2 0.09 1.53 (0.02) 0.03 (0.03) 0.40 (0.05)

Panel B: normal inverse Gaussian (NIG)

u Prob A β δ
S&P 500 2 0.03 0.74 (0.05) –0.03 (0.02) 0.93 (0.04)

FTSE100 1.5 0.08 1.04 (0.08) –0.02 (0.02) 1.43 (0.09)

DAX 2 0.07 0.59 (0.04) –0.01 (0.01) 1.37 (0.07)

Hang Seng 2 0.11 0.43 (0.03) –0.01 (0.01) 1.62 (0.08)

Nikkei 225 2 0.09 0.91 (0.08) 0.01 (0.01) 2.14 (0.16)

Panel C: hyperbolic (HYP)

u Prob A β δ
S&P 500 2 0.03 1.34 (0.04) –0.03 (0.02) 0.24 (0.06)

FTSE100 1.5 0.08 1.48 (0.06) –0.02 (0.02) 0.88 (0.12)

DAX 2 0.08 1.00 (0.03) –0.01 (0.01) 0.49 (0.10)

Hang Seng 2 0.11 0.47 (0.11) –0.01 (0.01) 0.47 (0.11)

Nikkei 225 2 0.09 1.19 (0.06) 0.01 (0.01) 1.41 (0.20)

Panel C: generalized hyperbolic (GH)

u Prob A β δ µ
S&P 500 2 0.03 0.937 (0.18) –0.03 (0.02) 0.71 (0.20) 0.01 (0.46)

FTSE100 1.5 0.08 0.539 (0.36) –0.02 (0.02) 1.92 (0.30) –1.96 (0.85)

DAX 2 0.07 0.629 (0.16) –0.01 (0.01) 1.29 (0.31) –0.35 (0.55)
Hang Seng 2 0.11 0.347 (0.13) –0.01 (0.01) 1.87 (0.39) –0.85 (0.54)
Nikkei 225 2 0.09 1.031 (0.32) 0.01 (0.01) 1.83 (0.81) 0.15 (1.65)

Notes: Estimates of the VG, NIG, HYP and GH parameters for long futures positions are based on daily % returns. Sample size 
3392,n =  threshold is ,u  probability of an observation in excess of u  is Prob (see Schoutens, 2003). Estimated standard 

errors of the parameters are in brackets. Thresholds are chosen as the approximate points where QQ plots change slope. 
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tion from observations outside the tails in fitting 
the tails. As a result, the corresponding quantiles 
of extreme-value and Lévy models do not lie along 
a vertical line. To illustrate the differences between 
the two approaches, we use the same number of tail 
observations and compare the QQ plot of EV with 
each of the Lévy models separately as illustrated in 
Figures 1 to 5. 

At the very extreme tail, there is a clear evidence 
of deviation between EV and Lévy quantiles, and 
this deviation is smaller for EV in most cases. 
Specifically, EV provides a better fit for S&P 500, 
FTSE100, DAX, Hang Seng. Furthermore, for these 
indices, we see that NIG and GH provide a better fit 
on the tail than is the case for VG and HYP models. 
However, for the Nikkei 225, we observe the oppo-
site feature. A close look reveals that while S&P 500, 
FTSE100, DAX, and Hang Seng indices show a 
greater fall in price than for a rise, Nikkei 225 shows 
a greater rise in price than a fall during the sample 
period. To visualize tail fits of the models, we pres-
ent the generalized Pareto EV tail with each of our 
considered Lévy models separately. 

Figures 1 to 5 show the tails for S&P 500, FTSE100, 
DAX, Hang Seng and Nikkei 225, respectively. We 
obtain the EV quantiles in excess of thresholds 
and then obtain the corresponding quantiles from 
the Lévy models. In other words, we do not fix the 
tail mass, but instead fix the thresholds. The con-
sequence is that some of the Lévy quantiles closed 
to EV thresholds are, in fact, somewhat less than 
the thresholds in magnitude. This means that the 
Lévy tails are slightly fatter than the EV tails. This, 
in turn, explains the difference in tail masses cov-
ered by EV and Lévy models as reported in Tables 
1 and 2.

