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Abstract 

Recent research has revealed the usefulness of Monte Carlo simulation for valuing complex American options which 

depend on non-conventional stochastic processes. This paper analyzes the possibilities to improve flexibility of 

traditional real options models by the use of simulation. The authors combine simulation and dynamic programming 

for valuing American real options contingent on the value of a state variable which evolves according to a mixed 

Brownian-Poisson process. The paper estimates the optimal exercise strategy using two alternative models, which are 

based on algorithms developed for financial derivatives. The authors evaluate both valuation proposals using a simple 

numerical example. The results highlight the need to achieve a trade-off between the accuracy of the estimations and 

the computational effort needed for this type of proposal. They also reveal the existence of non-monotonous and 

occasionally counterintuitive relations between the value of the growth option and the volatility and frequency of 

discontinuous jumps, which should be explained by the characteristics of the stochastic process under consideration.  

Keywords: real options, Monte Carlo simulation, financial valuation. 

JEL Classification: G31. 
 

Introduction  

Now the superiority of the real options approach to 

discounted cash-flow (DCF) models is widely 

accepted, research on valuation faces a no less 

important challenge, namely, its diffusion into the 

practical arena. This objective requires simplifying and 

making current real options valuation more flexible. 

Whereas the DCF approach is directly implemented to 

virtually all investment opportunities, the option model 

lacks any similar general formulation. By contrast, the 

real options approach comprises numerous and 

complex analytical as well as numerical methods, each 

of which is suitable for evaluating a particular decision 

right contingent on specific underlying assets. No 

“traditional” real options model allows direct treatment 

of alternative stochastic processes, multiple American-

style options or many sources of uncertainty. 

Particularly, most real options models assume pure 

diffusion processes in the evolution of state variables. 

These processes have been widely used to describe 

price movements, particularly of commodities and 

financial assets, yet they are hard to apply to the state 

variables on which the value of real options depends. 

Frequently used state variables – such as demand, 

profit or even costs – could adjust better to mixed 

processes, which combine continuous Brownian 
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movement with the probability of discontinuities. 

These kinds of discontinuities or “jumps” are due, 

depending on the nature of the variable, to the 

disruption of an economic crisis, a change in 

customers’ preferences, a corporate bankruptcy or, 

quite simply to technological progress. 

In addition, the possibility of exercise at more than 

one future date is probably one of the most common 

characteristics of real options. The same arguments 

put forward by advocates of the real options approach 

when criticising the DCF model for excluding the 

possibility to defer investment or to decide when to 

initiate the project (McDonald and Siegel, 1986; 

Pindyck, 1991; Ingersol and Ross, 1992), are now 

applicable to “European real options” models.  

The possible occurrence of random jumps makes 

valuing American-type options by traditional 

techniques – closed-form solutions, analytic approxi-

mations and numerical procedures – complicated if not 

impossible. Merton (1976) derives the analytic 

solution for the European option when the underlying 

asset follows a mixed process, comprising a geometric 

Brownian (continuous) motion subject to discrete 

Poisson jumps. Merton’s proposal allows valuing 

options the exercise of which is restricted to its 

expiration date, although it cannot be used in 

valuing American-type options. 

For their part, analytic approximations and the more 

widely used numerical procedures – the binomial 

model (Cox, Ross and Rubinstein, 1979) and finite 

differences (Brennan and Schwartz, 1977) – can be 

used to consider the possibility of early exercise, yet 

their implementation in computational terms is costly 

when including multiple sources of uncertainty and/or 

stochastic processes other than the geometric-

Brownian family. 
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By contrast, models based on Monte Carlo 

simulation (Boyle, 1977) can be applied to the case 

of multiple state variables regardless of the 

stochastic processes to which they are subject, yet 

they “are not suitable” for American-type options. 

At least this was held to be true until quite recently. 

