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Chuan-Zhong Li (Sweden), Karl-Gustaf Löfgren (Sweden) 

Genuine savings measurement under uncertainty and 

its implications for depletable resource management 

Abstract 

The concept of genuine savings has in recent years become widely accepted as a dynamic welfare indicator, which first 

appeared in Weitzman (1976) and then “formalized” by Pearce and Atkinson (1993). This paper attempts to generalize 

this concept in a stochastic setting using the Dasgupta-Heal-Solow growth model under the Merton (1975) type of 

population growth uncertainty. It is shown that the formula for genuine savings under uncertainty also involves a va-

riance component reflecting the welfare loss from risk aversion (cf. Li and Lofgren, 2012). Moreover, the welfare im-

plications of the risk-adjusted genuine savings on depletable resource management are explored. 

Keywords: genuine savings, uncertainty, depletable resource, welfare measurement. 
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Introduction © 

It has been known for quite a while that genuine 

savings are a welfare indicator in a comprehensive 

deterministic dynamic growth model of the Ramsey 

type. More precisely, growth in the aggregate value 

of net investments of all relevant capital stocks indi-

cates welfare improvement. The concept shows up 

in Weitzman (1976) for the first time in the proof of 

a main theorem on the proportionality between the 

Hamiltonian and the present value of future utilities. 

Later on, its implications for sustainability are ex-

plored by Arrow, Dasgupta and Maler (2003), 

Asheim (1994), Heal and Kristrom (2005) and 

Pearce and Atkinson (1993), among others. The 

measure has been popularized by Hamilton (1994), 

and used in practice by, among many others, Hamil-

ton and Clements (1999) and Atkinson and Hamil-

ton (2007). The purpose of this paper is to general-

ize this welfare measure in a stochastic context and 

explore its implications for depletable resources 

management. We will use a stochastic dynamic 

growth model with capital goods, a man-made capi-

tal and an exhaustible resource (c.f. Dasgupta and 

Heal, 1974; Hartwick, 1977; Solow, 1974; and Li 

and Lofgren, 2012) to show how the standard ge-

nuine savings formula from a deterministic setting 

should be completed by a variance component. Al-

though the model is simple, the derivations are 

enough to understand how the result generalizes to a 

multi-sector version of the model under uncertainty.  

The remaining parts of the paper is structured as 

follows. Section 1 presents the basic concept of 

genuine savings in a deterministic setting and dis-

cusses its welfare significance. Section 2 derives the 

main result on the risk adjusted concept of genuine 

savings in a stochastic growth model framework, and 

shows how the Weitzman foundation can be genera-
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lized. Section 3 explores the welfare implications of 

the result for depletable resource management, and 

the final section concludes. 

1. The concept of genuine savings 

To derive the concept of genuine savings in its most 

general form, we take advantage of the standard multi-

sector dynamic general equilibrium growth model. Let 

C(t) denote a vector of comprehensive consumption 

goods at time t, including environmental services and 

other externalities, and U(C(t)) the utility derived from 

consumption. Assume that the utility function U satis-

fies the usual regularity conditions, and let K(t) denote 

a vector of all capital stocks at time t, including natural 

and environmental assets. The vector of net invest-

ments is denoted by ( ) ( )I t K t= & , i.e. the change in 

capital stocks over time. The society’s objective is to 

maximize intertemporal welfare (the present dis-

counted value of today’s and future utilities) i.e. 

( ) ( ){ }
( )

0,
max ( ( ))exp

C t I t
U C t t dtθ

∞
−∫     (1) 

subject to the initial condition K(0) = K0, stock dy-

namics ( ) ( )K t I t=& , the terminal stocks lim ( ) 0,
t

K t→∞ ≥
 

and the feasibility constraint (C(t), I(t), K(t)) ∈ A(a), 
where A(a) is a convex attainable possibility set sub-
ject to certain institutional constraints. The pure rate of 
time preference is assumed to be positive i.e. θ > 0. 