3. ESTIMATION OF RISK 
MEASURES:METHODOLOGY 
AND PERFORMANCE

Apart from few specific cases, VaR in general is 
obtained as the solution of the quantile-integral 
equation:

( )
min

0,
VaR

x
f u du α⋅ − =∫  (10)

where α  is the coverage level.

As in the GP model, the significantly high thα  
quantile, which is also VaR at a high confidence 
level ,α  is given by:

( ) 1
u

n
VaR u

N

ξ
βα α
ξ

−   = + ⋅ −  
   

 (11)

and the expected shortfall (ES) with a coverage to 
the level of α  is:

( ) ( )
.

1 1

gp
VaR u

ES
α β ξα
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−
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− −
 (12)

In equation (11), n  is the total number of observa-
tions and uN  is the number of observations which 
exceeds the threshold .u  Expected shortfall (ES) 
is estimated using the following equation:
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Variance gamma ES model can then be obtained 
from the equation:
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The ES formula for other Lévy models can also 
be obtained by considering other densities from 
section 1.

Spectral risk measures, however, do not rely on any 
particular confidence level. Instead, given a param-
eter characterizing the degree of investors’ risk aver-
sion, they consider the entire spectrum of losses. For 
our benchmark EV model, the closed form VaR 
formula provides a relatively simpler expression for 
SRM:

( )
( )1 1

0

Re

1

1 .

R

gp

R

u

M R
e

n
u dx

N

α

φ

ξ
β α
ξ

− −

−

−

= ×
−

     × + ⋅ − ⋅  
     

∫
 (16)

In the case of Lévy models, however, computation 
of SRM is very time consuming in regard to the 
closed form VaR measure:

( )
( )

( )
1 1

0

Re
.

1

R

R
M R VaR u du

e

α

φ

− −

−= ⋅ ⋅
−∫  (17)

The variance gamma SRM model can, then, be ob-
tained from the equation:

The SRM estimates of other Lévy models can be ob-
tained by considering respective densities in equa-
tion (18). The φ  symbolizes that the SRM is calcu-
lated using the exponential risk aversion function

 ( )
( )1

Re
.

1

R p

R
R

e
φ

−

−=
−

7 Even with 100 resampling, we find that a machine sophisticated configuration takes several hours to provide the SE and CI for ES from 
a Lévy model, corresponding to a confidence level. The same is true for SRM with each particular choice of risk aversion parameter. 
However, as Cotter (2006) reports, SE and CI with 5000 resampling for an EV model – which has closed form expressions both for VaR 
and ES and where closed form VaR allows SRM to be calculated equally well in seconds – determines that the difference between 100 and 
5000 resampling is not significant between VaR and ES. However, in case of SRM, the difference is enormous. This is because, in addition 
to considering a small number of resampling, we evaluate the integral in SRM by considering only 100 slices. This makes the estimation 
performance of SRM comparable only between Lévy models.

The parametric bootstrap is applied to obtain the 
standard errors (SE) and confidence intervals (CI) 
of each risk measure. However, as we are dealing 
with Lévy models, which have no closed form ex-
pressions for risk measures, it is infeasible to use 
bootstraps with a large number of resampling. For 
each resample we draw the same number of uni-
form (0.1) random numbers as sample size and af-
ter sorting them in ascending order, we find the 
relevant quantile corresponding to the coverage 
level. This quantile is then used as the bootstrap 
coverage level, corresponding to which we obtain 
the VaR and ES as given by equations (10) and (14). 
Since, for a given bootstrap coverage level, this 
VaR equation needs to besolved numerically, the 
corresponding ES equation takes a long time to 
find a converging value. This is because any nu-
merical scheme applied to obtain the ES searches 
the converging value by evaluating the integrand 
‘vector byvector’ and for each element of a vector 
the VaR needs to be obtained as a solution of the 
quantile integral equation (10). Bootstrapped VaR 
and ES vary because of the variation in the boot-
strapped confidence level. Thus, since SRM does 
not depend on any particular confidence level, in 
order to obtain bootstrapped estimates of SRM, 
we need to randomize the whole spectrum. We 
thus need to approximate the integral in (20) by 
slicing the spectrum (due to the fact that random-
ization of the integral often fails to converge under 
numerical schemes, such as the one used by the 
MATLAB function ‘quadl’). Thus, authors restrict 
ourselves to bootstrapping with 100 resampling7.
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4. GOODNESS-OF-FIT TESTS