To quote two examples, in the second edition of his 

well-known options manual, Hull (1993, p. 334) 

stated that “one limitation of the Monte Carlo 

approach is that it can be used only for European 

style derivatives securities”, and Hull and White 

(1993, p. 1) wrote that “Monte Carlo simulation 

cannot handle early exercise since there is no way of 

knowing whether early exercise is optimal when a 

particular price is reached at a particular time.” 

The seeming inability to value American-type 

options by simulation is due to the nature of the 

technique. Since exercise of an option at a given 

date prevents its subsequent exercise, the strategy 

that determines optimal exercise of American 

options depends not only on previous paths for the 

state variables but also on their future value. Future 

expectations can only be performed through 

procedures that include backward induction, such as 

binomial trees or finite difference procedures. 

However, standard Monte Carlo simulation is a 

forward induction procedure, which generates future 

values for variables based on their previous value 

and is, therefore, an appropriate technique for assets 

whose cash-flows at a given moment do not depend 

on future events, as is the case of European options.  

In order to overcome this restriction, recent research 

has proposed combining simulation with some 

backward induction procedure that may lead to a 

valuation model applicable both for European as 

well as American type options, whatever the number 

of state variables and the nature of the stochastic 

processes. The greater flexibility of the Monte Carlo 

approach is due to the fact that the evaluation 

problem is overcome by directly approximating the 

underlying asset process, meaning that the partial 

differential equation describing the path of the 

option does not need to be resolved. 

The first attempt at applying simulation in valuing 

American style options is to be found in the work of 

Tilley (1993)1
, who proposes a model for valuing 

financial options dependent on the stochastic value 

of a single state variable coinciding with its 

underlying asset. Tilley suggests sorting the 

simulated values of the underlying asset for each 

exercise date and grouping them into “bundles” for 

                                                      
1 Certain authors also refer to Bossaerts (1989), who had previously 

analyzed early exercise of American options through simulation, and 

maintain that this is likely to have been ignored as it is still in the form 

of a working paper. 

which a single value of keeping the option alive 

until the next period is assigned, as the mean of the 

continuation value of the whole of these paths
2
. 

Tilley’s approach has been followed by a growing 
number of papers that propose different combinations 
of simulation and backward induction procedures for 
valuing American-type financial derivatives. Promi-
nent within this approach are Barranquand and 
Martineau (1995) or Raymar and Zwecher (1997), 
who propose the use of a partition algorithm on the 
unidimensional space of the cash-flow yielded by the 
option, instead of the division of the multidimensional 
space of the underlying assets defined in Tilley [1993]. 
Grant, Vora and Weeks (1996) as well as Ibáñez and 
Zapatero (2001) directly estimate the values of the 
state variables for which the value of holding the 
option alive until the following period matches the 
value of its immediate exercise at each exercise date. 

By way of an alternative proposal, Broadie and 
Glasserman (1997a, 1997b) and Broadie, Glasserman 
and Jain (1997) propose the use of non-recombinatory 
simulated trees

3
 and stochastic meshes to determine 

two estimates of the option value, one biased 
“upward” and another biased “downward”, both 
asymptotically unbiased and convergent towards the 
certain value. Finally, Longstaff and Schwartz 
(2001) opt for least square regressions as a method 
for approaching the expected value of maintaining 
the option alive at each decision point. 

In the light of this type of proposal, recent corporate 

finance literature has embraced Monte Carlo 

simulation procedures for valuing real options. 

Barranquand and Martineau (1995) model and its 

extension by Raymar and Zwecher (1997) have 

been used to value American-type options where the 

state variables follow mean reverting and geometric 

Brownian processes. This is the case of Cortazar 

and Schwartz (1998) who resolve the optimal timing 

of the exploitation of oil reserves, and Cortazar (2001) 

who evaluates the optimal operations of a copper 

mine, initially modelled by Brennan and Schwartz 

(1985). Other papers apply the Longstaff and Schwartz 

algorithm (2001) in valuing real options linked to 

patents and R&D projects (Schwartz, 2004; Schwartz, 

and Miltersen, 2002), licences (Albertí et al., 2003, 

dot-com companies (Schwartz and Moon, 2000; 

Schwartz and Moon, 2001), pharmaceutical companies 

(León and Piñeiro, 2004; Rubio and Lamothe, 2006), 

Internet portals (Sáenz-Diez et al., 2008), and 

electricity business (Alonso et al., 2009a and 2009b).  

