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Maria Debora Braga (Italy) 

Risk parity versus other -free strategies: a comparison  

in a triple view 

Abstract 

This article proposes a comparison of risk parity strategy versus other asset allocation methodologies that don’t require 

expected returns as input (naive risk parity, minimum-variance, equally weighting). Specifically, we empirically test if 

risk parity is consistently better than other μ-free strategies using two datasets that differ in terms of market conditions 

and in terms of the number of asset classes in the investment universe. The comparison is undertaken considering three 

evaluation dimensions: financial efficiency, diversification and asset allocation stability. Relative to the existing 

literature, we strongly expand the set of tools to be implemented in order to capture these aspects. The findings suggest 

that risk parity cannot be considered consistently superior relative to other -free strategies on the basis of the adopted 

triple view. The results are in line with, and more robust and more well-verified than those achieved by Maillard, 

Roncalli e Teiletche (2010) and disagree with Chaves et al. (2012). 

Keywords: risk parity, risk contribution, marginal risk, estimation risk, optimization algorithm, reward-to-variability ratios. 

JEL Classifications: G11, G12. 
 

Introduction  

In the asset allocation context, the mean-variance 

optimization developed by Markowitz (1952, 1959) 

over 50 years ago represented the cornerstone of 

Modern Portfolio Theory (MPT) and provided the 

appropriate methodology for allocating wealth to 

different risky investment alternatives. Basically, 

the Markowitz model derives portfolio weights such 

that expected return is maximized for a given standard 

deviation (variance) level or such that volatility is 

minimized for a given expected return level.  

Despite its elegance, simplicity and rationality, 

Markowitz’s approach suffers from serious drawbacks 

when practically implemented. They mainly raise from 

the estimation risk associated with the necessary 

inputs (expected returns, risks and correlations/ 

covariances) or, to be more precise, from the fact that 

mean-variance optimization is commonly 

implemented without recognizing the parameters’ 

uncertainty (Jorion, 1992; Kan and Zhou, 2007).  

As indicated by Michaud (1989), ignoring the 

existence of measurement error in the optimization 

inputs leads to undesirable features for optimal 

portfolios. They can be summarized in their counter-

intuitive nature, instability, un-uniqueness and poor 

out-of-sample performance. Several authors (Best 

and Grauer, 1991; Chopra and Ziemba, 1993; 

Jorion, 1986) have recognized serious influences on 

optimized portfolios especially from estimation 

errors in expected returns, while uncertainty in 

second moments is less critical. 

Starting approximately from the second half of the 

eighties, different methodologies have been 

proposed to deal with the problem of estimation 

risk/errors. They can be distinguished between 
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heuristic and Bayesian approaches. However all 

these methods keep constant the same and original 

framework while facing asset allocation problems: 

try to optimize the trade-off between the mean and 

the standard deviation (variance) of portfolio 

returns. The set of required inputs is also unchanged 

relative to Markowitz’s framework.  

An alternative way to address the problem of 

estimation risk is the use of asset allocation 

strategies that give less room to estimation error 

because they require fewer types of parameters to be 

estimated. Specifically, these strategies don’t need 

expected returns as input in the portfolio 

construction process and therefore are distinct with 

respect to the classic mean-variance setting. We can 

simply label them as -free strategies given that  

traditionally denotes the expected returns. Different 

solutions corresponding to the above description 

have been suggested in the literature and have 

received increasing attention in the marketplace. In 

particular, emphasis has been put on the minimum-

variance portfolio and on the equally weighted 

portfolio (DeMiguel, Garlappi and Uppal, 2009; 

Clarke, de Silva and Thorley, 2006, 2011).  

With the global financial crisis started in 2008 we 

have seen a growing number of papers and a 

growing interest by institutional investors about a 

new -free asset allocation approach that is called 

risk parity strategy or equivalently risk parity 

portfolio. This approach suggests a portfolio 

composition such that each asset class contributes 

equally to portfolio risk. The novelty it brings in the 

portfolio construction process is to pay attention to risk 

allocation as recommended by the risk budgeting 

literature (Qian, 2005, 2006; Scherer, 2010). 

Similarly to the studies performed by Maillard, 

Roncalli and Teiletche (2010), by Chaves et al. 

(2011, 2012) and by Anderson, Bianchi and 
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Goldberg (2012), our objective in this paper is to 

propose and evaluate a competition between risk 

parity strategy and other simplified asset allocation 

strategies. Unlike Anderson et al. (2012), we 

consider all and exclusively the -free strategies 

without admitting any intrusion (like a CAPM 

portfolio or mean-variance portfolios) because we 

are not interested in a comparison between 

portfolios that are ex-ante mean-variance efficient, 

but exposed to the mis-specification of the expected 

returns, and portfolios that show opposite features. 

Effectively, in this paper we deem it of interest to 

compare exclusively strategies that provide the same 

(partial) answer to the issue of estimation risk: 

remove the performance dimension in the portfolio 

construction process. Our set of rival strategies then 

includes risk parity, naive risk parity, minimum 

variance and equally weighting. Our main goal is to 

investigate if a strategy, the risk parity, that is more 

challenging and tricky on the computational side, 

consistently dominates the alternative strategies that 

have in common the absence of expected returns as 

input but distinguish themselves for the easy way 

they obtain solutions for portfolio weights. 

Differently from existing papers, we clearly 

highlight three different evaluation dimensions for 

our comparison (financial efficiency, diversification 

and asset allocation stability) and considerably 

expand the set of tools to be used to quantify these 

dimensions. Our empirical investigation is based on 

two datasets with different number of asset classes 

in order to understand if our results are extremely 

sensitive or not to the asset class inclusion decision. 

While implementing each -free strategy, we keep 

similar constraints (full investment, no short 

positions allowed) to make the competition fair.  

The rest of the paper is organized as follows. First 

we describe the risk parity strategy and then we 

provide a brief review of the other -free strategies. 