The Anderson-Darling (AD) test is particular-
ly suitable in assessing the performance of tail 
based risk management models for goodness-
of-fit8. Anderson and Darling (1952, 1954) pro-
posed a weighing rule in a distance based on 
Kolmogorov-Smirnov test, which puts more em-
phasis on the tail observations. Anna, Rachev, 
and Fabozzi (2005) provide a formula for an AD 
test statistic when observations are only avail-
able at the extreme tail and the distribution of 
the complete sample is unknown. It is referred 
to as the Anderson-Darling test for left-truncat-
ed data. This scenario applies precisely to an EV 
model. For Lévy models that require complete 
distributions with closed form densities, the p-
values of AD-test can be obtained analytically 
either by Monte Carlo simulation or bootstrap-
ping. We carry out bootstrapping with 1,000 
resampling to obtain the p-value. The test statis-
tics are denoted as AD and 2

eAD ν  for Lévy and 
EV models, respectively:

( )( ) ( )( )
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1

1

2 1

log log 1 ,
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i N i

i
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=

+ −

−
= − − ×

 × + − 

∑
 (19)

8 Other GOF tests such as a Chi-square test are not comparable for Lévy models on complete data or on an EV model on left truncated 
incomplete data.
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where u  is the level of truncation and 
jx  is 

the 
thj  observed value of the order statistic 

1 2 ... nX X X≤ ≤ ≤  and n  is the total number of 
observations available on the tail.

We report the goodness-of-fit statistics in Table 3 us-
ing an AD and eAD ν  test statistic. Though an AD 
test utilizes the entire dataset, the test puts more 
weight on tail observations. Thus, both AD and 

eAD ν  are more informative regarding tail fit while 
hardly providing any information regarding the 
density fit far from the tail. Table 3 shows that both 
EV and full density Lévy models perform well on 
the tail, with EV appearing more reliable when tail 
fit alone is concerned. However, the fact that AD and 

eAD ν  provide hardly any information regarding the 
fit far from the tails explains why models with bet-
ter tail-fits fail to give any information regarding the 
quantification of risk measures that use quantiles far 
from tails for SRM models. This is demonstrated by 
the results in Table 4.

Table 3. Anderson-Darling and left-truncated Anderson-Darling goodness-of-fit tests

Index Model AD-stat 1% CV 5% CV 10% CV -valuep

S&P 500

EV 0.25 2.95* 1.87* 1.49* 0.98
VG 1.65 2.89* 1.73* 1.22 0.06
NIG 1.50 3.00* 1.69* 1.18 0.06
HYP 1.53 2.90* 1.72* 1.21 0.07
GH 1.46 2.99* 1.71* 1.19 0.07

FTSE100

EV 0.74 3.10* 1.81* 1.32* 0.78
VG 0.65 2.97* 1.88* 1.37* 0.25
NIG 0.35 3.03* 1.86* 1.35* 0.35
HYP 0.47 2.99* 1.87* 1.37* 0.31
GH 0.24 3.03* 1.84* 1.35* 0.40

DAC

EV 1.01 4.38* 2.44* 1.62* 0.65
VG 1.41 3.97* 2.41* 1.72* 0.14
NIG 1.09 4.12* 2.36* 1.67* 0.18
HYP 1.24 4.00* 2.40* 1.71* 0.16
GH 1.09 4.12* 2.37* 1.67* 0.18

Hang Seng

EV 1.32 5.30* 2.97* 2.10* 0.68
VG 0.71 5.06* 3.04* 2.15* 0.30
NIG 0.50 5.29* 2.98* 2.08* 0.35
HYP 0.57 5.08* 3.03* 2.14* 0.33
GH 0.54 5.29* 2.95* 2.07* 0.34