                                                      
2 This procedure suffers from notable drawbacks, such as the need to 
store all the simulated paths – with the subsequent loss of time – as well 
as the enormous complexity inherent to the sorting process when 
considering multiple sources of uncertainty. 
3 Unlike binomial and trinomial trees, the values that appear at each 
node are placed in the order in which they are generated and not 

following a hierarchic order.  
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The general purpose of our paper is to examine how 

simulation techniques can improve flexibility of real 

options models. We analyze different issues that 

arise when combining Monte Carlo simulation and 

dynamic programming to value real options. The 

optimal exercise strategy is estimated using two 

different proposals, both based on specific 

algorithms from financial derivatives valuation. The 

first proposal is based on Grant, Vora and Weeks 

(1996), and Ibáñez and Zapatero (2004) algorithms, 

which approximate the optimal exercise boundary 

(critical values of the state variable) by comparing 

the payoff from immediate exercise and the 

expected continuation value. The second approach is 

based on the Longstaff and Schwartz (2001) 

algorithm, which focuses on the conditional expected 

function of the difference between immediate exercise 

value and continuation value. 

Applying these algorithms to the valuation of real 

options requires their adaptation, both in estimating 

the underlying asset value from the state variable on 

which its cash-flow depends, and in approximating 

the “non pure diffusion” stochastic process followed 

by this variable. Particular attention is focused on 

the analysis of pseudo-American options to growth 

whose underlying variable evolves following a 

mixed Brownian-Poisson process. 

We evaluate both simulation proposals through the 

valuation of a simple numerical example. Our 

analysis shows that applying unsuitable techniques 

to the valuation of this option may significantly affect 

efficiency of the managerial decision-making process. 

In particular, our results highlight the advisability of 

considering the trade-off between accuracy of 

valuations and effort required in terms of abstraction, 

modelling and computerization. Moreover, our 

numerical example underlines the significance of 

errors when applying traditional models for valuing 

real options contingent on a state variable whose 

expected path recommends consideration of discrete 

discontinuities. 

The rest of the paper is organized as follows. The 

next section describes two alternative proposals of 

combining Monte Carlo simulation and dynamic 

programming for estimating the optimal exercise 

frontier. Section 2 presents numerical results obtained 

when applying both proposals to valuing a simple 

numerical example of a growth option. The paper 

ends with a summary of the main conclusions. 

1. Alternative proposals for estimating the 

exercise frontier in real options 

Combining Monte Carlo simulation and dynamic 

programming to value American options requires 

estimating the optimal exercise policy. Two 

alternative estimation procedures have been used in 

the area of financial derivatives, which application 

to real options valuation is not direct. On the 

contrary, it requires their adaptation, both in terms 

of determining the value of the underlying asset 

from the state variable on which its cash-flow 

depends, as well as of modelling the actual 

stochastic process followed by the state variable. 

The first proposal is based on Grant, Vora and 

Weeks (1996 and 1997) and Ibáñez and Zapatero 

(2004) algorithms, and aims to determine what are 

known as, in the words of Merton (1973), critical 

values of the state variable. These values are 

estimated by comparing the immediate exercise 

payoff with the continuation payoff, and serve to 

estimate the current expanded value (with the 

option) derived from optimal exercise through a 

series of simulated paths. The second takes the 

Longstaff and Schwartz algorithm (2001) as a 

reference. Thus, it focuses on the estimation of the 

conditional expected function of the difference 

between the value from immediate exercise and the 

value of maintaining the option until the following 

period at each point early exercise is allowed, 

therefore obtaining a complete specification of the 

optimal strategy at each exercise date. 

