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investigation 

Abstract 

In this study, it is investigated the impact of suddenly structural breaks on estimated GARCH-type models with normal 

and heavy-tailed distributions for daily oil futures market returns. More specifically, the multiple structural breaks in 

return variance over the whole sample period are detected by the Inclán-Tiao’s algorithm. The estimated results of the 

ICSS AR-GARCH models show that the volatility persistence decreases dramatically after controlling for such discrete 

breakpoints. The changing oil futures risk can be best captured by the ICSS AR-EGARCH-GED model. Specifically, 

the comparison of the in-sample model evaluation champions the AR-EGARCH-t model over competing models 

within each identified sub-period. 
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Introduction  

A variety of oil-linked derivatives, such as oil 

futures contracts, have been designed for hedging 

the oscillating risk in the oil market. This kind of 

speculative investment often follows a path of 

relative steady, disconnected by periods of greater 

market disturbance. This provides a problem for 

those trying to model the volatility dynamics. 

Previous studies investigate the modeling of 

changing volatility in various financial time series, 

especially stock market returns, foreign exchange 

rates, and so forth. Nevertheless, relatively little 

attention has been given to model oil futures returns 

in the context of volatility models. Due to the 

presence of non-normality in asset returns, which 

means that the asymmetric GARCH (e.g. EGARCH 

or TGARCH) models with heavy-tailed 

distributions may provide a better fitness to the data, 

as opposed to the symmetric GARCH models. 

Regarding the distributional properties of oil futures 

returns, we model the conditional variance using 

GARCH-type models with normal distribution,  

t-distribution, and the generalized error distribution 

(GED). Furthermore, currently more and more 

empirical evidences have revealed that the existence 

of structural breaks in financial time series can have 

serious implications on pricing-related derivatives. 

Without incorporating structural breaks into the 

analytical model may cause an overestimate of the 

volatility persistence in variance (Diebold, 1986; 

Lastrapes, 1989; Lamoureux and Lastrapes, 1990; 

Ewing and Malik, 2005). To detect the structural 

breaks in return variance, the iterated cumulative 

sums of squares (ICSS) algorithm proposed by 

Inclán and Tiao (1994) is considered to identify the 

                                                      
 Yu-Min Lian, Szu-Lang Liao, 2015. 

Yu-Min Lian, Corresponding author, Ph.D. in Banking and Financial 

Markets, Department of Money and Banking, College of Commerce, 

National Chengchi University, Taiwan. 

Szu-Lang Liao, Professor, Department of Money and Banking, College 

of Commerce, National Chengchi University, Taiwan. 

presence of such breakpoints. This technique 

focuses on finding a statistically significant change 

in variance due to a breakpoint in the process that 

generates the volatility of the time series. After 

determining the aforementioned structural breaks by 

the ICSS algorithm, the resulting shifts can be 

incorporated into conditional variance of the 

analytical model in form of dummy variables for 

volatility analysis (Wilson et al., 1996; Aggarwal et 

al., 1999; Bracker and Smith, 1999; Malik, 2003; 

Malik and Hassan, 2004; Mansur et al., 2007; 

McMillan and Wohar, 2011; Huang, 2014). 

With the increasing number of surprising events, the 

subprime crisis of 2008, for instance, has created 

large fluctuations in the oil market. Therefore, it is 

crucial to detect the volatility shifts adequately and 

model the future dynamics corresponding to the 

changing oil price according to actual market 

developments. After controlling for multiple structural 

breaks, we further add the resulting dummies to the 

GARCH models with three types of distributional 

specifications on the standardized residuals. In 

addition, we compare the in-sample model 

evaluation of the GARCH-type models in the full 

period and each sub-period identified using the Inclán 

and Tiao (1994) test. Empirical results are significant 

for the risk management of market participants. 

Given the relatively few literature for modeling 

volatility changes in the oil futures market returns. 

In this study, we study the modeling of time-varying 

volatilities in oil futures returns under GARCH-type 

models by incorporating both structural breaks and 

heavy-tailed distributions generated by the oil 

futures market, which extends the classical 

ARCH/GARCH models for the oil futures price 

modeling. Accurately modeling volatility changes in 

oil futures market returns have significant implications 

for risk management and for determining dynamic 

hedging strategies, which is particularly important 

during unstable oil markets. 
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The remainder of this study is organized as follows. 

The next section illustrates the dynamic models. 

Section 2 presents the empirical results. The final 

section shows the conclusions of this study. 