Nikkei 225

EV 0.80 3.89* 2.47* 1.86* 0.73
VG 0.72 3.99* 2.54* 1.88* 0.30
NIG 0.63 4.00* 2.52* 1.86* 0.32
HYP 0.65 3.98* 2.53* 1.87* 0.32
GH 0.64 3.99* 2.52* 1.87* 0.32

Note: Anderson-Darling and left-truncated Anderson-Darling tests for Lévy and EV models, respectively. The -valuep  for 
left-truncated Anderson-Darling test is obtained by bootstrapping with 1000 resampling. (*) implies that the model survives the 
test to the corresponding significance level.
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Table 4. Estimates of ES and Lévy spectral risk measures for futures position 

Index Risk measure

ES SRM

0.99α =
( )20R =  

0.995α =
( )100R =

0.999α =
( )200R =  

0.99α =
( )20R =

0.995α =
( )100R =

0.999α =
( )200R =

S&P 500

Empirical 3.902 4.613 7.246 2.265 3.685 4.476

GP 3.862 (0.162)
[0.935 1.070]

4.559 (0.237)
[0.905 1.093]

6.558 (0.802)
[0.804 1.175]

2.251 (0.153)
[0.898 1.097]

3.288 (0.508)
[0.781 1.259]

3.703 (0.773)
[0.690 1.292]

VG 3.604(0.121)
[0.948 1.052]

4.099(0.160)
[0.943 1.073]

5.243(0.313)
[0.904 1.111]

2.274(0.952)
[0.365 2.007]

3.484(3.256)
[0.063 2.819]

4.001(5.080)
[0.005 3.333]

NIG 3.920(0.155)
[0.939 1.061]

4.569(0.214)
[0.932 1.087]

6.154(0.445)
[0.885 1.136]

2.353(1.056)
[0.409 1.802]

3.818(3.699)
[0.057 2.832]

4.500(5.899)
[0.004 3.590]

HYP 3.634(0.122)
[0.954 1.064]

4.141(0.164)
[0.942 1.073]

5.318(0.321)
[0.903 1.113]

2.282(0.973)
[0.431 1.731]

3.518(3.297)
[0.005 3.358]

4.049(5.155)
[0.005 3.358]

GH 3.843(0.142)
[0.949 1.071]

4.440(0.195)
[0.936 1.082]

5.868(0.395)
[0.892 1.126]

2.338(1.031)
[0.416 1.764]

3.729(3.567)
[0.059 2.831]

4.358(5.644)
[0.004 3.525]

FTSE 100

Empirical 4.018 4.532 5.590 2.338 3.739 4.377

GP 4.009(0.163)
[0.940 1.071]

4.689(0.259)
 [0.929 1.089]

6.459(0.666)
[0.849 1.176]

2.234(0.147)
[0.889 1.113]

3.415(0.551)
 [0.766 1.232]

3.848(0.808)
[0.699 1.323]

VG 3.617(0.109)
[0.953 1.052]

4.062(0.143)
[0.925 1.053]

5.078(0.326)
[0.904 1.102]

2.319(0.803)
[0.529 1.685]

3.423(3.147)
[0.067 2.738]

3.881(4.864)
[0.005 3.217]

NIG 3.782(0.127)
[0.948 1.058]

4.309(0.172)
[0.916 1.060]

5.565(0.414)
[0.889 1.118]

2.352(0.832)
[0.521 1.701]

3.574(3.349)
[0.063 2.824]

4.112(5.245)
[0.005 3.403]

HYP 3.679(0.115)
[0.951 1.054]

4.153(0.153)
[0.922 1.056]

5.249(0.359)
[0.893 1.119]

2.331(0.814)
[0.525 1.694]

3.478(2.924)
[0.052 2.567]

3.964(4.998)
[0.005 3.279]

GH 3.865(0.140)
[0.944 1.062]

4.462(0.197)
[0.908 1.067]

5.966(0.523)
[0.866 1.156]