The real option valuation starts by identifying the 

ultimate state variable on which the company cash-

flow depends, St, and estimating its stochastic 

evolution in time. Without loss of generality, we 

assume that the state variable follows a mixed process, 

comprising a continuous geometric Brownian type 

motion subject to random jumps distributed following 

a Poisson variable. Therefore, the infinitesimal 

variation of the state variable dSt responds to the 

following equation: 

,1 dqSdzSdtSkdS tttt
    (1) 

where  and  represent the expected drift and 

volatility of the continuous motion, respectively;  

is the mean frequency of the discrete jumps per time 

unit; ( -1) is a random variable measuring the size 

of the proportional jumps in asset value, and k is the 

mean value of these jumps
1
; and dzt and dqt 

represent, respectively, stochastic Wiener and 

Poisson processes which we assume to be 

independent and characterised by their usual 

expressions: 

(0.1)  , Ndtdz                   (2) 

Poissonq
dt

dt
dq ,

prob1

1prob0

    

(3) 

                                                      
1 Therefore, the mean growth rate caused by the discrete jumps is k. 
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As regards the discrete motion, we assume that jumps 

are independent and log( ) is normally distributed with 

mean  and deviation , in such a way that: 

.1
2

exp1
2

Ek     (4) 

Discrete discontinuities are linked to “unusual” and 

important events that give rise to upward or 

downward variations in the uncertain variable, whereas 
 

the continuous process – geometric Brownian motion 
– is linked to the idea of “normal” events. Following 
standard practice, we assume the direction of the 
jump to be unknown a priori and therefore the 
effect of the jump in the drift term to be null, in 

other words,  = –
2
/2 and k = 0. 

Assuming the existence of complete markets and 
thus applying the risk neutral valuation, the 
expression representing the future balance value of 
the “twin” financial asset for the state variable is:  

,
2

5.0exp
1

2

0

2

0

q

i

it ztztrSS                     (5) 

where r and  symbolize the continuous risk-free 
rate and the convenience yield

1
, respectively, z0 

represents a standard normal random variable linked 
to the diffusion process; zi are normally distributed 
independent variables that determine the size of 
each jump; and q, as has already been pointed out, 
reflects the number of discrete jumps determined by 

a Poisson distribution with frequency 
2
. 

1.1. The critical values proposal. One of the 

differences between financial options and real 

options is direct knowledge in the former, and lack 

of knowledge in the latter, of the critical state 

variable value at expiration. In financial options, 

this value coincides with the exercise price. By 

contrast, in real options the critical value at 

expiration depends on the value of the underlying 

asset, which in turn depends on future evolution of 

cash-flows and their state variable. 

Hence, determining the series of critical state 
variable values must be started on the option 
expiration date and be prolonged, recursively in time 
 

time, at each of the points at which early exercise is 
allowed. Through simulating a set of M values of the 
state variable at maturity

3
, we estimate the critical 

value, *
o

T
S , as that for which the value of the 

underlying project, assuming immediate exercise of 
the option, matches the non-exercise value. The 
estimation of this critical value also requires 
simulating K paths for the state variable to expiration 

of the underlying project, T, 
ji

T
OS
,

, ji

T
OS
,

2
, … , 

ji

TS
,

 

for i = 1, 2, …, M and j = 1, 2, …, K, namely, as is 
shown in Figure 1. 

Each of these paths enables us to estimate both 
cash-flow series, derived from option exercise and 
expiration without exercise, from option maturity date 
through underlying project conclusion date (T

O
, T). 

Evidently, discounting each of these cash flows at 
option expiration, T

O
, provides the corresponding 

contingent value of the investment, i

T

i

decisionT OO SV
,

, 

and the comparison of these M pairs enables us to 

identify the desired critical value, 
*

O
T

S . 