1. Methodology 

1.1. The ICSS algorithm and identification of Dk. 

The iterated cumulative sums of squares (ICSS) 

algorithm, developed by Inclán and Tiao (1994), is 

used to detect discrete changes in variance of a time 

series. Let 2

1 t

k

tk rC  be the cumulative sum of 

squares of a series of uncorrelated random variables, 

rt, with mean 0 and variances 2

t
, k = 1, …, T. 

Define the mean centered cumulative sum of 

squares as follows: 

T

k

C

C
D

T

k

k
, Tk ,...,1 ,  

with 00 TDD .                                                 (1) 

For a series with homogeneous variance over the 

sample period, the Dk statistics oscillate around 

zero. On the contrary, when there is a sudden 

change in variance, the Dk value will exhibit a 

positive or negative drift away from zero. Inclán and 

Tiao (1994) calculate the critical values under the 

null hypothesis of constant variance from the 

asymptotic distribution of Dk. When the maximum 

of Dk  exceeds the critical value, the null 

hypothesis of no changes in variance is rejected. 

Denote the value of k at which 
kk Dmax  is attained 

as k
*
. If the maximum of 

kDT 2/  is larger than 

the critical value of 1.358 at the 5% level, then k
*
 

is considered as an estimate of the breakpoint. The 

factor 2/T  is required to standardize the 

distribution. If a series has multiple breakpoints, the 

usefulness of the Dk function becomes doubtful 

because of the masking effect. Inclán and Tiao 

(1994) propose an iterative algorithm based on 

repeated applications of Dk on different segments of 

the series, dividing consecutively after a breakpoint 

is identified. 

1.2. The GARCH models and distributional 

assumptions. The GARCH-type models are widely 

used in various branches of econometrics, especially 

in financial time series analysis. The simplest 

GARCH(1,1) model can be set as follows: 

ttt XY
'

,                                                       (2) 

2

1

2

1

2

ttt w ,                                        (3) 

where the mean equation given in (2) is written as a 

function of exogenous variables with an error term. 

The restrictions w > 0, , and   0 in conditional 

variance equation (3) are imposed to insure a 

positive variance. An additional restriction is that 

both ARCH and GARCH models assume symmetry 

in the distribution of asset returns. It is well-known 

that many financial time series have non-normal 

distribution. Engle and Ng (1993) examine how 

negative shocks increase conditional volatility in 

stock market returns. These stock market returns 

are, like oil futures market returns, negatively 

skewed with heavy-tailed distributions. This 

suggests that asymmetric GARCH models might 

also be of value in capturing oil futures price 

movements. The so-called EGARCH (exponential 

GARCH) model was proposed by Nelson (1991). 

The specification for the conditional variance of the 

EGARCH(1,1) model is set to be: 

1

12

1

1

12 )ln(
2

)ln(
t

t

t

t

t

t w ,  (4) 

where t follows a generalized error distribution in 

equation (4). Note that the left-hand side is the log 

of the conditional variance. This implies that the 

leverage effect is exponential, rather than quadratic, 

and that forecasts of the conditional variance are 

guaranteed to be non-negative. The presence of 

leverage effects can be tested by the hypothesis that 

 < 0. The impact is asymmetric if   0. Alternative 

specification that is designed to capture the 

increasing volatility from asymmetric shocks is the 

TGARCH model. The TGARCH (threshold 

GARCH) or GJR-GARCH model were introduced 

independently by Zakoïan (1994) and Glosten, 

Jaganathan, and Runkle (1993). The specification 

for the conditional variance of the TGARCH(1,1) 

model is given by: 

1

2

1

2

1

2

1

2

ttttt Iw ,                     (5) 

where It-1 = 1 if t-1 < 0 and 0 otherwise. In this 

model, good news, t-1 > 0, and bad news. t-1 < 0, 

have differential effects on the conditional variance; 

good news has an impact of , while bad news has 

an impact of  + . If  > 0, bad news increases 

volatility, and we say that there is a leverage effect. 

If   0, the news impact is asymmetric. 

In order to capture the tail distributional characteristics 

of financial time series, it is essential to make 

distributional assumptions about the error term t. 

There are three assumptions commonly employed 

when working with GARCH models: normal 

distribution, t-distribution, and the GED. Given a 

distributional setting, the GARCH models are typically 

estimated by the method of maximum likelihood. For 

example, for the GARCH(1,1) model with 

conditionally normal errors, the log-likelihood 

function of sample is given by the following: 
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where 
2

t  is the conditional variance of the error term 

t. Under t-distribution, the log-likelihood function of 
this type of sample is of the following form: 
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where the degree of freedom k > 2 controls the tail 
behavior. The t-distribution approaches the normal 

as k  . Under GED, the log-likelihood function 
of this type of sample can be written as follows: 
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                                                (8) 

where the tail parameter v > 0. The GED is a normal 
distribution if v = 2, and fat tail if v < 2. 