2.363(0.846)
[0.518 1.708]

3.658(3.217)
[0.049 2.616]

4.262(5.539)
[0.004 3.597]

DAX

Empirical 5.511 6.330 9.738 3.185 5.219 6.276

GP 5.563(0.212)
[0.939 1.063]

6.421(0.276)
[0.919 1.076]

8.441(0.691)
[0.858 1.116]

3.035(0.218)
[0.889 1.103]

4.761(0.684)
[0.787 1.249]

5.336(1.036)
[0.692 1.255]

VG 4.922(0.160)
[0.949 1.056]

5.579(0.212)
[0.919 1.057]

7.096(0.411)
[0.907 1.108]

3.072(1.292)
[0.438 1.723]

4.668(3.866)
[0.104 2.434]

5.345(5.831)
[0.012 3.374]

NIG 5.328(0.204)
[0.941 1.066]

6.179(0.279)
[0.905 1.069]

8.248(0.581)
[0.888 1.132]

3.162(1.398)
[0.417 1.776]

5.055(4.388)
[0.096 2.481]

5.925(6.665)
[0.011 3.447]

HYP 4.994(0.167)
[0.948 1.058]

5.680(0.222)
[0.917 1.059]

7.273(0.433)
[0.904 1.111]

3.088(1.310)
[0.434 1.727]

4.733(3.947)
[0.103 2.441]

5.440(5.962)
[0.012 3.388]

GH 5.300(0.199)
[0.942 1.065]

6.133(0.272)
[0.907 1.067]

8.141(0.560)
[0.890 1.129]

3.158(1.390)
[0.418 1.766]

5.027(4.341)
[0.097 2.476]]

5.879(6.591)
[0.011 3.441]
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Table 4 (cont.). Estimates of ES and Lévy spectral risk measures for futures position

Index Risk measure

ES SRM

0.99α =
( )20R =  

0.995α =
( )100R =

0.999α =
( )200R =  

0.99α =
( )20R =

0.995α =
( )100R =

0.999α =
( )200R =

Hang Seng

Empirical 7.099 8.454 11.791 3.974 6.682 8.169

GP 7.056(0.296)
[0.932 1.079]

8.379(0.515)
[0.916 1.114]

11.939(1.156)
[0.818 1.154]

3.757(0.253)
[0.899 1.110]

5.943(1.026)
[0.749 1.256]

6.781(1.779)
[0.685 1.346]

VG 6.302(0.209)
[0.948 1.057]

7.169(0.280)
[0.918 1.059]

9.221(0.697)
[0.889 1.120]

3.919(1.659)
[0.435 1.727]

5.995(4.984)
[0.103 2.438]

6.879(7.524)
[[0.012 3.382]

NIG 6.906(0.289)
[0.942 1.066] 

8.048(0.395)
[0.922 1.073] 

10.835(0.989)
[0.846 1.133]

4.059(1.820)
[0.409 1.800]

6.581(5.769)
[0.094 2.491]

7.754(8.777)
[0.010 3.459]

HYP 6.359(0.214)
[0.948 1.058]

7.243(0.286)
[0.917 1.059]

9.294(0.666)
[0.893 1.113]

3.937(1.678)
[0.431 1.730]

6.064(5.067)
[0.102 2.444]

6.978(7.658)
[0.011 3.393]

GH 6.997(0.306)
[0.939 1.069]

8.215(0.424)
[0.918 1.077]

11.266(1.102)
[0.837 1.143]

4.068(1.848)
[0.405 1.832]

6.678(5.957)
[0.010 3.480]

7.927(9.069)
[0.010 3.480]

Nikkei 225

Empirical 4.856 5.536 6.614 3.009 4.535 5.289

GP 4.706(0.153)
[0.951 1.060]

5.299(0.200)
[0.938 1.055]

6.657(0.466)
[0.892 1.101]

2.892(0.206)
[0.876 1.095]

4.118(0.578)
[0.772 1.243]

4.500(0.946)
[0.693 1.339]

VG 4.769(0.139)
[0.955 1.050]