After that a description of the datasets we use is 

given together with details about the way we 

implement our empirical investigation. Later we 

present the various tools we apply to put to the test 

risk parity strategy with respect to other -free 

strategies and discuss the results. We end with some 

conclusions. 

1. Description of risk parity strategy 

The idea of risk parity strategy is to identify 

portfolio weights in a way that asset classes 

contribute equally to the overall portfolio risk. To 

implement the strategy, it is helpful to be familiar 

with two important definitions. The first one is the 

marginal risk contribution. It tells us the variation 

caused in the portfolio risk (measured here as the 

standard deviation) by an infinitesimal change in an 

asset’s weight. Considering a portfolio of N risky 

asset classes with individual weight wi and 

individual volatility i and covariance ij between 

asset class i and j, the marginal risk (M_Riski) can 

be expressed as follows: 

2
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The second definition refers to total risk 

contribution, also called component risk. It is the 

load on total risk contributed by the position wi and 

is simply computed as the product of the allocation 

to asset class i and its marginal risk. Therefore it is 

given by (2): 

2

P
i i

i

N

i i j ij

j i

i

P

Risk _ contribution w
w

w w

w .

                      (2) 

Since portfolio risk is a homogeneous function of 
degree 1, conditions for Euler’s theorem are 
satisfied. Consequently, the overall portfolio risk 
can be expressed as the sum of component risks: 

1

N

P i

i

Risk _ contribution .                           (3) 

We can also show the percentage total risk 
contribution of each position (PCTRi) by (4): 

P
i

i
i

P

w
w

PCTR .                                           (4) 

Pursuing a risk parity strategy requires equalizing 

total risk contributions or component risks. 

Formally, this goal can be translated as follows: 

,P P
i j

i j

w w       i j.
w w

                            (5) 

This is the reason why portfolios resulting from risk 
parity strategies are also called ERC portfolios, 
equal risk contributions portfolios. By definition, they 
are portfolios that include all the N asset classes in the 
selected investment universe. The weight assigned to 
an asset class becomes higher the lower is its 
volatility and correlation with other asset classes. 

In presence of positivity and full investment 
constraints, finding closed-form solutions for 
optimal ERC portfolio weights is not possible due to 
an issue of endogeneity: wi is a function of the risk 
contributions which, by definition, depends on wi. 
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To this end, a numerical optimization is necessary
1
. 

We follow the optimization algorithm proposed by 
Maillard, Roncalli and Teiletche (2010): 
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The ERC portfolio is found when the function in 
(6), based on the variance of the risk contributions, 
is equal to zero.  

Just in a special or hypothetical situation it is 
possible to carry out explicit solutions: the case where 
asset classes have the same pair-wise correlations. The 
optimal ERC portfolio weights would be then 
proportional to the inverse of the standard deviation. 
Obviously, in the real world, asset classes have pair-
wise correlations that differ (different volatilities as 
well) but mentioning this special situation represents a 
good device to remember the existence and 
properties of the so called naive risk parity or 
simplified risk parity. Under this approach, optimal 
weights are computed as follows: 

1

1

1

i
i N

ii

w .        (7) 

With naive risk parity a true homogeneity in asset 
classes’ contribution to portfolio standard deviation 
cannot be achieved because covariances/correlations 
are completely ignored. 

2. Description of other -free strategies 

As we said in the introduction, we also consider two 

additional -free strategies: the minimum-variance 
strategy and the equally weighting strategy. 

Under the first strategy, portfolio weights are chosen 
through an optimization algorithm that requires only 
estimates of second moments. It can be written as 
follows: 

1 1
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                  (8) 

The resulting portfolio, usually defined as global 

minimum-variance portfolio (GMVP), is ex-ante 

the portfolio with the lowest possible standard 

deviation from which the efficient frontier starts. 

It is worth highlighting that minimum-variance 

strategy concentrates on reducing the overall 

portfolio risk as strongest as possible, but this 

doesn’t mean it is diversified from the standpoint 

of component risks. In fact, the GMVP is 

characterized by homogenous marginal risks but 

according to (2) this doesn’t imply that total risk 

contribution of all asset classes is identical.  

The equally weighting strategy is the most 
straightforward to implement because it doesn’t 
require an optimization model given that no 
objective function exists. It also doesn’t need 
parameters estimates or any kind of additional 
information. In this case, the asset allocation 
problem is solved by simply assigning the same 
weight to each asset class, equal to 1/N. 

3. The empirical study: datasets  
and implementation 

Our empirical study is based on two datasets. The 
first contains monthly returns for the 11 countries sub-
indices that, until the end of 2012, were comprised in 
the index MSCI EMU calculated by Morgan Stanley 
Capital International (MSCI) for the Euro-zone 
geographical area. The sample period extends from 
January 1996 through December 2012, with a total of 
204 monthly returns available. The second dataset 
includes monthly returns for the 5 countries sub-
indices in the MSCI Emerging Markets Europe index 
calculated from February 1999 to January 2013, with a 
total of 168 observations. All returns are euro-
denominated and calculated at total return level. The 
datasets characteristics are summarized in Table 1

2
. 

Table 1. Description of datasets used for the empirical investigation
12

 

Dataset Description Period Frequency 
Number of 

observations 

DATASET 1 
MSCI AUSTRIA, MSCI BELGIUM, MSCI FINLAND, MSCI FRANCE, MSCI GERMANY, 
MSCI GREECE, MSCI IRELAND, MSCI ITALY, MSCI NETHERLANDS, MSCI PORTUGAL, 
MSCI SPAIN  

From 1/1996 
to 12/2012 

Monthly 204 

DATASET 2 
MSCI CZECH REPUBLIC, MSCI HUNGARY, MSCI POLAND, MSCI RUSSIA, MSCI 
TURKEY 

From 2/1999 
to 1/2013 

Monthly 168 

                                                      
1 Chaves et al. (2012) propose two algorithms to compute portfolio weights according to the risk parity strategy that do not involve optimization 
routines but they do not allow to explicitly insert constraints.   
2 The starting point for our time series coincides with euro-denominated sub-indices availability in Thomson-datastream. 
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We deeply explore the statistical properties of returns 

in the chosen datasets. Initially, for each dataset we 

estimate the first four moments (Table 2). The market 

conditions, in terms of return-risk combination, are 

rather different. Just to give an evidence, the highest 

mean return, on a monthly basis, for an asset class in 

the first dataset is 1.223%; it is 2.275% in the second 

dataset. The maximum monthly standard deviation is 

respectively 9.814% and 15.156%. The range of 

monthly volatilities is narrower for the first dataset; it 

goes from 5.538% to 9.814% while for the second 

dataset it goes from 7.122% to 15.156%. 