1.3. Empirical model setting. In this section, we 
use dummy variables representing volatility changes 
identified by the ICSS algorithm into the GARCH-
type processes. The specification for the ICSS 
AR(p)-GARCH(1,1) model is therefore set to be the 
following: 

t t p tr r ,                                               (9) 
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,                  (10) 

After controlling for detected breakpoints, the 

specification for the EGARCH(1,1) and 

TGARCH(1,1) processes are respectively given by: 
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where D1, ..., Dn in conditional variance equations 

(10)-(12), are the set of dummy variables taking a 

value of one from each breakpoint of variance 

onwards and zero otherwise. All models are 

estimated by the method of maximum likelihood 

under three types of distributional assumptions that 

the errors with normal, t, and GEDs. 

2. Empirical results 

2.1. Data description. The daily data for the Light-

Sweet oil futures contracts are from Datastream and 

cover the period from 1 August 1997 to 31 July 

2007 (2608 observations).
 

First differences in 

natural logarithms of the price levels are employed 

in all models. The top panel of Figure 1 shows the 

daily oil futures data in level form, while the bottom 

panel of Figure 1 shows the return series and a high 

degree of variability in returns. From the bottom 

panel of Figure 1, the series exhibits a large number 

of volatility, while showing a tendency towards a 

constant mean. Of course, it is necessary that the 

data be mean reverting. Otherwise, the variance 

tends to infinity as the number of observations 

approaches infinity, presenting the t-values 

undependable and inducing spurious results. 
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Fig. 1a. Time series (top panel) and logarithmic returns (bottom panel) of daily oil futures prices 
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Notes: The daily price data are based on oil futures contracts traded on the New York Mercantile Exchange (NYMEX). The 

contracts expire four times per year (March, June, September, and December). Three month contracts are used to construct a 

continuous series. In order to avoid any expiration effects, the new contract start a week before the expiration of the former contract. 

The shaded areas in the bottom panel of Figure1 indicate periods of changing volatility detected using the ICSS algorithm. 

Fig. 1b. Time series (top panel) and logarithmic returns (bottom panel) of daily oil futures prices 

The dataset used in the descriptive analysis consists 

of the daily oil futures prices, and summary 

statistics of the return series are presented in Table 

1. The skewness and kurtosis suggest a leptokurtic 

distribution with negatively skewed returns in the 

oil futures market. The Jarque-Bera statistics 

represent that the return series are not normally 

distributed. Therefore, both the skewness and the 

tail behavior of the data should be better captured by 

the asymmetric GARCH models with heavy-tailed 

distributions, which are designed to model 

asymmetry and fat tail in this study. 

Table 1. Summary statistics of the return series 

 Light-Sweet oil futures returns 

Mean 5.20E-04 

Variance 5.36E-04 

Skewness -0.283*** 

Kurtosis 6.722*** 

Jarque-Bera 1540.458*** 

Observations 2608 

Notes: The futures data are from Datastream and cover the 

period from 1 August 1997 to 31 July 2007. Jarque-Bera is the 

test for normality. ***, **, and * represent statistical 

significance at the 0.01, 0.05, and 0.10 levels, respectively. 

Table 2 reports the Augmented Dickey-Fuller and 

Phillps-Perron unit root test statistics for the logs of 

prices and daily oil futures return series. As reported 

in Table 2, ADF(C,T,0) is the Augmented Dickey-

Fuller unit root test with constant, trend and lags of 

0. ADF(1) and ADF(0) are the Augmented Dickey-

Fuller unit root test with 1 and 0 lags, respectively. 

PP(C,T,14) is the Phillps-Perron test with constant, 

trend and lags of 14. PP(17) is the Phillps-Perron 

test with 17 lags. Results from Table 2 show that the 

ADF and PP unit root test statistics for the logs of 

prices are not able to reject the null hypothesis that 

the existence of a unit root at the 0.05 significance 

level. Furthermore, the ADF and PP unit root test 

statistics for the first-differenced daily return series 

are all well below the critical values at the 0.01 

significance level, indicating a strong rejection of 

the presence of a unit root. Therefore, the daily oil 

futures returns are first difference stationary and 

proceed with the proposed tests. 