5.336(0.182)
[0.928 1.051]

6.622(0.345)
[0.916 1.097]

2.944(1.015)
[0.532 1.679]

4.317(2.889)
[0.049 2.576]

4.882(5.787)
[0.003 3.370]

NIG 4.926(0.157)
[0.951 1.055]

5.574(0.210)
[0.921 1.057]

7.098(0.500)
[0.895 1.112]

2.963(1.246)
[0.396 1.692]

4.427(4.112)
[0.065 2.797]

5.058(5.983)
[0.010 3.058]

HYP 4.857(0.148)
[0.953 1.052]

5.463(0.195)
[0.948 1.066]

6.861(0.457)
[0.896 1.117]

2.956(1.134)
[0.486 1.665]

4.380(3.435)
[0.045 2.382]

4.979(6.260)
[0.005 3.255]

GH 4.901(0.153)
[0.952 1.054]

5.531(0.204)
[0.922 1.056]

6.997(0.478)
[0.898 1.108]

2.962(1.241)
[0.397 1.689]

4.411(4.084)
[0.066 2.779]

5.029(5.917)
[0.010 3.032]

Note: Estimates in daily % return terms based on the parameter values shown in Tables 1 and 2, where α is the confidence interval used for GP, and R is the absolute risk aversion used for 
Lévy models. The holding period is 1 day. SE’s are reported besides each estimate and 90% normalized (by means of bootstrapped estimates) confidence intervals are reported right below. The 
parameters used are those obtained through calibrations. Most appropriate ES estimate is reported in bold; and the most appropriate SRM estimate is in bold and italic.
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5. ESTIMATES OF ES  
AND LÉVY SRM

In this section, authors attempt to discuss and 
compare the estimates of ES and SRM that are 
based on GP and four chosen Lévy models. The 
calibrated parameters for each are as in Table 
4. The ES risk measure is based on a high confi-
dence level and the SRM risk measure is based on 
a large risk aversion parameter. We consider con-
fidence interval α  to be 0.99, 0.995, and 0.999 for 
ES, and the coefficient of absolute risk measure R  
to be 20, 100, and 200. Thus, both the risk mea-
sures cater for high trading losses due to extreme 
events. Across all models, ES estimates are larger 
than SRM estimates. Furthermore, across all the 
models and indices, both ES and SRM behave in 
a similar manner. The estimates of risk measures 
increase as the confidence levels and the absolute 
risk coefficients get larger. For all indices, both the 
risk measures are approximately of the same order 
of magnitude across the empirical estimates.

We now focus on the precision of the risk esti-
mates. For the GP model, SRM standard errors are 
often higher than those of ES (clearly at higher risk 
levels) for all indices. Thus, we could argue that 
for GP model, ES estimation is more precise than 
that of SRM. Further, we note that ES estimates 
have higher coefficients of variation (estimated 
risk measure divided by standard error) for GP 
model than SRM estimates. This further suggests 
that GP-SRM estimation is more precise than that 
of ES estimation.

In Table 4, bootstrapped estimates of the 90% con-
fidence interval for both the risk measures are in-
cluded. For GP models across all the indices, these 
confidence intervals are narrower for ES estimates 
than those for SRM estimates, suggesting that risk 
exposures of ES are estimated more precisely, in 
general, for the GP model across indexes than is 
the case for the SRM. Furthermore, we also find 
that the estimated confidence intervals are sym-
metric for low confidence levels. However, at high-
er risk levels, confidence levels are asymmetric 
with the right bound further away from the mean 
of the bootstrapped estimates. Cotter and Dowd 
(2006) also find that EV-ES standard errors are 
higher than the VaRs and that VaR is estimated 
more precisely than the ES. However, the EV-ES 

has higher coefficients of variation than the VaRs 
suggesting that the ES is more precisely estimated. 
Similarly, the SRM estimates are less precise than 
VaR or ES estimates. We find that the ES estimates 
for four Lévy models across all the indices have 
narrower confidence intervals. Thus, the ES esti-
mation, in general, based on Lévy models is more 
precise than that of GP.