Table 2. Descriptive univariate statistics on monthly returns 

Mean Standard deviation Skewness Kurtosis 

DATASET 1 

MSCI AUSTRIA  0.578% 6.740% -1.047 6.288 

MSCI BELGIUM 0.633% 5.721% -1.590 8.267 

MSCI FINLAND  1.223% 9.569% 0.137 4.469 

MSCI FRANCE 0.745% 5.538% -0.428 3.272 

MSCI GERMANY 0.810% 6.529% -0.545 4.673 

MSCI GREECE  0.248% 9.814% 0.263 4.986 

MSCI IRELAND 0.113% 6.321% -0.783 3.844 

MSCI ITALY  0.551% 6.332% 0.157 3.623 

MSCI NETHERLANDS  0.698% 5.710% -0.744 4.141 

MSCI PORTUGAL  0.611% 5.822% -0.331 4.076 

MSCI SPAIN  0.990% 6.489% -0.317 3.954 

DATASET 2 

MSCI CZECH REPUBLIC 1.554% 7.122% 0.142 3.746 

MSCI HUNGARY 0.855% 9.165% -0.433 4.300 

MSCI POLAND 0.941% 9.331% 0.013 3.444 

MSCI RUSSIA 2.275% 11.707% 0.984 6.945 

MSCI TURKEY 2.171% 15.156% 0.652 5.877 
 

In Tables 3 and 4 we give the multivariate summary 

statistics on returns by reporting correlation matrices. 

Given that all equity indices in the tables are 

constituents of wider geographical area indices, not so 

surprisingly all pair-wise correlations are positive. 

Nevertheless, we observe a quite large variation. 

Table 3. Correlation matrix for time series of monthly returns in dataset 1 

 MSCI 
AUSTRIA  

MSCI 
BELGIUM 

MSCI 
FINLAND  

MSCI 
FRANCE 

MSCI 
GERMANY 

MSCI 
GREECE  

MSCI 
IRELAND 

MSCI 
ITALY  

MSCI 
NETHERLANDS  

MSCI 
PORTUGAL  

MSCI 
SPAIN  

MSCI  
AUSTRIA  

1 0.700 0.394 0.657 0.624 0.568 0.601 0.624 0.678 0.552 0.580 

MSCI  
BELGIUM 

0.700 1 0.450 0.758 0.713 0.525 0.663 0.686 0.805 0.630 0.633 

MSCI  
FINLAND  

0.394 0.450 1 0.698 0.648 0.417 0.488 0.596 0.613 0.530 0.541 

MSCI  
FRANCE 

0.657 0.758 0.698 1 0.909 0.593 0.638 0.860 0.888 0.726 0.811 

MSCI  
GERMANY 

0.624 0.713 0.648 0.909 1 0.567 0.634 0.771 0.854 0.662 0.735 

MSCI  
GREECE  

0.568 0.525 0.417 0.593 0.567 1 0.406 0.617 0.533 0.542 0.623 

MSCI  
IRELAND 

0.601 0.663 0.488 0.638 0.634 0.406 1 0.573 0.694 0.506 0.568 

MSCI  
ITALY  

0.624 0.686 0.596 0.860 0.771 0.617 0.573 1 0.771 0.700 0.796 

MSCI NETHER-
LANDS  

0.678 0.805 0.613 0.888 0.854 0.533 0.694 0.771 1 0.657 0.733 

MSCI 
PORTUGAL  

0.552 0.630 0.530 0.726 0.662 0.542 0.506 0.700 0.657 1 0.741 

MSCI  
SPAIN  

0.580 0.633 0.541 0.811 0.735 0.623 0.568 0.796 0.733 0.741 1
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Table 4. Correlation matrix for time series of monthly returns in dataset 2 

 MSCI CZECH 
REPUBLIC 

MSCI HUNGARY MSCI POLAND MSCI RUSSIA MSCI TURKEY 

MSCI CZECH REPUBLIC 1 0.665 0.675 0.402 0.374 

MSCI HUNGARY 0.665 1 0.777 0.483 0.489 

MSCI POLAND 0.675 0.777 1 0.503 0.482 

MSCI RUSSIA 0.402 0.483 0.503 1 0.577 

MSCI TURKEY 0.374 0.489 0.482 0.577 1

 

As a second step, we perform various tests of 
normality for the univariate returns distributions in 
the datasets. We apply the most widely used test 
due to Jarque and Bera (JB test), but we also use 
the Omnibus test that takes into account the finite 
sample bias and a test based on densities, the 
Lilliefors test (LI test). We summarize the results 
from testing for normality in Table 5. The results 
for acceptance of the null hypothesis of normality 
at 5% confidence level are shown in bold. The 
third step is to test for the null hypothesis that our 
 

datasets come from a multivariate normal 

distribution. We then perform the Mardia test and 

give the results in Table 5. 

We reject in general the normality assumption for 

our univariate return series and strongly reject the 

multinormality hypothesis. However the departure 

from normality looks more severe for the dataset 

containing the sub-indices in the MSCI EMU. 

Additionally, those asset classes seem to be 

prevalently featured by negative skewness. 