Table 2. Unit root tests for the logs of daily oil 

futures prices and return series 

 ADF(C,T,0) ADF(C,T,0) PP(C,T,14) 

Logs of oil futures prices 
-3.205* -3.205* -3.009 

ADF(1) ADF(0) PP(17) 

Oil futures returns -37.584*** -50.902*** -51.155*** 

Notes: The lags selections based on AIC and SIC are in the 

second column and the third column, respectively. The lags 

selection based on Newey-West Bandwidth using Bartlett 

Kernel in the last column. The 0.01, 0.05, and 0.01 critical 

values for ADF(C,T,0) and PP(C,T,14) are -3.961, -3.411, and  

-3.127, respectively. The 0.01, 0.05, and 0.01 critical values for 

ADF(1), ADF(0) and PP(17) are -2.565, -1.940, and -1.616, 

respectively. The null hypothesis for the ADF and PP tests is 

the presence of a unit root. ***, **, and * represent significance 

at the 0.01, 0.05, and 0.01 levels, respectively. 

2.2. Report of detected breakpoints. The bottom 

panel of Figure 1 shows that the presence of time-

varying volatility clustering phenomena and many 

spikes in the data, with more negative than positive 

outliers. This is consistent with the significant 

negatively skewed and excess kurtosis reported in 

Table 1. Furthermore, the non-normality of the 

return series takes the use of the ICSS algorithm to 

detect structural breaks in variance. There are eleven 

structural breaks in return series detected by the 

ICSS algorithm. We divide the full period into 

twelve sub-periods for the return series to provide 

evidence of unstable GARCH process and hence 

changing volatilities. Table 3 reports such 

breakpoint dates, along with selected news that are 
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associated with volatility shifts in the return series. 

Obviously, there is a great deal of variance within 

each sub-period and the suddenly discrete volatility 

jumps at the breakpoints. The empirical evidence 

indicates that the return variances are not constant 

over the tested period. This is a confirmation that 

more exactness of the ICSS algorithm is imperative 

for modeling asset returns. Due to the residual 

GARCH effects may in a volatility analysis, the 

ICSS algorithm may not capture all of the variance 

effects. Hence, a more intact analysis would think 

about both kinds of impacts. Correspondingly, we 

examine the GARCH effects, as well as the 

existence of suddenly discrete volatility shifts. 

Table 3. Structural breaks detected by the ICSS 

algorithm 

Dates Days Wall Street news on oil futures 

01/22/1998 125 Oil futures drop on bearish inventory data. 

03/25/1998 44 Oil rockets 13% on OPEC cutback--03/24. 

05/18/1998 38 Oil futures drop as glut continuous built. 

06/23/1998 26 Oil futures pass $15 a barrel--06/24. 

12/09/1998 121 Oil prices swing on report--12/08. 

03/11/1999 66 Oil gains ahead of a March 23 OPEC meeting. 

02/29/2000 253 Oil reaches high; other sectors languish-02/28. 

02/02/2001 243 Oil futures soars to an eight-week high. 

09/13/2001 159 Terrorist attack--09/11. 

02/26/2002 118 Dow industrials surge 263 points--03/01. 

01/06/2005 747 Oil futures jump more than $2--01/07. 

07/31/2007 668  

Total 2608  

Notes: Dates are the ending days for the sub-period. The last 

column comes from the Wall Street Journal on ProQuest 

Newspapers. 

2.3. Modeling the oil futures returns. We identify 

the best-fitting specification of conditional mean 

equation by Box-Jenkins procedures. The partial 

autocorrelation function suggests that the AR(2) 

process would be appropriate for the return series. 

Table 4 reports that the Q(15) and Q(20) statistics 

are not significant, indicating there is no serial 

correlation in returns. The Q
2
(15) and Q

2
(20) 

statistics are significant, indicating statistically 

significant serial correlation in squared returns, 

which motivates us to model the conditional 

heteroskedasticity. 

Table 4. Serial correlation tests for AR(2) process  

of daily oil futures returns 

Serial correlation and ARCH tests for the AR(2) process 

Q(15) 10.120 

Q(20) 16.367 

Q2(15) 94.412*** 

Q2(20) 102.390*** 

Notes: Q(n) and Q2(n) are the Ljung-Box test statistics for the 

15th and 20th order serial correlation in the ordinary and squared 

ordinary returns, respectively. ***, **, and * represent statistical 

significance at the 0.01, 0.05, and 0.10 levels, respectively. 

