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Minimum sum regression as the optimum robust algorithm in  

the computation of financial beta 

Abstract 

In the world of finance and portfolio management, “beta” refers to the sensitivity of a security’s return to the sensitivity 

of the “market” portfolio and is an indication of the level of systematic risk, i.e. the amount of risk that a company’s 

equity shares with the entire market. Portfolio managers must have accurate estimates of beta so as to adequately con-

trol risk in the portfolio.  Typically, beta is estimated using Ordinary Least Squares, but OLS is reliant on some very 

stringent assumptions.  Here, betas are computed and compared using OLS and four robust regression algorithms.  

Minimum sum regression is identified as the superior robust regression algorithm to estimate beta. 

Keywords: financial beta, ordinary least squares, robust regression, portfolio management. 

Jel Classification: G21, G11.

Introduction 

In the world of finance and portfolio management, 

“beta” refers to the sensitivity of a security’s return to 

the sensitivity of the “market” portfolio and is an indi-

cation of the level of systematic risk, i.e., the amount 
of risk that a company’s equity shares with the entire 

market.  

Harry Markowitz [1] developed the notion of beta as 
the mathematical slope in a linear regression of com-

pany rate of return onto the market rate of return. Eqn. 

1 below displays the equation for beta which Marko-
witz described as the characteristic line. 𝑟𝑟௜  =  α + β ∗ 𝑟𝑟௠௞௧  ,                                               (1) 

where rri - rate of return for company i 

rrmkt - rate of return for market 

 - alpha, intercept 

 - beta, slope. 

The intercept  is the expected return when the market 

return is equal to 0 and the slope i is the percent 

change in the security for a one percent change in the 

market return, on average other things equal.  While 

Eqn. 1 is straightforward, the estimation of the equa-

tion is not quite so.  The conventional method to esti-

mate the security market line alpha and beta is OLS, 

i.e., ordinary least squares. OLS has important as-

sumptions that underlie the validity of the model. If 

the assumptions are violated, then, inaccurate parame-

ter estimates for  and i will be had. The usual viola-

tion is outlying observations in the y or x domain. 

Results from inaccurate betas will lead to incorrect 

portfolio construction and unanticipated portfolio 

returns. 

Fig. 1 below displays a scatterplot of rate of return for 

Bristol-Myers Squibb Company (ticker BMY) v. rate 

of return for the SP500 with five regression plots over-

laid on the data, i.e., one corresponding to OLS and 

four corresponding to four robust methods.  Notice 

that the slopes are different for each method and that 

the choice of method will influence portfolio construc-

tion, especially in the institutional context. 
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Fig. 1. Rate return BMY v rate return SP500

                                                   
 Manuel G. Russon (USA), John J. Neumann (USA), 2016. 

Manuel G. Russon, Ph.D., CFA, Associate Professor Tobin College of Business, St. John’s University, USA.  
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Beta is an important metric for portfolio manage-

ment, managerial finance and/or investment banking 

contexts.  On a casual basis, an individual retail inves-

tor can assess the expected volatility of the company’s 

equity relative to a universe benchmark by looking up 

a beta on Yahoo/Finance, brokerage house informa-

tion sites, or other free sources.  In a more formal, 

institutional asset management context, portfolio man-

ager of institutional clients, e.g. foundations, pension 

funds, mutual funds, etc. must satisfy a number of 

constraints in their portfolio management activities.  

For example, the following are some of many con-

straints imposed in the contract: 

1. Portfolio turnover - usually limited to 100%  

per year. 

2. Number of names in portfolio - usually required to 

be 50 – 100. 

3. Tracking error - usually limited to be +- 3%  

of index. 

4. Weighted Ave. Beta - usually constrained to 98-

1.02. 

All of these constraints are imposed to prevent 

excessive risk taking by the portfolio manager.  In the 

case of item 4 which constrains portfolio beta to a 

value close to 1.0, incorrect beta estimates can lead to 

unexpected volatility with concomitant issues in 

portfolio management regarding items 1-3.  

Institutional asset managers rely on betas provided by 

vendors such as Barra or Bloomberg.  But even these 

vendors need to be sure their betas accurately reflect 

reality. In a capital budgeting context, accurate betas 

are needed for estimation of cost of capital.  An 

inaccurate beta generates inaccurate cost of capital, 

and this could lead to the incorrect acceptance or 

rejection of a capital project or acquisition. 

This research examines conventional and alternative 

linear regression estimation techniques to estimate 

beta.  Specifically, OLS will be compared to four ro-

bust linear regression estimation methods, and the 

superior algorithm will be identified. 

11. Methodology 

Monthly closing prices for all SP500 constituents as of 

12/31/2015 were downloaded from Bloomberg and 

monthly returns calculated since 12/13/1980. As some 

companies are newer to the index, they have fewer 

data points than others.  Eqns. 2, 3, and 4 display the 

functional specification, population regression line and 

sample regression line to be estimated. 

rri= f(rrmkt)                                                                    (2) 

rri = +*rrmkt                                                              (3) 

rri = a+b*rrmkt                                                              (4) 

Specifically, beta coefficients, standard deviation of 

residuals and residual inter-quartile ranges for each 

company for each of the five regression methods, i.e., 

OLS, lmRobMM, ltsreg, lmsreg and ms are computed. 