Suppose that { }
0

*( ), *( ), *( )C t I t K t
∞

 is the unique 

solution to problem (1). Then, by the maximum prin-

ciple, the pair { }*( ), *( )C t I t  maximizes the cur-

rent value Hamiltonian ( , , ) ( ( ))H C I K U C t= +  

( ) ( )t I t+Ψ  conditional on the capital stock K*(t) at 

each time t, i.e. subject to the initial condition 

0(0)K K= , stock dynamics ( ) ( )K t I t=& , the terminal 

stocks lim ( ) 0t K t→∞ ≥ , and the feasibility constraint 

( ( ), ( ), ( )) ( )C t I t K t A α∈ , where ( )A α  is a convex 

attainable possibility set subject to certain institu-



Environmental Economics, Volume 4, Issue 3, 2013 

 21 

tional constraints. The pure rate of time preference 

is assumed to be positive i.e. 0>θ . Suppose that 

0{ ( ), ( ), ( )}C t I t K t∗ ∗ ∗ ∞
 is the unique solution to prob-

lem (1). Then, by the maximum principle, the pair 

{ ( ), ( )}C t I t∗ ∗  maximizes the current value Hamilto-

nian ( , , ) ( ( )) ( ) ( )H C I K U C t t I t= + Ψ , conditional 

on the capital stock ( )K t∗  at each time t , i.e.  

( ( ), ( ), ( ))

( ) ( ( )) ( ) ( )

max ( ( )) ( ) ( )
C t I t K t A

H t U C t t I t

U C t t I t

∗ ∗ ∗

∈

= + Ψ =
= + Ψ ,                  (2) 

where ( )tΨ  is a vector of shadow prices of capital, 

satisfying the Euler equation ( ) ( ) ( ) /t t H t Kθ ∗Ψ − Ψ =−∂ ∂& . 

By advocating the dynamic envelope theorem, Weitz-
man (1976) derived the following result  

( ) ( ) ( )H t t I tθ∗ = Ψ&       (3) 

which together with equation (2) yields 

( ) [ ( ) ( ( ))]H t H t U C tθ∗ ∗ ∗= −& . The solution to this 

differential equation reads  

)()( tWtH ∗∗ = θ ,      (4) 

where  

( ) ( ( ))exp( ( ))
t

W t U C t s t dsθ
∞∗ ∗= − −∫               (5) 

denotes the maximal intertemporal welfare at time t, 
i.e. the comprehensive wealth. The relationship in 
(4) is the well-known Weitzman foundation, namely 

the maximized Hamiltonian in (2) corresponds to 
“the interest on wealth” or the constancy-equivalent 
of future utilities. Since the rate of time preference 

θ  is assumed to be positive, the equation is (4) 

implies growth in the flow value of the Hamiltonian 

( )H t
∗

 and that in the stock value of ( )W t
∗

 is also 

proportional to each other, and therefore growth in 

the Hamiltonian value over time ( )H t
∗&  indicates 

welfare improvement/sustainability at time t such 

that ( ) 0W t
∗ >& . It is worth mentioning that while the 

main result in and Weitzman (1976) and Weitzman 
(2003) was the correspondence theorem in (4), the 
welfare significance of (3) was left aside as an in-
termediate step in the proof of the theorem. In 
another influential paper by Pearce and Atkinson 
(1993), the aggregated value of net investments in 

all relevant capital stocks i.e. ( ) ( )t I tΨ  in (3) was 

formalized as genuine savings. Since the pure rate 

of time preference 0θ > , a positive value of ge-

nuine savings implies growth in the maximized 

Hamiltonian value ( ) 0,H t
∗ >&

 
indicating welfare 

improvement/sustainability such as ( ) 0W t
∗ >& . 

Loosely speaking, this means that the future pros-
pect as seen from tomorrow is better than that of 
today and in an intergenerational context this can be 

interpreted as that development from this to the next 
generation is sustainable. 