As noted above, we model the oil futures return 

using the AR(2)-GARCH(1,1) process. One way of 

further examining the distribution of the residuals is 

to plot the quantiles. Figure 2 indicates that the QQ-

plots of standardized residuals for the AR(2)-

GARCH(1,1) model with normal distribution. If the 

residuals are normally distributed, the points in the 

QQ-plots should lie alongside a straight line. As 

shown in Figure 2, the QQ-plots show that it is 

primarily large negative shocks that are driving the 

departure from normality. Because of the possibility 

that the appearance of non-normality in residuals, 

we further examine the distributional characteristics 

by GARCH-based models under heavy-tailed 

distributions in the next subsection. 
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Fig. 2. QQ-plots of standardized residuals for the AR(2)-GARCH(1,1) model with normal distribution 
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2.4. Comparison of the estimated results. Time 
variation in the second moments for the full sample 
is modeled using the AR-GARCH models under three 
types of distributional assumptions, the estimated 
results of which are reported in Table 5. As shown in 

Table 5, the GARCH coefficient, , in each model 
ranges from 0.902 to 0.979. These estimates are 
consistent with those found in models of stock returns. 
In addition, all the results exhibit significantly high 
levels of volatility persistence (close to an I-GARCH 

process) for the return series. The shock parameter, , 
in the AR-EGARCH/TGARCH models with three 
types of distributional assumptions are estimated to be 
negative and positive, respectively. Again, it is 
consistent with the existence of significant leverage 
effect in stock return models, indicating that shocks are 
greater than expected raise variance. The degrees of 

freedom parameters, , and v, in the AR-GARCH 

models with heavy-tailed distributions are estimated to 

be 4 < k <  and 0 < v < 2, respectively. The estimates 
suggest that the heavy-tailed distributions of the 
standardized errors depart significantly from 
normality. The estimated results show that the 
significant non-normality in return series. According to 
the comparison of log-likelihood values in each 
model, the AR-EGARCH-GED model without 
volatility shifts fits best for the series. Finally, the test 
statistics, Q, and Q

2
, are not significant at the 15

th
 and 

20
th
 lags, so there is little evidence of serial correlation 

and remaining ARCH effects in standardized and 
squared standardized residuals, respectively. The 
empirical results in Table 5 suggest that the AR-
EGARCH-GED specification is more appropriate than 
competing models for the modeling of oil futures 
returns and that the volatility analysis should 
incorporate time-varying second moments. 

Table 5. Estimated results of the AR-GARCH models with normal, t, and GED 

 AR(2)-GARCH(1,1) AR(2)-EGARCH(1,1) AR(2)-TGARCH(1,1) 

 
-0.045** (-2.119) -0.045** (-2.198) -0.044** (-2.110) 

-0.025 (-1.350) -0.025 (-1.353) -0.024 (-1.296) 

-0.007 (-0.435) -0.008 (-0.467) -0.007 (-0.409) 

 

2.10E-05*** (2.886) -0.265*** (-3.053) 1.85E-05*** (2.929) 

8.69E-06** (2.547) -0.201*** (-3.093) 1.02E-05*** (2.852) 

1.04E-05** (2.490) -0.231*** (-3.082) 1.17E-05*** (2.751) 

 

0.059*** (3.034) 0.083*** (3.484) 0.027 (1.406) 

0.023*** (3.871) 0.060*** (3.867) 0.007 (0.896) 

0.030*** (4.155) 0.070*** (3.943) 0.011 (1.150) 

 
0.902*** (32.990) 0.973*** (95.834) 0.915*** (37.657) 

0.960*** (90.064) 0.979*** (125.609) 0.958*** (87.886) 

0.949*** (72.386) 0.976***(108.802) 0.949*** (72.279) 

 
 -0.053*** (-3.087) 0.046** (2.264) 

 -0.036*** (-3.567) 0.029** (2.492) 

 -0.042*** (-3.893) 0.034** (2.520) 

 5.875*** (8.882) 6.088*** (8.626) 6.089*** (8.723) 

v 1.241*** (29.750) 1.252*** (30.066) 1.251*** (29.933) 

log L 

6189.877 6195.382 6195.338 

6260.627 6263.416 6263.672 

6264.532 6267.831 6267.665 

Q(15) 

6.227 7.061 6.613 

7.056 7.452 7.383 

8.487 9.131 8.888 

Q(20) 

9.875 11.247 10.329 

11.201 11.796 11.502 

12.514 13.488 12.923 

Q2(15) 

13.686 16.411 14.007 

 22.835* 20.487 19.120 

18.947 18.251 16.796 

Q2(20) 

16.823 19.729 17.441 

25.863 23.537 22.179 

22.352 21.471 20.175 

Notes: Within each cell the estimate with normal distribution is the top parameter, t-distribution is the middle parameter, and GED is 

the bottom parameter. z-statistics are in parentheses.  and v are degrees of freedom parameters for the t-distribution and GED, 

respectively. log L represents the log-likelihood values. Q(n) and Q
2(n) are the Ljung-Box test for the 15th and 20th order serial 

correlation in standardized and squared standardized residuals, respectively. ***, **, and * represent statistical significance at the 0.01, 0.05, 

and 0.10 levels, respectively. 