Finally, the standardized confidence intervals 
for the SRM estimates are similar across differ-
ent positions, but increase with the risk aversion 
parameters. Similar to ES, the confidence inter-
vals for very high R  value display asymmetry. 
Furthermore, the SRM estimates have consider-
ably wider confidence intervals than ES. Thus, 
the SRM estimation is less precise than that of ES. 
This discrepancy can be explained by the sample 
size. If we have n  observations in the tail, the ES 
make use of these observations only. The SRM es-
timator, on the other hand, makes use of all obser-
vations and places considerable weight on a small 
subset of these tail observations and thus effec-
tively uses a smaller sample size (Cotter & Dowd, 
2005). Unfortunately, authors cannot investigate 
similar precision issues for Lévy models and/or 
between Lévy and GP models. This is because we 
do not have analytic formulae for either of the 
Lévy coherent risk measures, and subjective nu-
merical implementations are not comparable with 
analytic implementations.

6. DISCUSSION

Full density-based Lévy models are considered for 
estimating the tail-based coherent risk measure ES 
(with coverage level as parameter) and entire dis-
tribution-based coherent risk measure SRM (with 
degree of risk aversion R  as parameter), alongside 
the estimation of ES and SRM for a tail targeting 
EV model. Our findings reveal that between the 
approaches (Lévy and EV), neither is comprehen-
sively superior to the other. 

In Table 5, we report the frequency of significant 
EV and Levy estimates presented in Table 4. We 
have 15 SRM estimates of risk under two types 
of risk models (EV and Lévy), which are the es-
timates across all five indexes and three cover-
age levels under consideration. Similarly there 



373

Investment Management and Financial Innovations, Volume 14, Issue 3, 2017

are 15 ES estimates. Among 15 ES estimates, the 
EV model provides 8 most favorable estimates. 
We have found 7 Lévy-ES and 15 Lévy-SRM es-
timates that are significant. Among 15 Lévy-SRM 
estimates, 11 estimates are closer to respective em-
pirical values. Among the Lévy models, however, 
the NIG (4 out of 11) and GH (6 out of 11) models 
provide much more closer estimates in the sense 
of minimum absolute deviation from empirical 
values compared to the VG and HYP (1 out of 
11) Lévy-SRM models. This is consistent with the 
evidence for derivative pricing (Schouten, 2003). 
Eberlein and Prouse (2002) also find that the VaR 
computed parametrically for the GH distribution 
is closer to the empirically observed Value-at-Risk. 
This is due to the fact that a fully flexible GH mod-
el estimates the quantiles more consistently than 
its restricted versions. Among the restricted ver-
sions, however, the restriction effect is minimal for 
NIG characterization. Among the Lévy-ES mod-
els, 3 out of 7 favorable estimates belong to the 
NIG model and 2 out of 7 to the GH model. For 
the remaining 2 favorable estimates, one belongs 
to the VG and one to the HYP model. Thus, the as-
sumption that a tail-targeting model is more likely 
to provide superior consistent estimates for tail-
based ES is empirically disputed. However, while 
we cannot say that a particular full density Lévy 
model is superior for all ranges of the data, we also 
cannot say that the tail density EV model is ad-
equate for all ranges of data. Given such similarity 
of estimation performances under both approach-
es, the choice is likely to be driven by a compro-
mise between simplicity and adequacy. 

The Anderson-Darling test emphasizes the fit on 
the tail. The outcome is that a quantile mismatch 

outside the tail is hardly detected by a left-truncat-
ed version of the AD test applied to the tail-based 
EV model. The EV model might have some prefer-
ence over Lévy models based on AD test results in 
Table 3. However, we note that the AD test statis-
tics are based on a tail quantile match of EV and 
bear no information regarding the quantile match 
outside the tail. For this reason, an AD test value 
of a solely tail-based model can be deceptive when 
compared with the AD test value of an entire dis-
tribution-based Lévy model. Furthermore, such 
deception cannot be adequately detected by a tail 
emphasized goodness of fit test. As a result, the 
seemingly preferable EV model does not always 
give us the most ‘adequate’ (in the sense of clos-
est to empirical values) estimates of risk measures 
of ES.