 

Fig. 1. Simulation paths for the state variable123 

                                                      
1 Following Merton (1976), we assume the risk associated to the discontinuous jump of the state variable to be diversifiable. The risk-neutral simulation would 

then show a continuous modified drift, r- , rather than the initial  drift. This is equivalent to subtracting from the continuous drift the corresponding risk 

premium (Trigeorgis, 1996, p. 102). 
2 The number of jumps at a time interval, t, is obtained by applying Monte Carlo simulation to the accumulated probability function P[q  X]. 
3 Simulation may be initiated at any moment and for any value of the state variable (Grant, Vora and Weeks, 1996). However, American options optimal 

exercise at each moment depends on optimal exercise at all future dates, and so the first critical value needs to be that corresponding to expiration. 
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Having estimated the critical state variable value at 

maturity, we go back in time to the moment 

immediately prior to the early exercise of the option, 

T
O

. At this point, we repeat the approximation 

routine to the state variable value, 
*

O
T

S , in which 

the payoffs from the option exercise and non-

exercise at that date converge, 
*

, OO
T

i

exerciseT
SV  = 

= 
*

, OO
T

i

exercisenonT
SV . 

Once more, to determine 
*

O
T

S
 
we generate a set of 

new M values of the state variable, 
Mi

T
OS

,...,1
– at a 

range close to the previously determined critical 

value – from which we simulate other K paths up to 

the conclusion of the project – values of 
ji

T
OS
,

, 
ji

T
OS
,

, 

ji

T
OS
,

2
, … , 

ji

TS
,

 for i=1, 2, …, M and j=1, 2, …, K. 

These paths in turn serve to determine the cash-flow 

generated by the project from this date in both 

exercise and non-exercise. 

In this case, the procedure requires not only 

considering whether to exercise the option at T
O 

 , 

but also the possibility of exercising the option at a 

subsequent moment, which mainly influences 

evaluation of the expected value of the project in the 

following period. If the option is exercised at T
O 

 , 

the expected value of the project at the following 

period, i

exerciseT
OVE

,
, should be determined bearing 

in mind the early exercise that has already taken 

place, which in turn prevents any new decisions to 

exercise being taken at subsequent dates.  

However, if the option is not exercised at T
O
- , 

obtaining the expected value of the project involves 

considering the possibility of adopting a new 

contingent decision at the following period, T
O
, 

comparing the simulated value of the variable 
ji

T
OS
,

 

with the critical value obtained at the previous step, 
*

O
T

S . As a result, for certain 
ji

T
OS
,

 values the option 

will be exercised at T
O
,
 
whereas for the remainder 

the option will expire without being exercised. 

Thus, we calculate the expected value of the project 

at T
O
, i

T
OVE  – without exercise subscript – 

averaging the estimated j values, whether with or 

without exercise of the option. Once the expected 

value of the project at T
O
 has been evaluated, 

assuming non-early exercise of the option at T
O 

 , 
i

T
OVE , to determine the value of the project, 

i

exercisenonT
OV

,
, merely requires adding the flow 

generated at that date. What remains is to compare 

the value from early exercise, 
i

exerciseT
OV

,
, with the 

value from continuation, 
i

exercisenonTOV
,

, with the aim 

of identifying the critical value at T
O 

 , 
*

OT
S , for 

each 
i

TOS . 

We repeat the procedure to determine *
OT

S  at each of 

the dates in which early exercise is possible until we 

find the remainder of the values that make up the 

optimal exercise frontier. Evidently, as we approach 

to the initial moment and although the logic of the 

estimation is always the same, the complexity and 

number of operations involved in determining the 

critical values grows exponentially. 

Having determined the critical state variable values 

at the discrete dates for which option exercise is 

possible, 
*

0S , 
*

S , 
*

2S , ..., 
*

O
T

S , 
*

O
T

S , we estimate 

the value of the American option by traditional 

simulation as if it were a European option. In this 

case, simulation involves estimating a sufficient 

number of paths for the state variable from the 

current moment to the project expiration date, 
h

tS  for  

h = 1, 2, …, H and t = , 2 , … T, and the moment of 

optimal exercise along each path is determined in 

accordance with the optimal early exercise 

boundary. Finally, the current value of the option 

is estimated discounting the resulting payoff from 

each path, and then taking the average over all paths. 