Investment Management and Financial Innovations, Volume 12, Issue 2, 2015 

22 

Recall the previous findings that there are eleven 

structural breaks detected by the ICSS algorithm in 

Section 2.2. Here, we employ dummy variables 

representing such breakpoints into the GARCH-type 

processes. As shown in Table 6, the ARCH 

coefficient, , estimated from all models under three 

types of distributional assumptions are not statistically 

significant. The values of coefficient  become smaller 

after controlling for structural breaks. Both the test 

results suggest that the ARCH effects vanish and the 

degree of persistence is significantly reduced after 

controlling for such detected breakpoints. This means 

that, the volatility persistence overestimated by the 

GARCH-type models can be explained by structural 
 

breaks. Furthermore, all of the discrete breakpoints 

bring about sizable shifts in the intercept term, w , 

and that these shifts often lead to substantial 

changes in variance across regimes, that is, non-

stationary of the variance. To consider whether the 

addition of volatility shift dummy variables leads to 

a statistically superior model specification relative 

to competing models, we compare the log-

likelihood values of each model, discovering the 

superiority of the extended ICSS AR-GARCH 

models. Specifically, the ICSS AR-EGARCH-GED 

model fits best for the return series. Thus, a volatility 

analysis should be modeled to accommodate both 

GARCH effects and volatility changes. 

Table 6. Estimated results of the ICSS AR-GARCH models with normal, t, and GED 

 ICSS AR(2)-GARCH(1,1) ICSS AR(2)-EGARCH(1,1) ICSS AR(2)-TGARCH(1,1) 

 
-0.037* (-1.954) -0.033* (-1.723) -0.036* (-1.877) 

-0.025 (-1.337) -0.021 (-1.143) -0.025 (-1.302) 

-0.012 (-0.680) -0.009 (-0.535) -0.011 (-0.634) 

 

8.28E-05** (2.236) -3.644** (-2.572) 9.46E-05** (2.270) 

9.80E-05* (1.885) -3.428*** (-3.533) 8.28E-05** (2.508) 

8.85E-05* (1.819) -3.586*** (-3.241) 8.54E-05** (2.282) 

 

0.030 (1.545) 0.041 (0.805) -0.005 (-0.210) 

0.018 (1.183) 0.011 (0.297) -0.009 (-0.560) 

0.023 (1.288) 0.025 (0.602) -0.008 (-0.403) 

 
0.599*** (3.660) 0.566*** (3.346) 0.570*** (3.413) 

0.541** (2.362) 0.591*** (5.153) 0.616*** (4.357) 

0.567** (2.560) 0.574*** (4.399) 0.595*** (3.632) 

 
 -0.096*** (-2.784) 0.067** (1.989) 

 -0.108*** (-3.981) 0.066** (2.349) 

 -0.104*** (-3.554) 0.066** (2.083) 

 7.479*** (6.770) 7.497*** (6.681) 7.600*** (6.724) 

v 1.343*** (26.530) 1.348*** (26.018) 1.348*** (26.502) 

log L 

6248.475 6254.583 6251.741 

6285.022 6291.154 6288.044 

6293.279 6298.516 6295.834 

Q(15) 

6.376 7.1939 6.9590 

6.911 7.7388 7.1678 

7.493 8.3153 7.8499 

Q(20) 

10.908 11.621 11.397 

11.492 12.117 11.529 

12.061 12.707 12.247 

Q2(15) 

25.381** 26.123** 25.107** 

26.883**  23.423* 20.530 

25.251**  23.375*  21.557* 

Q2(20) 

25.951 26.918 25.768 

27.682* 24.411 21.365 

26.008 24.326 22.374 

Notes: Within each cell the estimate with normal distribution is the top parameter, t-distribution is the middle parameter, and GED is the 

bottom parameter. z-statistics are in parentheses.  and v are degrees of freedom parameters for the t-distribution and GED, respectively. 

log L represents the log-likelihood values. Q(n) and Q
2(n) are the Ljung-Box test for the 15th and 20th order serial correlation in 

standardized and squared standardized residuals, respectively. ***, **, and * represent statistical significance at the 0.01, 0.05, and 0.10 

levels, respectively. 
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2.5. In-sample model evaluation. Summary 

statistics and in-sample RMSEs within the full period 

and each sub-period of daily oil futures returns are 

shown in Table 7. As shown in Table 3, the twelve 

sub-periods within the full period are determined by 

eleven structural breaks in return series using the ICSS 

algorithm. Obviously, the daily returns of the full 

period are negatively skewed with heavy-tailed. It is 

clear that the significant non-normality in the full 

period data. In itself, one might expect that the AR-

EGARCH/TGARCH models with heavy-tailed 

distributions might yield superior modeling results. 