We find that the extreme value model of ES out 
performs Lévy models in terms of precision. This 
is in spite of the fact that the Lévy densities are 
calibrated on the entire data set and the EV mod-
els are calibrated using only the extreme observa-
tions. Thus, the tail-based risk measures of ES per-
form better if the model is calibrated on the tail 
alone. Additionally, SRM apparently incorporates 
all quantiles with corresponding probability mass 
spread on the entire spectrum. When compared 
to empirical values, the SRMs of Lévy models of-
ten outperform those of the EV model. To explain 
this feature, we note that SRM is not a tail based 
risk measure, whereas EV parameters are calibrat-
ed using only extreme quantiles. We observe that 
such a calibration could yield misleading quan-
tiles, especially when outcomes fall in the most ex-
treme end of the opposite tail. On the other hand, 
Lévy models that consider the entire data set in 

Table 5. Frequency distribution of significant estimates of ES and Lévy spectral risk measures

Extreme value models
Total

Lévy models Total

ES SRM ES SRM

GP 8 (15) 0 (15) 8(30) – – –

VG – – – 1 (15) 1 (15) 2 (30)

NIG – – – 3 (15) 6 (15) 9 (30)

HYP – – – 1 (15) 2 (15) 3 (30)

GH – – – 2 (15) 6 (15) 8 (30)

Total 8 0 – 7 15 22 

Note: This table reports the number of significant estimates found in Tables 4 to 8. Numbers in parentheses are total number of 
estimates. 
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calibration are expected to generate consistent val-
ues of quantiles far from the extreme tail9.

The practical implication of our findings is that 
portfolio managers or hedge fund managers 
should consider Lévy SRM models, as they pro-
vide the opportunity to choose appropriate risk 
aversion parameters to determine the expected 
loss in the event of market turmoil. In addition, 
the SRMs of Lévy models often outperform those 
of the EV model when compared to their empiri-

9 Note that we consider only 100 slices in evaluating the integrals of SRM, as is uniformly considered for all models. Cotter and Dowd 
(2006) reports the SRM for EV considering one million slices. This is almost impossible to apply for Lévy models. Even so, the Lévy SRM 
with 100 slicing for numerical integration is in general fairly comparable with their EV SRM and stands superior for the NIG and GH 
models in particular.

cal values. This becomes increasingly apparent as 
investors become more risk averse. We note that 
even though VaR is more precise than the ES risk 
measure, professional investors these days are 
more likely to use ES on account of that such mea-
sure has the benefit of coherence. Similarly, even 
though the SRM measure is less precise than the 
extreme value measure, it has the benefit of ascer-
taining investor’s risk aversion while most closely 
matching losses empirically, especially in the case 
of the Lévy-SRM. 

CONCLUSION

Authors apply various methodologies to estimate the coherent risk measures ES and SRM for Lévy mod-
els. We focus on a subclass of Lévy processes: variance gamma (VG), normal inverse Gaussian (NIG), 
hyperbolic distribution (HYP) and generalized hyperbolic (GH). On the basis of empirical evidence 
from all major indexes, our study suggests that the extreme value spectral risk measures are inadequate. 
The tail-based risk measures of ES are often found to be more consistent than those of Lévy models. 
Observations discarded by EV but incorporated by Lévy models are found not to make a significant 
improvement in the performance of tail-based risk measures. However, the EV calibration is restricted 
to the tails alone, and provides estimates of quantiles outside the fixed tails, which in turn yield poor es-
timates of the spectral risk measure itself. Lévy spectral risk measures, in contrast, often perform better 
than extreme spectral risk measures when compared with empirical values. This becomes increasingly 
apparent as investors become more risk averse. 
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APPENDIX

Figure 1. Conditional and unconditional quantiles in excess of threshold (2):  
long position in S&P 500
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Figure 2. Conditional and unconditional quantiles in excess of threshold (1.5):  
long position in FTSE 100
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long position in Nikkei 225
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