2. Genuine savings in a stochastic context 

In this section, we analyze the genuine savings issue 
under uncertainty using the Dasgupta-Heal-Solow 
growth model (Dasgupta and Heal, 1974; Solow, 
1974) with a homogenous capital good and an ex-
haustible natural resource. In the same vein as in Mer-
ton (1975), we consider a stochastic population growth 
and explore the degree of such uncertainty on capital 
formation, resource depletion and dynamic welfare. 
We assume that the production function (net of depre-

ciation) ))(),(),(( tLtEtKF  is homogenous of degree 

one, with K(t) as the capital stock, E(t)
 
as the input 

of extracted natural resource, and L(t) labor input at 
time t. As shown in Solow (1974), in a deterministic 
setting, the capital stock evolves according to  

( ) ( ( ), ( ), ( )) ( )

( ) ( ( ), ( ),1) ( ),

K t F K t E t L t C t

L t F k t e t C t

= − =
= −

&

    (6) 

with 0)0( 0 >= KK , where dttdKtK /)()( =& , and C(t) 

denotes consumption. The last equality follows from 
homogeneity of the production function with 

)(/)()( tLtKtk = , )(/)()( tLtEte = , )(/)()( tLtCtc =  

defined as the per capita value of capital, resource 
input and consumption, respectively. The dynamics 
equation for the exhaustible resource is simply  

)()( tEtX −=& ,       (7) 

with 0)0( 0 >= XX . Let the population at time t  

be )exp()0()( ntLtL =  with an initial size 0)0( >L  

and a growth rate of n. Then, the per capita capital 
and resource dynamics equations can be readily 
derived as  

)()()(

)()())(),(()(

tnxtetx

tctnktxtkftk

−−=
−−=

&

&
    (8) 

with ),())0(),0(( 00 xkxk = , where ( ( ), ( ))f k t x t =  
( ( ) / ( ), ( ) / ( ),1)F K t L t X t L t=  denotes the per capita 

production function (net of depreciation) at time t . 

The per capita production function is assumed to 

satisfy the Inada conditions 0(.)>kf , 0>xf , 0<kkf , 

0<xxf
 
and 02 >− kxxxkk fff , where subscripts denote 

partial derivatives. To introduce uncertainty in the 
model, we now assume that the growth of the labor 
force follows a geometric Browning motion

1
 of the 

following form (Merton, 1975):  

                                                      
1 Geometric Browning motion is used to guarantee that the labor force 
remains positive. Note, however, that this does not result in an equation 
for the capital and resource stocks per capita that is Geometric Brow-
nian motion. 
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( ) ( ) ( ) ( ),dL t nL t dt L t dz tσ= +     (9) 

where )(tdz  is the stochastic differential of a simple 

Wiener process. The drift of the process in (9) is go-

verned by the expected rate of labor growth n . In 

other words, over a short interval of time dt , the pro-

portionate change of the labor force ( LdL / ) is nor-

mally distributed with mean dtn)(  and variance 

dt2σ . We can now use Ito’s lemma to transform the 

uncertainty of growth in the labor force into uncertain-

ty about the growth of the per capita capital and re-

source stock. By a straightforward derivation, we 

obtain  

2

2

( ) [ ( ( ), ( )) ( ) ( ) ( )] ( ) ( )

( ) [ ( ) ( ) ( )] ( ) ( )

dk t f k t x t c t n k t dt k t dz t

dx t e t n x t dt x t dz t

σ σ

σ σ

= − − − −

= − − − −
 

(10) 

with ),())0(),0(( 00 xkxk = . In other words, we have 

translated uncertainty with respect to the growth rate 

of the labor force into uncertainty with respect to the 

capital and the resource per unit of labor and, indi-

rectly, to uncertainty with respect to output per unit 

of labor, ))(),(()( txtkfty = . The optimization 

problem as of date t  is to find an optimal consump-

tion policy, and the stochastic Ramsey problem is 

typically written as  

( ), ( )

max ( ( )) exp( ( ))
T

t
t

c s e t

E u c s s t dsθ− −∫               (11) 