1.2. The OLS regression proposal. To approach 

the optimal exercise frontier by least-squares 

regression we estimate the conditional expected 

function of the difference between the values from 

immediate exercise and continuation. We only 

regress the simulated paths for the state variable that 

are in the money at any particular moment. By 

estimating this conditional expected function at each 

exercise date, we obtain a complete specification of 

the optimal exercise strategy. 

Estimating the expected function of this difference 

marks a contrast not only with the proposal 

developed by Longstaff and Schwartz (2001) for 

valuing American financial options, but also with 

other real options applications (Schwartz, 2004; 

León and Piñeiro, 2003; Schwartz and Moon, 2000; 

Schwartz and Moon, 2001; Lamothe and Aragón, 

2002), which basically focus on valuing abandon 

options, where the payoff from immediate exercise 

at each moment does not depend on stochastic 

evolution of the state variable. In these cases, what 

is estimated is the function of the expected 

continuation value, in such a way that the optimal 

exercise strategy is provided by merely comparing 

at each exercise date the expected value and the 

value derived from immediate exercise. 
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The procedure for estimating the successive functions 

of the conditional expected difference follows a 

recursive process which takes expiration date of the 

option as the starting point. Then, at each exercise 

point, it requires the simulated paths for the state 

variable that are in the money to be determined 

since, a priori, these are the only ones for which it is 

worth considering the decision to exercise or not
1
. 

With these paths we propose a regression in which 

the dependent variable is calculated as the 

difference between the underlying asset values from 

immediate exercise and from maintaining the 

option. The independent variables are based on the 

simulated values of the state variable (whether 

raised to the square, to the cube, ..., or as a result of 

another type of function). By means of this 

regression, we estimate the coefficients that make 

up the optimal exercise boundary. Thus, for 

example, at any given moment t, and considering a 

parabolic regression, the equation to be estimated is  

,)( 2

210
tttt l

t

l

t

l

t

l

t SSSY  

where the superscript lt represents the paths for the 

state variable which are in the money at the moment t 

of the total set of H approximated simulations in each 

period; and the dependent variable is calculated as: 

.,,
tttttt l

t

l

exercisenont

l

t

l

exerciset

l

t

l

t SVSVSY  

The value of the underlying asset when the option is 

exercised at t (with t  T
O
) is the discounted cash-

flow of the “altered” project between t and the 

project expiration date, also considering the exercise 

price, X, received (put option) or paid (call option): 