Table 5. Tests for normality on monthly returns 

 JB test Omnibus test LI test 

 Stat. p-value Stat. p-value Stat. p-value 

DATASET 1 

MSCI AUSTRIA  129.214 0.100% 202284.061 0.000% 0.093 0.100% 

MSCI BELGIUM 321.797 0.100% 510076.835 0.000% 0.112 0.100% 

MSCI FINLAND  18.991 0.292% 57489.169 0.000% 0.065 3.402% 

MSCI FRANCE 6.868 3.381% 50215.134 0.000% 0.065 3.402% 

MSCI GERMANY 33.900 0.100% 81697.915 0.000% 0.077 0.490% 

MSCI GREECE  35.874 0.100% 67695.911 0.000% 0.067 2.719% 

MSCI IRELAND 26.918 0.106% 85276.182 0.000% 0.069 2.073% 

MSCI ITALY  4.130 9.580% 47250.569 0.000% 0.049 27.551%

MSCI NETHERLANDS  29.903 0.100% 89407.722 0.000% 0.089 0.100% 

MSCI PORTUGAL  13.571 0.714% 58667.053 0.000% 0.047 34.071%

MSCI SPAIN  11.148 1.152% 56323.361 0.000% 0.072 1.249% 

DATASET 2 

MSCI CZECH REPUBLIC 4.464 7.948% 32069.806 0.000% 0.060 15.035%

MSCI HUNGARY 17.091 0.422% 44252.366 0.000% 0.053 28.942%

MSCI POLAND 1.383 44.192% 28753.401 0.000% 0.061 13.331%

MSCI RUSSIA 136.056 0.100% 134338.329 0.000% 0.079 1.184% 

MSCI TURKEY 69.837 0.100% 75359.716 0.000% 0.088 0.315% 

MULTIVARIATE STATISTICS 

Stat. Critical value p-value 

MARDIA test (dataset 1) 800.1227 3.2751 0.000% 

MARDIA test (dataset 2) 494.3939 50.9984 0.000% 
 

We believe that observing departure from normality 

is important in order to select the reward-to-variability 

ratios to use in the comparative evaluation of the 

selected -free strategies in terms of financial 

efficiency. In dealing with non-normal distributions, 

the exclusive application of the Sharpe ratio as in 

the previous literature would be inadequate. As 

argued by Farinelli and Tibiletti (2008) and Farinelli 

et al. (2008), ratios based on one-sided type 

measures can better serve the purpose.  

Our empirical investigation consists of an out-of-

sample analysis that relies on a rolling-window 

approach for the four -free strategies across the 

two datasets. Specifically, given a T-month-long 

dataset of asset class returns (with T = 204 and 168, 

respectively, for dataset 1 and 2) we use a rolling 

estimation window of 60 months. With these 

observations, we estimate the parameters required 

to implement a particular strategy that is variances/ 

standard deviations and covariances for risk parity 
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and minimum variance, standard deviations/variances 
for naive risk parity

1
; obviously nothing is needed for 

the equally weighting strategy. The estimated 
parameters are then used to obtain optimal portfolio 
weights according to algorithms and algebraic 
procedure illustrated in equations (6), (7) and (8). 
These portfolio allocations are held for the next 6 
months. Afterwards, we move the estimation window 
6 months forward, re-estimate the parameters and 
determine the adjusted portfolio allocations

2
. Hence, in 

our empirical analysis -free strategies are rebalanced 
semi-annually. The procedure just described is 
repeated until the end of the sample period in each 
dataset. With this approach, 25 allocation experiments 

are reached when -free strategies refer to the first 
dataset. This number decreases to 19 for the second 
dataset. For all asset allocation experiments, we keep 
the same constraints: non-negative portfolio weights 
that sum to one. This is a necessary condition in order 

to compare the risk parity portfolios with other -free 
strategies in a fair way. The final outcome of our 
rolling-window based procedure is a series of 144 (for 
dataset 1) and 108 (for dataset 2) out-of-sample 

monthly returns generated by each of the -free 
strategies under investigation. On the basis of two 
different tests we have performed without reporting 
the results (Jarque Bera and Lilliefors), we can reject 
the hypothesis they follow a Gaussian distribution

3
. It 

is worth pointing out that these series do not suffer 
from a look-ahead bias. In other words, they come 
from portfolio allocations computed without using 
forward-looking information.  

In Figures 1 and 2 (see Appendix) we can observe the 
time series of portfolio weights suggested for the 
different strategies. Whatever the dataset considered, 
the minimum-variance strategy, that will be the top 
performing, shows strong variations in portfolio 
weights. Obviously, this is not the case for equally 
weighting strategy. Risk parity shows portfolio 
compositions that seem a bit more changeable than 
naive risk parity. 

4. Tools for evaluating risk parity strategy 

against other -free strategies 

Our goal is to compare empirically the out-of-sample 

performance of risk parity allocation strategy relative 

                                                      
1 An investigation of different estimation techniques for second moments is 
beyond the scope of our contribution. However, given that we detected serial 
correlation across squared returns, it would be interesting in further research 

to consider models of conditional variance and covariance.  
2 To give an example of the empirical procedure we use, consider the 
first asset allocation experiment with dataset 1: we use observations 
from January 1996 through December 2000 to estimate parameters on 
which are based the four portfolios (one for each strategy) that will be 
held (without rebalancing) from January 2001 to June 2001. At the 
following step, with observations from July 1996 through June 2001, 
we obtain portfolios to be held from July 2001 to December 2001. 
3 We had just an exception: the null hypothesis of normality was 
accepted for the minimum-variance strategy in the second dataset 
according to the Lilliefors test.  

to that of other -free strategies in order to understand 

if the former is consistently better. To address this 

issue, it is useful to keep in mind that investors look 

for several characteristics; they like efficient, 

diversified and stable portfolios. So it is not advisable 

to confine the comparative analysis to a single criteria, 

it is definitely better to consider different evaluation 

dimensions. They can be listed as follows: financial 

efficiency, diversification and asset allocation stability.  