subject to the initial conditions tktk =)(  and 

txtx =)(  and the dynamics equations in (10) for all 

ts ≥ , where tE  denotes the mathematical expecta-

tion taken at time t . The function  ))(( scu  is the 

instantaneous utility function at time s  which is 

assumed to be twice continuously differentiable, and 

0>θ  is the pure rate of time preference. The upper 

integration limit T is the first exit time from the 

solvency set G i.e. inf{ ; ( ), ( ) }
s s

T s t k x Gω ω= ≥ ∉
 

with { ( ), ( ); 0, 0}
s s s s

G k x k xω ω= > > . In other 

words, the process is stopped when the capital stock 
becomes non-positive (when bankruptcy occurs). In 
most contexts it is realistic to assume that the op-

timal control process )(sc∗
 for ts ≥  is condi-

tioned solely on past observed values of the state 

process )(sk  and )(sx . In such a case, mathemati-

cians would say that the control process is adapted 
to the state process. Here, it is assumed that the op-
timal control function is a time autonomous Markov 

control of the following type ( ) ( ( ), ( ))c s c k s x s
∗ =  

meaning that the control at time s  only depends on 

the state of the system at this time. In particular, it 

does not depend on the starting point or time as a 
separate argument. Then, the optimal value function  

( , ( ), ( )) ( ( ))exp( ( )) ,
T

t
t

V t k t x t E u c s s t dsθ∗= − −∫
    

 (12) 

will also be time-autonomous as stated in the fol-

lowing lemma. 

Lemma. ( , ( ), ( )) (0, (0), (0))V t k t x t V k x=  for )0()( ktk =  
and ( ) (0)x t x=

 
where the endogenous time spent in 

the solvency set G is tTTG −= , q.e.d. 

Proof. The optimal control is a Markov control, i.e., it 

depends only on the initial stock ))(),(( txtk  at time 

t . Let ts −=τ , then we can express the optimal con-

sumption stream by )()( tcsc += ∗∗ τ  with 0=τ  for 

ts =  and GT=τ  for Ts = . The time spent in the 

solvency set tTTG −=  for a given experiment 

ts−=ωωτ  is endogenous and the solvency set does 

not change due to the rescaling. Therefore, we have  

( , , ) ( ( ), ( ))exp( ( ))
T

t
t

V t k x E u k s x s s t dsθ∗= − − =∫
0

0
( ( ), ( ))exp( ) (0, , ).

GT

E u k x d V k xτ τ θτ τ∗= − =∫          (13) 

The second equality follows since substituting 
( ) ( )k s k tτ= +  and ( ) ( )x s x tτ= +  into the time auto-

nomous stochastic differential equation (10), we 

obtain a process that starts at (0, , )k x  with the same 

probability law on an equivalent solvency set as the 

process that starts at ( , , )t k x , and the optimal control 

is Markov. The third equality follows from the defi-

nition of a value function. 

Since the value function does not explicitly depend 

on the initial calendar date t , we redefine it by 

( ( ), ( )) ( , ( ), ( )).W k t x t V t k t x t=                            (14) 

According to the principle of optimality, the value 

function which should satisfy the following Bellman 

equation  

0 max{ ( ) ( , ) ( , )},c

c
u c W k x A W k xθ= − +               (15) 

with cA  as the backward operator for a given c  

such that:  

1 1
( , ) [ , ] [ , ]

2

kk kxc

t k x

xk xx

W Wdk dk
AW k x E W W dk dx

W Wdx dxdt
= +

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎩ ⎣ ⎦ ⎣ ⎦⎭⎣ ⎦

 

(16) 

where subscripts denote partial derivatives, i.e. 

/
i

W W i= ∂ ∂
 

for xki ,= , and 2
/

ij
W W i j= ∂ ∂ ∂  for 

xki ,=  and xkj ,=  are the first and second-order 

partial derivatives of the value function to the capi-

tal and resource stocks, respectively. Given the 
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optimal consumption policy )(tc∗
, a light rear-

rangement of equation (15) leads to the following 

proposition. 

Proposition 1. Along the optimal growth path )(tc∗ , 

the interest on intertemporal welfare is equal to a 
risk-adjusted value of the current value Hamiltonian  

( , ) ( ) ( , ),cW k x u c A W k xθ ∗= +                            (17) 

i.e. the maximum expected sustainable utility over time. 