Indeed, the AR-GARCH-normal model has the 

highest RMSE. The AR-GARCH/EGARCH/ 

TGARCH-GED models perform the best as well as 

exactly the same lowest RMSE (0.019169) for the 

series. This suggests that with considerable 

observations there is trivial to distinguish between 

these models. Thus, this study attempts to confirm that 

this conclusion holds for periods of changing 

volatility. Furthermore, within each sub-period of 

normally distributed data of Table 7, the AR-

EGARCH/TGARCH models with heavy-tailed 

distributions perform poorly. However, there are six 

sub-periods (2
nd

, 6
th
, 7

th
, 8

th
, 10

th
, and 11

th
) in which the 

return series appear to be non-normally distributed. 

The AR-EGARCH-t model ranks first over competing 

models in the 2
nd

, 6
th
, 7

th
, and 11

th 
sub-periods. Once 

more data become available, it is necessary to engage a 

more extensive analysis, not only with respect to the 

in-sample analysis but also in terms of the out-of-

sample forecast. 

Table 7. Summary statistics and in-sample RMSEs within the full period and each sub-period 

 Full period 1st sub-period 2nd sub-period  3rd sub-period 4th sub-period 5th sub-period 6th sub-period 

Numbers 2608 125 44 38 26 121 66 

Variance 5.36E-04 2.29E-04 1.17E-03 4.28E-04 2.73E-03 5.08E-04 9.17E-04 

Skewness -0.283*** -0.018 1.875*** 0.188 0.669 -0.130  -0.703** 

Kurtosis 6.722*** 3.619 8.664*** 2.568 3.549 3.621  5.405*** 

AR(2)-GARCH(1,1) RMSE 

0.019196 
(9) 

0.008236 
(7) 

0.066530 
(2) 

0.029657 
(6) 

0.075979 
(1) 

0.021328 
(8) 

0.032517
(7) 

0.019178 
(5) 

0.008194 
(5) 

0.066564 
(3) 

0.029336 
(4) 

0.077873 
(4) 

0.021282 
(6) 

0.032036
(3) 

0.019169 
(1) 

0.008161 
(2) 

0.067544 
(8) 

0.029686 
(7) 

0.077596 
(3) 

0.021194 
(4) 

0.032886
(9) 

AR(2)-EGARCH(1,1) RMSE 

0.019195 
(8) 

0.008205 
(6) 

0.067378 
(6) 

0.028506 
(1) 

0.077307 
(2) 

0.021247 
(5) 

0.032127
(4) 

0.019178 
(5) 

0.008164 
(4) 

0.066420 
(1) 

0.028543 
(2) 

0.081560 
(5) 

0.021364 
(9) 

0.031297
(1) 

0.019169 
(1) 

0.008161 
(2) 

0.067378 
(6) 

0.028561 
(3) 

0.085641 
(7) 

0.021301 
(7) 

0.032879
(8) 

AR(2)-TGARCH(1,1) RMSE 

0.019194 
(7) 

0.008266 
(8) 

0.066868 
(4) 

0.029759 
(8) 

0.083805 
(6) 

0.021182 
(1) 

0.031854
(2) 

0.019177 
(4) 

0.008363 
(9) 

0.067369 
(5) 

0.029769 
(9) 

0.085742 
(8) 

0.021190 
(2) 

0.032298
(5) 

0.019169 
(1) 

0.008086 
(1) 

0.067715 
(9) 

0.029590 
(5) 

0.087963 
(9) 

0.021192 
(3) 

0.032384
(6) 

 7th sub-period 8th sub-period 9th sub-period 10th sub-period 11th sub-period 12th sub-period  

Numbers 253 243 159 118 747 668  

Variance 4.26E-04 7.72E-04 3.63E-04 1.24E-03 5.08E-04 3.48E-04  

Skewness -0.480*** -0.687*** -0.202 -0.838*** -0.520*** 0.126  

Kurtosis 3.544*  5.188*** 3.263 6.988*** 4.741***  3.310*  

AR(2)-GARCH(1,1) RMSE 

0.015624 
(3) 