Even if three of the four asset allocation strategies 

we consider are entirely risk-based, we remember 

that this is motivated by the intention to mitigate 

estimation risk and this doesn’t mean to completely 

disregard the reward achieved. So also proponents of 

-free strategies appreciate more to less efficiency. 

Therefore it is reasonable to acknowledge some space 

to risk-adjusted performance measures.  

However, as a preliminary comparison we will 

explore separately the return and risk characteristics 

of the strategies. With reference to the first quantity, 

we merely propose measures of cumulative 

performance, geometric and arithmetic return. 

Concerning risk, we are aware that different ideas are 

plausible. Consequently, in addition to the traditional 

standard deviation of returns, we compute measures 

that focus on the variability of underperformance 

with respect to an exogenous threshold level. They 

are downside risk measures (see Nawrocki, 1999; 

and Sortino, Van der Meer and Platinga, 1999). 

Also drawdown measures are included in our 

analysis. Specifically, we consider the maximum 

drawdown and the average value of drawdowns we 

can count over the entire out-of-sample path for 

each strategy. In the end, we take into account 

forward looking measures of risk. In particular, we 

calculate both one-month VaR and one-month 

Expected Shortfall at 99% confidence level. Given 

that the out-of-sample returns from the selected -

free strategies are not normally distributed we prefer 

to apply non parametric approaches and estimate 

VaR and Expected Shortfall using bootstrapped 

historical simulations with 10000 draws.  

After that we will turn our attention to the category 

of reward-to-risk variability ratios. From this class, 

we select the most popular index that is the Sharpe 

Ratio and for its computation we use monthly 

returns from JPM Euro Cash 1Month index as a 

proxy for risk free rate.  

Obviously Sharpe ratio is not the best fitting ratio in 

presence of non-Gaussian distributions so we also 

use ratios that modify the risk measure in order to 

integrate the downside risk or to consider as a 

penalty element the drawdowns encountered by 

each strategy. However, the violation of the normal 

distribution assumption is not the unique reason for 
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the selected risk-adjusted performance measures. 

Risk parity has attracted many institutional 

investors in conjunction with a growing fear for 

collapses, crashes. So, the stronger need for 

protection and the increasing demand for control of 

bad risk and not just for the instability around the 

mean are the rationale for the chosen ratios in the ex-

post analysis.  

According to the above reasoning we give space to the 

Sortino ratio, with threshold level or MAR (minimum 

acceptable return) represented by both the risk-free 

rate (as in the original version) and a null return and 

also to the Performance Ulcer Index proposed by 

Martin and McCann (1989). Denoting by 
kR  the 

arithmetic mean return for strategy k, by rfR  the risk 

free rate and by DD a drawdown, the Performance 

Ulcer Index for strategy k is defined as follows: 

2

1

k rf

k
T

k ,t

t

R R
Performance Ulcer Index .

DD

T

      (9) 

Even if these reward-to-variability ratios overcome 

the problem of “Gaussian dependency” and 

recognize the existence of good and bad risk, they 

don’t allow to put a subjective and different 

emphasis on favorable events (overperforming a 

threshold) and unfavorable ones (underperforming a 

threshold) and they don’t incorporate one-sided 

measure for reward evaluation. We can include 

these desirable properties by carrying out the 

calculation of the performance ratio proposed by 

Farinelli and Tibiletti (2008) that is given by the 

following general form:  

1

;

1

,

p
/ p

k
p q

threshold k q
/ q

k

E R threshold

R

E R threshold
 

(10) 

where p and q (> 0) are said, respectively, right and 

left orders. The higher the order the higher the 

weighting given to large deviations relative to small 

deviations above (in evaluating the reward) and 

under (in evaluating risk) the threshold level. We 

have chosen what can be considered two common 

parametrization of Farinelli-Tibiletti ratio: the Upside 

Potential ratio by Sortino, Van der Meer and Plantinga 

(1999) which corresponds to 2;1

threshold
, and the 

Omega Index by Cascon, Keating and Shadwick 

(2002) which corresponds to 1;1

threshold
. In both 

applications, MAR is our threshold level that we 

represent through the risk free rate. Keeping the 

threshold unchanged, we add the following third 

parametrization where p = 0.5 and q = 2: 

2

,

10 5 2

2

,

1

1
;0

1
;0

T

t k

t. ;

threshold k
T

t k

t

max R threshold
T

R .

min R threshold
T

(11) 

We believe this parametrization is particularly adept 

for very risk-averse investors and, as we said, this is 

likely a profile to be associated with investors in 

risk parity strategy. The growing interest for ERC 

portfolios in a period of financial turmoil suggests 

that risk parity portfolio investors are scared by 

huge losses and perceive them as catastrophic 

events; their desire for safety is much stronger that 

the desire for exceptional performance. Coherently, 

the parametrization in (11), relative to the Upside 

Potential ratio, lightens the gratification from over-

performing a threshold. 

The second evaluation dimension in our comparative 

analysis of -free strategies is represented by the level 

of diversification or, conversely, of concentration. This 

aspect is measured both in terms of weights and in 

terms of (percentage) total risk contributions for each 

strategy. It is captured by different tools. We start 

with the Shannon Entropy measure (SE)
1
 that reaches 

its maximum value (ln N) in the case each asset 

weight or risk contribution is identical. The other 

extreme value is 0 and occurs when just an asset 

weight or risk contribution is equal to 1 and the 

rests are all zero. Therefore, when using the 

Shannon Entropy measure the higher the value, 

more diversified is the portfolio or the 

dissemination of risk among asset classes. This 

interpretation has to be reversed when different 

statistics are used. Actually we also report the 

Herfindahl index (H) and the Gini coefficient (G). 