The proposition is a generalized version of Weitz-
man foundation (4) with an extra variance compo-
nent, the last term in (16), being added to the deter-
ministic Hamiltonian function (cf. Aronsson and 
Löfgren, 1995). Note that for this particular model, 

the shadow price vector ( )tΨ  in (4) is given by 

),( xk WW . To derive a dynamic welfare measure 

like the genuine saving, we follow Weitzman (1976) 
and Arrow, Dasgupta and Mäler (2003) by differen-

tiating the value function ))(),(( txtkW  with re-

spect to time using the Leibniz rule to obtain  

( ( ), ( )) ( ( )) ( ( ), ( )).W k t x t u c t W k t x tθ= − +&            (18) 

Now, using the differential equation in (18), we obtain 

after substituting for ),( xkWθ  in (17) the following 

proposition on the generalized genuine saving. 

Proposition 2. The risk-adjusted genuine savings 
i.e. the expected rate of change in the value function 
at concurrent time t  can be expressed as  

( ( ), ( )) ( , )

1 1
[ , ] [ , ] .

2

c

kk kx

t k x

xk xx

W k t x t A W k x

W Wdk dk
E W W dk dx

W Wdx dxdt

= =

= +
⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

&

   (19) 

Note that the row vector ],[ xk WW  are the account-

ing prices per unit of capital and resource stock, and 
thus the first term after the second equality sign 
corresponds to the conventional genuine savings 
under certainty i.e.  

2 2

1
[ , ]

[ ( , ) ( )] [ ( )],

t k x

k x

dk
E W W

dxdt

W f k x c n W e nσ σ

=

= − − − + − − −

⎡ ⎤
⎢ ⎥⎣ ⎦  (20) 

and the second term  

{ }2 2 2 2 2

1
[ , ]

2

1
2

2
,

kk kx

t

xk xx

kk kx xx

W W dk
E dk dx

W W dxdt

W k W kx W xσ σ σ

=

= + +

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎩ ⎭

               

(21) 

is the variance component originated from Ito calcu-

lus. It can be readily shown that the matrix the ma-

trix ijW  for xki ,=  and xkj ,=  is negative defi-

nite for “well-behaved” maximization problems 

with regular utility and production functional 

forms
1
. To satisfy this condition, it is sufficient for 

the utility function to be jointly concave in all con-

sumption goods, and the production to be jointly 

concave in all relevant capital stocks. This means 

that we would under a stochastic growth problem 

expect that a positive net investment value would 

not be enough to indicate a local welfare improve-

ment. The value of net investment has to be large 

enough to compensate for the risk aversion loss 

from the uncertainty in order for the dynamic wel-

fare not to decline over time. Loosely speaking, if 

we regard the terms kkW
2

1 , xxW2
1  and kxW  as the 

“prices” of risk and 
22kσ , 

22 xσ  and kx2σ , re-

spectively, as the “quantities” of risk, then the whole 

expression on the right-hand-side of (19) can be 

interpreted as a generalized genuine savings meas-

ure. A reasonable economic interpretation of this 

result is that, under the presence of uncertainty, 

precautionary savings (cf. Leland, 1968; and Tur-

novsky and Smith, 2006) corresponding to the abso-

lute value of the variance component are required in 

order to sustain the same dynamic welfare as in the 

deterministic case. 

3. Welfare implications on depletable resource 

management 

In the literature of natural resource economics, two 

important rules have been proposed for efficient re-

source utilization (Hotelling’s rule) and sustainable 

development (Hartwick’s rule). For a cake-eating 

economy with some fixed initial stock such as oil and 

minerals, Hotelling’s rule says that along an optimal 

resource extraction path, the user cost per unit of the 

stock, Wx i.e. the net price of the extracted resource 

after the marginal extraction cost being accounted for 

should grow at the same rate of the interest rate. For 

the productive economy with a depletable resource 

described above with the Dasgupta-Heal-Solow 

model, Hartwick’s rule indicates that when the de-

terministic genuine savings as in equation (20) are 

equal to zero i.e. 0// =+ dtdxWdtdkW xk , a constant 

level of consumption c  and thereby utility )(cu  

can be sustained. In other word, if the cost of re-

source depletion 0/ <dtdxWx  for 0/ <dtdx  can 

be compensated by a corresponding increase in the 

value of the productive capital k  namely  

/ 0
k

W dk dt > , then a constant level of consumption 

and utility can be sustained (c.f. Hartwick, 1977). Of 

course, the rule with zero genuine savings should be 

                                                      
1 In case that σ = 0, the variance term would vanish and the result col-

lapses to the deterministic genuine savings measure. 
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followed through the entire time path over the future 