0.029390 
(1) 

0.017737 
(2) 

0.029169 
(6) 

0.025825 
(9) 

0.014605 
(4) 

 

0.015715 
(6) 

0.029683 
(5) 

0.017791 
(6) 

0.028934 
(4) 

0.025803 
(6) 

0.014606 
(6) 

 

0.015628 
(4) 

0.029866 
(9) 

0.017785 
(4) 

0.029198 
(7) 

0.025804 
(7) 

0.014605 
(4) 

 

AR(2)-EGARCH(1,1) RMSE 

0.015811 
(8) 

0.029440 
(2) 

0.017914 
(7) 

0.028967 
(5) 

0.025779 
(3) 

0.014635 
(8) 

 

0.015557 
(1) 

0.029621 
(4) 

0.017940 
(8) 

0.028857 
(2) 

0.025758 
(1) 

0.014635 
(8) 

 

0.015707 
(5) 

0.029802 
(7) 

0.017992 
(9) 

0.029199 
(9) 

0.025763 
(2) 

0.014633 
(7) 
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Table 7 (cont.). Summary statistics and in-sample RMSEs within the full period and each sub-period 

 7th sub-period 8th sub-period 9th sub-period 10th sub-period 11th sub-period 12th sub-period  

AR(2)-TGARCH(1,1) RMSE 

0.015811 
(8) 

0.029598 
(3) 

0.017732 
(1) 

0.028853 
(1) 

0.025807 
(8) 

0.014595 
(1) 

 

0.015600 
(2) 

0.029695 
(6) 

0.017760 
(3) 

0.028897 
(3) 

0.025779 
(3) 

0.014597 
(2) 

 

0.015717 
(7) 

0.029857 
(8) 

0.017785 
(4) 

0.029198 
(7) 

0.025789 
(5) 

0.014598 
(3) 

 

Notes: The root mean square error (RMSE) estimates of each model with normal distribution is the top row, t-distribution is the 

middle row, and GED is the bottom row. Ranks are in parentheses. ***, **, and * represent statistical significance at the 0.01, 0.05, 

and 0.10 levels, respectively. 

Table 8 reports the aggregated ranks within each 

sub-period identified via the ICSS algorithm. Both 

the AR-EGARCH-t and the AR-TGARCH-normal 

models rank lowest in four of the twelve sub-

periods. The last column of Table 8 indicates a score 

(sum of the numbers multiplied by their corresponding 

rank in each row). The AR-EGARCH-t model exhibits 

the lowest (46) score and appears to be the most 

effective for modeling oil futures returns. More 

specifically, the AR-EGARCH-GED model performs 

relatively poorly in each of the twelve sub-periods in 

terms of the model evaluation relative to the superior 

ICSS AR-EGARCH-GED model for oil futures 

volatility modeling. 

Table 8. In-sample RMSE ranks within each sub-period 

             Ranks 
Models 

1 2 3 4 5 6 7 8 9 Score 

AR(2)- 
GARCH(1,1) 

2 2 1 1 0 2 2 1 1 56 (3) 

0 0 2 3 2 5 0 0 0 58 (6) 

0 1 1 4 0 0 3 1 2 68 (8) 

AR(2)- 
EGARCH(1,1) 

1 2 1 1 2 2 1 2 0 57 (4) 

4 2 0 2 1 0 0 2 1 46 (1) 

0 2 1 0 1 1 4 1 2 72 (9) 

AR(2)- 
TGARCH(1,1) 

4 1 1 1 0 1 0 4 0 51 (2) 

0 3 3 0 2 1 0 1 2 57 (4) 

1 0 2 1 2 1 2 1 2 67 (7) 

Notes: The numbers of RMSE ranks of each model with normal distribution is the top row, t-distribution is the middle row, and 

GED is the bottom row. Score is the sum of the numbers multiplied by their corresponding rank in each row. 

Conclusions 

In this study, we dive into an investigation of the 
presence of volatility changes and the heavy-tailed 
behavior when modeling oil futures market returns. 
The multiple structural breaks in variance are 
detected using the Inclán and Tiao (1994) test. The 
estimated results suggest that the changing oil 
futures risk can be best captured by the ICSS AR- 
 

EGARCH-GED model. The in-sample comparison 

of the model evaluation shows that the AR-

EGARCH-t model outperforms over competing 

models within each sub-period identified using the 

ICSS algorithm. Our empirical results are provided 

to illustrate the importance of incorporating both 

structural breaks and heavy-tailed distributions in oil 

futures price modeling. 
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