The former is given by the sum of the squared asset 

allocation weights or by the sum of the squared 

total risk contributions but we adopt a normalized 

version2
 that ranges between 0% (perfect equality or 

diversification) and 100% (extreme inequality or 

concentration). For Gini coefficient computation we 

follow Chaves et al. (2012)
3
. Finally, with reference 

only to the asset class weights, we provide the 

diversification ratio proposed by Choueifaty and 

                                                      
1 It is defined as follows: 

i

N

i

iSE ln
1

, where i represents, alternatively, an asset class 

weight or a risk contribution. 
2 The normalized version of the Herfindahl index is given by: 

1

11

H
N

.

N

. 

3 First, weights or (percentage) total risk contributions are sorted in 

ascendant order and then the following quantity is computed: 
N

i

i wwi
N 1

2  or 
N

i

i PCTRPCTRi
N 1

________2 . 
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Coignard (2008)
1
. Two things need to be précised 

about reporting these statistics regarding the level of 

diversification/concentration. The first one is that, 

since we perform 25 and 19 asset allocation 

experiments for each strategy in our two datasets, we 

have to report average values. The second one is that 

we compute ex ante measures of diversification/ 

concentration of risk given that reported statistics refer 

to each rebalance date. In other words, we do not 

account for the possible varying behavior of these 

measures during the 6 months until portfolios are 

rebalanced again
2
. 

The last evaluation dimension included in our 
empirical analysis is that of portfolio stability. In order 
to capture this feature, we indicate, for each strategy 
and for each dataset, the average value across the asset 
allocation experiments of the turnover. For example, 
when the investment universe is represented by 
countries in the Eurozone, the average turnover for 
strategy k is defined as follows: 

24 11

, , , ,
1 1

1
,

24 k i t _ reb . k i t _ reb .
t _ reb i

w w              (12) 

where ,  ,k i t _ reb
w  is the portfolio weight in asset class i 

under strategy k before re-estimation of portfolio 

allocation and , ,k i t _reb
w  is the suggested portfolio 

 

weight after rebalancing
3
. This quantity can be 

interpreted as the average percentage of portfolio 

wealth that needs to be traded at each rebalancing date 

in order to implement each -free strategy. In 

general, high values for turnover mean higher 

transaction costs. Together with the average turnover, 

we also give evidence of maximum turnover.  

5. Results 

We start by displaying in Table 6 the performance of 

the four -free strategies. To help better understand 
them, we make a preliminary note: the 12-year period 
from January 2001 to December 2012 at the back of 
the out-of-sample returns series for strategies based on 
Eurozone developed countries is characterized by 
downturns (excluding Austria, Belgium and 
Germany). On the contrary, the 9-year period from 
February 2004 to January 2013 covered up by the out-
of-sample performances of strategies involving the 
emerging European equity markets shows strong up-
movements (especially Czech Republic and Turkey).  

Whatever the market conditions, the minimum-
variance strategy has the best cumulative return (and 
consequently also the best annual and monthly 
compounded return), followed by risk parity 
strategy. The order between the two is reversed just 
if we consider the arithmetic mean return. 

Table 6. Return statistics for -free strategies 

 RISK PARITY NAIVE RISK PARITY MINIMUM VARIANCE EQUALLY WEIGHTED 

DATASET 1: MSCI EMU EQUITY INDICES 

Cumulative performance -11.597% -16.156% 26.425% -21.443% 

Annualized geometric return -1.022% -1.458% 1.973% -1.991% 

Geometric mean return (monthly) -0.086% -0.122% 0.163% -0.167% 

Arithmetic mean return (monthly) 0.060% 0.025% 0.299% -0.015% 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Cumulative performance 191.231% 181.585% 201.887% 175.290% 

Annualized geometric return 12.611% 12.191% 13.062% 11.909% 

Geometric mean return (monthly) 0.995% 0.963% 1.028% 0.942% 

Arithmetic mean return (monthly) 1.274% 1.242% 1.272% 1.237% 
 

When we consider the risk profile of the -free 

strategies (Table 7), minimum-variance strategy 

again dominates in terms of standard deviation. In 

particular we can confirm and extend the order of 

volatilities documented by Maillard, Roncalli and 

Teiletche (2010): 
12

 

                                                      
1 The diversification ratio is defined as follows:  

1

2 2

1 1 1

N

i i

i

N N N

i i i j ij

i i j
j i

w

.

w w w

. 

2 The measurement of ex-post diversification/concentration in 

percentage total risk contributions would be particularly interesting and 

feasible to implement with more observations available and with a 

longer time interval between two rebalancing dates.  

Minimum variance Risk parity

Naive risk parity Equally weighting

  (13) 

The ordering remains the same when we consider 
one-side measure of variability like the downside 
risk. On the basis of VaR and Expected shortfall, as 
well, the risk parity strategy is dominated by the 
minimum-variance strategy. The risk parity strategy 
is behind the minimum-variance strategy also in 
terms of drawdown statistics: the minimum-variance 
strategy shows a

3
lower number of drawdowns, a 

smaller maximum drawdown and, in the case of 
dataset 1, also an inferior value for average drawdown.  

                                                      
3 In equation (12), we have 24 instead of 25 terms in the average 
because at the starting time each portfolio is already allocated according 

to each asset allocation strategy.  
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Table 7. Risk statistics for -free strategies 

 
RISK PARITY 

NAIVE RISK 
PARITY 

MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 DATASET 1: MSCI EMU EQUITY INDICES 

Monthly standard deviation 5.342% 5.374% 5.165% 5.460% 

Monthly downside deviation (threshold = MAR = free risk) 4.242% 4.269% 3.982% 4.345% 

Monthly downside deviation (threshold = 0%) 4.112% 4.136% 3.856% 4.214% 

Var 1M (bootstrapped historical simulations – 10000, conf. level = 99%) -15.313% -15.745% -15.311% -15.168% 

Expected shortfall 1M (bootstrapped historical simulations – 10000,  
conf. level = 99%) 