.exp
1

,,

T

t

l

exercise

i

t

l

exerciset trFPESV tt  

To determine the value of the underlying project if 

the option is not exercised it is necessary to 

distinguish between the expiration date of the 

option, and the remaining moments at which early 

exercise is allowed. Thus, if t = T
O
, the underlying 

asset value if the option is not exercised and expires 

without exercise, is the discounted cash-flow as 

generated by the “unaltered” project between the 

option maturity and the investment maturity, 

.exp
1

,,

T

T

Ol

exercisenon

i

t

l

exercisenonT
O

tt
O TrFSV  

Moreover, if the option is not exercised at a moment 

t prior to expiration (in other words, t < T
O
) and is 

maintained until the following period, the value of 

the underlying asset is calculated by considering the 

possible optimal exercise at a subsequent date. In 

other words, the value of the underlying asset would 

be calculated from the discounted cash flows 

resulting from the “unaltered” investment between t 

and optimal exercise of the option at a later date, t*, 

plus the discounted cash-flow as generated by the 

“altered” project between the moment of optimal 

exercise, t*, and its maturity, 

.*expexp
*

1 1*

,,, trFtrFSV
t

t

T

t

l

exercise

l

exercisenon

i

t

l

exercisenont
ttt

This procedure is repeated at each moment at which 

exercise is possible. It should also be remembered 

that the effort required in terms of computerization 

depends lineally on the number of opportunities 

considered for early exercise, thus overcoming some 

of the operational drawbacks inherent in the 

previous proposal.
1
 

Once the regression coefficients that make up the 

optimal exercise boundary are estimated, we 

approximate the value of the American option by 

traditional simulation as if it were a European 

option. There is also the possibility of using the 

same sample of state variable simulated values to 

estimate both the optimal exercise strategy as well 

as the option value, thus reducing the computational 

effort required. A priori, any efficient algorithm 

should provide similar evaluations when the 

exercise is applied to the same set of simulations or 

                                                      
1 Those paths for which the intrinsic value were positive would be in the 

money, assuming expiration of the option at that moment. 

to any other new set
2
. Nevertheless, to avoid 

evaluation biases, Broadie and Glasserman (1997a) 

recommend simulating a second set of paths. 

2. A numerical example of the American option 
to grow contingent on discontinuous processes 

The advisability of previous simulation proposals in 
valuing real options can be evaluated most easily 
with a simple numerical example. We consider a 
finite-life investment in the installation of 
production capacity to meet demand, S, of a specific 
product which is assumed to evolve stochastically 
according to equation [5]. The initial demand value 
is established as equal to 10 million physical units, 
market share of the project is 50%, and cash-flow is 
determined by a known and constant margin equal 
to one monetary unit. The project life is 5 years and 
the total initial investment is equal to 25 million 
monetary units. In addition, we assume complete 
capital markets and a risk-free rate of 6%. 

                                                      
2 Longstaff and Schwartz (2001) show that, in financial option valuation, 

differences between both ways of applying the algorithm are minimal. 
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To compare valuation results for different process 
specifications, ranging from a pure diffusion motion 
to a mixed process including random size jumps, we 
consider a wide of parameters values. With regard to 
geometric Brownian motion, we assay with alternative 
volatilities of 10%, 20% and 30%, coupled with an 
annual drift of 15%. For the discontinuous part of the 
mixed process, we consider a range of volatilities 
between 25% and 500% with an average number of 
annual jumps ranging between 0.20 and 1

1
.  

It can be seen in Table 1 that the NPV of this project 
is negative for all process specifications, and 
decreases as discrete volatility increases. This result 
is due to the substantial increase in total volatility of 
the process when highly volatile discontinuities are 
included – even when only one such jump occurs 

during the whole period of analysis. Thus, for a 
discrete volatility of 500%, the total volatility of the 
process reaches values of 602.82% or 602.16% 
depending on whether the typical deviation of the 
continuous motion is 30 or 10%, respectively

2
. 

In addition, we consider that the initial investment 
provides the right to expand the original size of the 
project through a new expenditure. This right may be 
exercised at three specific dates at the end of the 
second, third and fourth years. Therefore, the 
possibility of extending the initial project size is 
similar to quasi-American call option with expiration 
at the end of the fourth year of operations. The 
exercise of this option involves an increase in project 
sales equal to 50% of the existing level, and an 
exercise price equal to 20% of the initial outlay. 

Table 1. Value of the net present value 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

 = 10% -2 117 062 -2 341 963 -2 318 721 -2 249 759 -2 728 270 -3 965 568 -4 561 367 -10 388 764 -10 335 590 

 = 20% -2 120 406 -2 337 170 -2 299 687 -2 439 157 -2 576 769 -3 352 074 -5 788 946 -10 624 907 -11 356 142 

 = 30% -1 999 903 -2 359 443 -2 296 945 -2 006 384 -2 292 343 -3 371 138 -6 198 091 -11 789 391 -11 883 307 

Note: Initial project demand is 10 million of physical units, market share is 50%, unitary margin is one monetary unit, and life span 
is 5 years. We assume complete capital markets and a risk-free rate of 6%. 

The number of paths simulated to obtain the value 
of this option, H, is 400,000, resulting from 200,000 
direct approximations plus another 200,000 
estimations using the variance reduction technique 
of the “antithetical variables”

3
. Additionally, the M 

and K parameters are equal to 400 in the “critical 
value” proposal. 