The five regression methodologies are briefly 

discussed below. 

Ordinary Least Squares (OLS). OLS, developed by Sir 

Francis Galton 1894, finds the estimates for the inter-

cept and coefficients by minimizing the sum of 

squared residuals as seen in (5) below.  An advantage 

of OLS is that it is closed form and, therefore, compu-

tationally easy.  The OLS disadvantage is that parame-

ter estimates are highly influenced by outliers in the 

response and/or the explanatory variables.   

(y-(a+b*x))
2
                                                              (5) 

Robust Maximum Liklihood Estimation (lmRobMM). 

Huber introduced lmRobMM in 1973 which finds 

estimates for intercept and coefficients using maxi-

mum likelihood as the estimation method.  The me-

thod is robust to outliers in the response variable but 

not to outliers in the explanatory variables. When 

there are outliers in the explanatory variables, the me-

thod has no advantage over OLS. 

Least Median Squares (LMS).  Rousseau developed 

LMS in 1984 which replaces the sum of squared resi-

duals by the median of the squared residuals.   The 

equation is not sensitive to 50% of the data. 

Least Trim Squares (LTS).  LTS minimizes the sum 

of squared residuals over over a subset, k, of n points. 

The (n-k) points not included do not influence the 

equation. The subset, k, of observations to be included 

is determined by optimizing a loss function for the 

subset of points. 

Minimum Sum Regression (MS).  MS minimizes the 

sum of the residuals of any model or objective func-

tion specified. Not only can any linear or nonlinear 

modeled be estimated, any objective function can be 

modeled, be it minimize sum of squares, sum of abso-

lute value of residuals, sum of percent errors, or any 

other.  Eqn. 6 below minimizes the sum of the abso-

lute residuals. 

ABS(y-(a+b*x))                                                       (6) 

Five betas will be estimated for each company, one for 

each regression methodology.  The best regression 

methodology will be determined by using absolute 

measures of fit.   

2. Results 

Table 1 displays beta coefficients for regressions 

from ten large companies, a subset of the result of 

time series regressions for all SP500 constituents. 

The regression results for all 500 companies are 

contained in Appendix 1. 
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Table 1. Beta coefficients for ten large companies 

    Beta Coefficients 

        tkr     n       ols      lmRobMM   lts     lms     ms 

1     aapl   383    1.31      1.27       1.23    1.30   1.39 

2    amzn  209    1.98      1.33       1.40    1.31    1.51 

3     bmy   411    0.72      0.75       0.80    1.05    0.80 

4     csx    411    1.10      1.17       1.20    1.13    1.17 

5     dis     411    1.15      1.23       1.26    1.25    1.16 

6     fdx    411     0.89      0.96       1.12    1.13   1.03 

7     jnj      411     0.73      0.80       0.79    1.21   0.78 

8     msft   343     1.30      1.11       1.08    1.04   1.23 

9     wmt   411     0.83      1.06       0.79    0.94   0.86 

10   xom   411     0.61      0.58       0.56    0.47   0.62 

Notice that the coefficients differ substantially de-
pending on regression method.  

To compare model fits between the five algorithms, a 
common regression goodness of fit metric is needed.  
Any measure of fit involving squared deviations is not 
appropriate, as the results are highly sensitive to outly-
ing observations.  Thus, metrics such as R-squared, 
standard deviation of residuals, and the like are sus-
pect.  One metric which does NOT employ squared 
deviations, and the metric to be used here to compare 
fits, is the inter-quartile range of residuals. Table 2 
displays the regression coefficients, standard deviation 
of residuals and inter-quartile range of residuals for 
each of the five regression methods depicted in Fig. 1 
for BMY, i.e. Bristol Meyers Co. 

Table 2. Beta equations, residual standard devia-
tions and interquartile ranges for BMY 

                        a            beta            sd              iqr              skew 

ols                0.00395     0.72136     0.05667     0.07184      -0.26165 

lmRobMM    0.00473     0.75142    0.05669     0.07093        -0.25991 

lts                 0.00391     0.79557    0.05677     0.07217        -0.25614 

lms               0.00487     1.04953    0.05845      0.07073       -0.20402 

ms               -0.00093      0.79537    0.05676     0.07218       -0.25616 

Notice that the standard deviation of the residuals is 
least for OLS when comparing the five methods.  This 
should come as no surprise, as minimization of the 
standard deviation of the residuals is the objective 
function for OLS.  However, the standard deviation of 
residuals for each method is suspect, as it relies on 
squared residuals. A large residual will 
disproportionally influence beta (up or down) and 
raise the standard deviation of residuals.  The standard 
deviation is only accurate and relevant in the instance 
of a normal distribution.  Also, notice that the skew 
metric for OLS residuals is greatest.  This indicates a 
bias in fit.Notice that LMS, provides the minimum 
inter-quartile range (IQR).  The IQR is defined as Q3-
Q1, i.e. the upper limit of the 3

rd
 quartile minus the 

upper limit of the 1
st
 quartile.  The IQR of the 

residuals gives the range of the middle 50% of the 
observations and is unaffected by outlying 
observations.  The IQR is higher than the standard 
deviation, as one standard deviation constitutes 34% 
of a normally distributed variable while the IQR 
constitutes 50% of the same distribution.  