(cf. Asheim et al., 2003). In the presence of uncer-

tainty, however, the simple Hartwick investment 

rule with / / 0
k x

W dk dt W dx dt+ =  is obviously not 

sufficient to sustain consumption of utility. With the 

variance component as in (21) being negative as 

touched upon above, the deterministic-equivalent 

part of the genuine savings amount has to be en-

hanced for sustainable development via for example 

slower resource extraction or faster capital accumu-

lation. Concerning the economics of sustainable 

development, it is worth mentioning that the interest 

has been shifted from sustaining the narrow instan-

taneous utility )(cu  time to sustaining the more 

general intertemporal welfare ))(),(( txtkW  over 

time. A direct welfare implication of Proposition 2 

is the following local-in-time sustainability result. 

Proposition 3. If the deterministic part of genuine 
savings given in (20) can, at least, compensate for 
the risk-aversion loss given in the variance compo-
nent in (21) such that the sum of them as in (19) is 

non-negative, then dynamic welfare ))(),(( txtkW  

can be sustained over an infinitesimal period dt  

from a concurrent date t  i.e. the development at 

time t  is sustainable. 

Note that this proposition means that the prospect as 

of time dtt +  may look better (at least not worse) 

than that of time t  in terms of the present value of 

current and future utilities if the generalized genuine 

savings in (19) at time t  are non-negative. Howev-

er, it does not imply that the instantaneous utility 

would follow the same trend. An increase in the 

wealth-like measure ( ( ), ( ))W k t x t  at time may be per-

fectly consistent with a short-term sacrifice in con-

sumption i.e. ( ) ( ) 0c t dt c t+ − <  combined with some 

larger increase in ( )c s  in some future dates dtts +> . 

With a greater wealth ))(),(( txtkW , the future con-

sumption set would be larger and if a resource alloca- 
 

tion over time would be feasible, then in principle the 

instantaneous utilities would be larger. If the genera-

lized genuine savings in (19) at time t are non-

negative over the whole future, the  development 

becomes globally sustainable over time. 

Conclusion 

In this paper, we have attempted to generalize the 

concept of genuine savings in a stochastic growth 

framework and explore its welfare implications. 

This is accomplished by using the Dasgupta-Heal-

Solow model with two capital stocks, a man-made 

capital good and a natural resource stock that is 

depletable. To simplify the analysis, we take ad-

vantage of the Merton stochastic population growth 

to introduce uncertainty in the per capita (man-

made) capital and resource stocks. The derived 

results are, however, general for multi-sector 

growth models under uncertainty, provided the 

regularity conditions on utility and production 

functions are satisfied. If the value function, de-

fined as the expected present value of future utili-

ties, is jointly concave in all capital stocks, then the 

risk-related variance component associated with 

the generalized genuine savings would always be 

negative. Thus, to achieve sustainable develop-

ment, more precautionary savings are needed to 

compensate for the welfare loss from risk aversion. 

Concerning the well-known Hartwick’s rule, the 

result here means that it is not sufficient to re-

invest the resource rent in the productive capital 

stocks to retain a constant utility level over time. 

As long as the uncertainty is present, the conven-

tional genuine savings component has to be posi-

tive, i.e. the rate of capital accumulation should be 

faster than that in the deterministic case to com-

pensate the loss in resource depletion. Since the 

variance component term depends on the degree of 

uncertainty, any measure that can reduce the fluc-

tuation of the per-capita capital and resource stocks 

also improves welfare and promotes sustainability. 
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