-17.711% -17.604% -15.936% -17.967% 

Maximum drawdown -62.415% -60.870% -61.810% -62.266% 

Number of drawdowns 123 128 115 127 

Average drawdown -32.090% -31.536% -29.657% -32.581% 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Monthly standard deviation 7.410% 7.411% 6.963% 7.616% 

Monthly downside deviation (threshold = MAR = free risk) 5.114% 5.133% 4.568% 5.292% 

Monthly downside deviation (threshold = 0%) 4.998% 5.017% 4.461% 5.175% 

Var 1M (bootstrapped historical simulations – 10000) -15.406% -15.851% -13.966% -16.437% 

Expected shortfall 1M (bootstrapped historical simulations – 10000) -27.369% -27.010% -24.877% -27.712% 

Maximum drawdown -66.604% -66.309% -60.757% -67.461% 

Number of drawdowns 81 84 79 83 

Average drawdown -23.831% -23.259% -24.306% -24.506% 
 

In Table 8 we report results about the first evaluation 
dimension we have chosen: financial efficiency. On 
the basis of the Sharpe ratio, we obtain results that 
contrast with those from Chaves et al. (2011, 2012). 
They documented, for a diversified investment 
universe of 10 asset classes, that in terms of Sharpe 
ratio the risk parity strategy (including its simplified 
version) was similar to equally weighted and 
outperformed the minimum-variance. They also 

observed that for a dataset including 28 commodity 
future sub-indices the Sharpe ratio of the minimum-
variance was behind that of risk parity. Differently, 
with reference to both our datasets, the risk parity 
strategy does not overcome the minimum-variance 
strategy which shows the highest Sharpe ratio, but 
prevails both over naive risk parity and equally 
weighting. Our results are therefore more in line with 
those from Maillard, Roncalli and Teiletche (2010).  

Table 8. Reward-to-variability ratios for -free strategies calculated on monthly out-of-sample returns 

 RISK PARITY NAIVE RISK PARITY MINIMUM VARIANCE EQUALLY WEIGHTED 

DATASET 1: MSCI EMU EQUITY INDICES 

Sharpe ratio -0.0266 -0.0329 0.0187 -0.0398 

Sortino ratio (threshold = MAR = free risk) -0.0334 -0.0415 0.0242 -0.0500 

Sortino ratio (threshold = MAR = 0%) 0.0147 0.0061 0.0775 -0.0036 

Upside Potential ratio (threshold = MAR = free risk) 0.4759 0.4722 0.5271 0.4676 

Farinelli-Tibiletti ratio (with parametrization p=0.5; q=2) 0.2313 0.2275 0.2662 0.2218 

Omega Index (MAR = free risk) 0.9344 0.9193 1.0481 0.9034 

Performance Ulcer index (or Martin ratio) -0.0041 -0.0052 0.0031 -0.0061 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Sharpe ratio 0.1485 0.1442 0.1577 0.1397 

Sortino ratio (threshold = MAR = free risk) 0.2152 0.2082 0.2404 0.2010 

Sortino ratio (threshold = MAR = 0%) 0.2549 0.2476 0.2851 0.2391 

Upside potential ratio (threshold = MAR = free risk) 0.6808 0.6776 0.7075 0.6722 

Farinelli-Tibiletti ratio (with parametrization p=0.5; q=2) 0.3685 0.3698 0.3455 0.3682 

Omega Index (MAR = free risk) 1.4622 1.4437 1.5148 1.4267 

Performance Ulcer index (or Martin ratio) 0.0448 0.0434 0.0449 0.0418 
 

The hierarchy we have obtained for the Sharpe ratio 
within the two datasets is replicated when the 
downside risk is included in the risk-adjusted 
performance measure

1
. Once again the minimum-

                                                      
1 In the case of dataset 1, where we have negative Sharpe ratio, the 

comparison based on reward-to-variability ratios using asymmetric 

measures of risk is extremely appropriate.  

variance portfolio shows the highest Sortino ratio 
and the highest Upside Potential ratio followed by 
the risk parity strategy that slightly overcomes naive 
risk parity and equally weighting strategies. Also 
consideration for the Performance Ulcer index 
doesn’t change this ordering. Through a closer 
examination of the ratios sharing the shape of the 
Farinelli-Tibiletti ratio, we note that even using 
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different pairs of parameters p and q, the ranking of the 

-free strategies on the basis of their financial 
efficiency is not revolutionized. But there is an 
“exception” when the parameter setting is p = 0.5 and 
q = 2 that seems particularly proper for a conservative 
risk profile. Actually, under this setting the risk parity 
strategy dominates both equally weighting and 
minimum-variance that takes the last position.  

We now turn the attention to the issue of 

diversification (Table 9, 10). From the perspective 

of portfolio weights, the equally weighted strategy 

is, as expected, at the top with higher Shannon 

Entropy measure and lower Herfindhal index and 

Gini coefficient. The risk parity strategy tends to 
 

have a middle positioning while at the bottom we 

find the minimum-variance strategy. Actually, its 

lowest standard deviation comes, especially for 

the European emerging markets dataset, from 

concentration in few asset classes
1
. However, if we 

consider each strategy’s power in reducing total (ex-

ante) portfolio risk relative to the weighted 

average of individual risks, the competition 

restricts to risk parity and minimum-variance 

strategies. The risk parity strategy has 

diversification ratios of 1.442 and 1.292, 

respectively, with reference to the first and second 

dataset, the minimum-variance strategy has 

diversification ratios of 1.677 and 1.220.  