This research adopts the decision that the best 
regression algorithm is the one that generates the 
minimum median IQR across all 500 regressions.  In 
the case of BMY, least median squares is the optimum 
regression algorithm to measure beta. 

Table 3 displays the inter-quartile range of the resi-
duals for each regression algorithm for each of the 
same 10 of the SP500 companies listed in Table 1. 
The algorithm generating the minimum IQR differs 
for the various companies.  The lowest IQR is under-
lined identifying the optimum algorithm for each 
company.  Notice that there are some ties in the mini-
mum. 

Table 3. Inter-quartile Ranges by  
Regression Method 

Residual Interquartile Range 

tkr           n          ols           rob            ltr            lms          ms 

aapl      383      0.1360      0.1359      0.1324     0.1363     0.1343 

amzn     209     0.1452      0.1468      0.1484     0.1470     0.1487 

bmy       411     0.0718      0.0709      0.0722     0.0707     0.0722 

csx        411     0.0746      0.0749      0.0758     0.0747     0.0750 

dis         411     0.0689      0.0675      0.0668     0.0668     0.0688 

fdx         411     0.1053      0.1049     0.1045      0.1048     0.1033 

jnj          411     0.0616      0.0604      0.0604      0.0605     0.0604 

msft       343     0.0945      0.0947      0.0954     0.0954     0.0913 

wmt        411     0.0765      0.0725     0.0768      0.0730     0.0768 

xom       411     0.0492       0.0496     0.0494      0.0508     0.0494 

Notice that minimum sum regression has the lowest 
IQR for four companies of the ten.Tables 4 displays 
the medians of all inter-quartile ranges for the 
SP500 regressions. 

Table 4. Median Residual Inter-quartile Range by 
Regression Method for SP500 Constituents 

Residual Interquartile Range 

              Ols       lmRobMM       ltr          lms          ms    

med      0.0875      0.0870      0.087     0.0866     0.0865 

Notice that MS, i.e., minimum sum regression, gene-
rates the smallest median IQR of the residuals of the 
regressions.  The conclusion is that minimum sum 
regression generates the best betas for SP500 equi-
ties.  This is not to suggest that MS is the best me-
thod of robust regression under all regression exer-
cises or even in all circumstances related to portfolio 
management. Table 5 displays a copy of Table 1 
from above augmented by the addition of the equal-
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weighted (10% each) portfolio betas.  The weighted 
average betas differ significantly. We concluded 
above that MS is the superior algorithm to estimate 
betas. Choosing minimum sum regression instead of 
others yielded a weighted average beta of 1.054. 

Table 5. Beta and Weighted Ave (10% each) Beta 

Coefficients for Ten Large Companies 

Beta Coefficients 

                 tkr        n      ols   lmRobMM   lts     lms     ms 

1             aapl      383    1.31    1.27    1.23    1.30   1.39 

2            amzn     209    1.98    1.33    1.40    1.31   1.51 

3             bmy      411    0.72    0.75    0.80    1.05   0.80 

4             csx       411    1.10    1.17    1.20    1.13   1.17 

5             dis        411    1.15    1.23    1.26    1.25   1.16 

6             fdx        411    0.89    0.96    1.12    1.13   1.03 

7              jnj        411    0.73    0.80    0.79    1.21   0.78 

8             msft      343    1.30    1.11    1.08    1.04   1.23 

9             wmt       411    0.83    1.06    0.79    0.94   0.86 

10           xom       411    0.61    0.58    0.56    0.47   0.62 

          Weighted  Beta   1.062  1.025  1.084 1.062  1.054 

CConclusions 

This research evaluated five regression algorithms 

to identify which algorithm best measures beta, i.e. 

the sensitivity of the security return to the market 

and the measure of systematic risk. The five regres-
sion algorithms evaluated were OLS, lmRobMM, 

least trimmed squares, least median squares and 

minimum sum regression.  The superior algorithm 
was determined to be minimum sum regression on 

the basis of minimizing the median of the inter-

quartile ranges of the residuals over the aggregate of 
the SP500 constituent beta regressions. 

This research used monthly observations for the 

SP500. Further research might investigate the op-

timal time horizon over which beta might be ana-
lyzed.  Monthly granularity was used here.  Daily or 

yearly granularity should be investigated.  Also, 

further research should investigate if the results 
found here hold over other equity indexes, e.g. 

SP400 and SP600. 
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