Table 9. Levels of diversification in portfolio weights for -free strategies (average values) 

 RISK PARITY NAIVE RISK PARITY MINIMUM VARIANCE EQUALLY WEIGHTED 

 DATASET 1: MSCI EMU EQUITY INDICES 

Shannon entropy measure  2.374 2.382 1.041 2.398 

Normalized Herfindhal index 0.504% 0.315% 35.762% 0.000% 

Gini coefficient 11.311% 9.995% 78.676% 9.291% 

Diversification ratio 1.442 1.148 1.677 1.156 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Shannon Entropy measure  1.582 1.593 0.531 1.609 

Normalized Herfindhal index 13.171% 12.778% 67.325% 12.000% 

Gini coefficient 11.976% 9.382% 9.211% 8.940% 

Diversification ratio 1.292 1.165 1.220 1.167 
 

We can argue that the risk contraction is based on 

different conditions for the two strategies. For the 

risk parity strategy, it relies on the maximum 

dissemination of risk among asset classes that 

contribute equally to the total risk. In the case of 

minimum-variance strategy, it is pursued by 

concentrating the risk load on a small number of 

asset classes selected according to the inverse of 

their individual risk and the inverse of correlation 

with other investment alternatives. We note that, in 

the case of the first dataset, generally 4 of the 11 

asset classes are in the solution for the minimum-

variance portfolio and there isn’t a rebalancing 

experiment including more than 6 asset classes. For 

the second dataset, we generally have 3 of the 5 

asset classes involved in the minimum-variance 

strategy and never more than 4. The comparisons 

based on the Herfindahl index and on the Gini 

coefficient confirm our reflections: they are at the 

extreme for risk parity strategy (with the lowest 

values) and the minimum-variance strategies (with 

the highest values). The same indication comes out 

from the Shannon Entropy measure that achieves its 

highest value for the risk parity strategy
2
. 

Table 10. Levels of diversification in risk allocations for -free strategies (average values) 

 RISK PARITY NAIVE RISK PARITY MINIMUM VARIANCE EQUALLY WEIGHTED 

 DATASET 1: MSCI EMU EQUITY INDICES 

Shannon entropy measure  2.398 2.395 1.041 2.382 

Normalized Herfindhal index 0.000% 0.057% 35.762% 0.327% 

Gini coefficient 0.013% 4.219% 78.676% 8.890% 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Shannon entropy measure  1.609 1.607 0.531 1.595 

Normalized Herfindhal index 12.000% 12.112% 67.325% 12.626% 

Gini coefficient 0.000% 3.863% 70.032% 4.187% 

12
 

                                                      
1 The minimum-variance portfolio on the basis of dataset 2 is strongly invested in one asset class, that is MSCI Czech Republic, the sub-index with 

the lowest standard deviation. 
2 It is ln (11) = 2.398 for the first dataset, and ln(5) = 1.609 for the second dataset. 
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The last evaluation dimension is the asset allocation 

stability. We report in Table 11 both the average 

turnover and the maximum turnover. Compared to the 

minimum-variance strategy, risk parity portfolios 

dominate in both terms (with lower values). We 

observe, however, that the average turnover and, in the 

case of dataset 2, also the maximum turnover can be 

lower for the naive risk parity strategy. 

Table 11. Average and maximum turnover for -free strategies 

 RISK PARITY NAIVE RISK PARITY MINIMUM VARIANCE EQUALLY WEIGHTED 

 DATASET 1: MSCI EMU EQUITY INDICES 

Average turnover 7.633% 6.688% 34.130% 7.265% 

Maximum turnover 15.883% 17.776% 88.960% 20.014% 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Average turnover 8.886% 7.988% 20.441% 8.216% 

Maximum turnover 18.237% 17.113% 56.061% 17.493% 
 

Conclusion 

In recent years, risk parity strategy has increased in 

popularity. In this article, we have proposed an 

empirical investigation in order to compare this 

approach of investing with other asset allocation 

strategies that have in common the fact they don’t 

require expected returns as input for the portfolio 

construction process; namely naive risk parity, 

minimum-variance and equally weighting. This 

comparison has been undertaken using two different 

datasets composed by MSCI Emu and MSCI EM 

Europe sub-indices. Given this choice, the empirical 

investigation has been performed under different 

market conditions, over periods of slightly different 

length and considering a different number of asset 

classes included in the investment universe.  

Differently from the existing literature, in our 

comparison we have distinguished three evaluation 

dimensions of the out-of-sample return series from 

the selected strategies: financial efficiency, level of 

diversification and asset allocation stability. Further, 

for each evaluation dimension we have computed a 

broad and comprehensive set of measures. We are 

not aware of any other contribution on the subject 

with a similar expansion of the evaluation tools.  

Generally speaking, our findings are in line, more 

robust and more well-proven than those achieved by 

Maillard, Roncalli e Teiletche (2010), while tend to 
 

contradict with Chaves et al. (2011, 2012). In terms 
of financial efficiency, we cannot consistently 
acknowledge the superiority of risk parity strategy, 
rather we can say it has a middle positioning 
whatever the risk-adjusted performance measure we 
use, in the sense that it persistently prevails over 
naive risk parity and equally weighting but is 
dominated by minimum-variance. However, when 
we put risk parity strategy to the test on the basis of 
the other evaluation dimensions, it shows 
comparatively various points of strength: the 
proportions allocated to asset classes are not 
extremely fluctuating across the rebalancing dates as 
it happens with minimum-variance; at the same time 
risk parity can overcome the rival in terms of 
diversification ratio. What’s more, it can achieve 
this result in a sound way that is with the maximum 
dissemination of risk among asset classes and with a 
saving on transaction costs coming from low turnover. 

We believe that the evidence we have provided in 
this article can be of practical utility. From the point 
of view of the investment industry, it should impact 
the selection of methodologies for building 
alternative-weighted equity indices other than the 
common capitalization-weighted indices. For 
institutional investors (like pension funds), our 
findings can legitimate risk parity as an option to 
consider for the strategic asset allocation if they 
decide to pursue an approach different from the 
classical Markowitz’s approach.  
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Appendix 

Risk parity Naive risk parity 

Minimum-variance Equally weighting 

Fig. 1. Portfolio weights for -free strategies (dataset 1) 
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Risk parity Naive risk parity 

Minimum-variance Equally weighting 

Fig. 2. Portfolio weights for -free strategies (dataset 2) 
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