The valuation results yielded by both simulation 
proposals and different process parameters – from 
pure diffusion motion to mixed process – are shown 
in Table 2

4
. Furthermore, two different values are 

estimated by the regression procedure. The first set 
of options values, Regression I, derives from 
employing the same simulation paths to obtain the 
optimal exercise strategy and the option value. 
Whereas the second set of values, Regression II, is 
calculated by simulating two different groups of paths 
both for determining the optimal exercise and for 

estimating future cash flows. In all these cases, we 
have assumed that average number of annual jumps is 
0.20 (  = 0.2), in other words, that only one jump 
occurs during the five-year life span of the project.  

The similarity of valuations reached by both proposals 
is particularly clear in cases with lower jump 
volatility

5
. Thus, for jump volatility values below 

100%, the relative distance between both proposals 
does not generally exceed 1%. However, as discrete 
volatility increases, option value estimates depends on 
the selected simulation proposal. Moreover, regression 
estimates differ depending on the number of 
simulation sets for jump volatilities of 400% or 500%, 
and the option value provided by the critical values 
procedure is normally located in an intermediate 
position. We should also bear in mind the substantial 
increase in total volatility of the process when highly 
volatile discontinuities are included.  

Table 2. Value of the option to grow
12345

 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

 = 10% 

Critical values 4 541 824 4 480 622 4 594 030 4 698 266 4 753 891 4 872 654 4 308 987 2 149 137 2 258 166 

Regression 1 4 562 905 4 463 662 4 565 867 4 748 962 4 762 368 4 691 797 4 516 021 2 200 317 2 294 227 

Regression 2 4 563 104 4 444 285 4 545 118 4 790 180 4 751 705 5 158 746 4 098 685 2 588 903 2 166 808 

                                                      
1 As mentioned in the model description, we assume that jump risk belongs to the category of specific risk or non-systematic. 
2 The estimation of the total volatility of the uncertain variable for the mixed process considered has been performed based on the expression 
obtained in Navas (2004), which corrects the one originally obtained in Merton (1976). 
3 The technique of antithetical variables consists of generating two symmetrical observations at zero for each of the random simulations of the 
normal accumulated distribution, with which both values of the derivative are obtained. 
4 Note that a level of discrete jump volatility of 0% implies a pure diffusion process. 
5 The results of the Student T test enable us to refuse the presence of significant differences among the different valuations when the jump volatility is equal to 

or below 100% at 95% confidence level. 
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Table 2 (cont.). Value of the option to grow 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

 = 20% 

Critical values 4 589 035 4 524 324 4 607 096 4 661 720 4 899 131 5 022 732 4 201 530 2 693 936 2 127 076 

Regression 1 4 575 170 4 539 631 4 550 657 4 714 420 4 907 684 4 850 880 4 369 977 2 481 018 2 146 372 

Regression 2 4 558 581 4 520 780 4 559 007 4 697 119 4 852 479 5 183 542 5 122 898 2 704 963 1 977 476 

 = 30% 

Critical values 4 720 324 4 591 795 4 792 212 4 900 641 4 991 093 5 205 075 3 933 065 2 402 946 2 157 500 

Regression 1 4 739 826 4 595 652 4 741 438 4 977 156 4 963 822 5 179 860 3 999 496 2 551 498 2 186 396 

Regression 2 4 702 300 4 588 513 4 703 947 4 943 696 5 086 998 4 508 421 4 376 591 2 148 260 2 401 196 

Notes: Initial project demand is 10 million of physical units, market share is 50%, unitary margin is one monetary unit, and life 

span is 5 years. We assume complete capital markets and a risk-free rate of 6%. The option to grow is a quasi-American type call 

option, which can be exercised at the end of the second, third and fourth years. Its exercise implies an outlay of the 20% of initial 

investment, and it increases the project sales by 50% of the existing level. Option values are estimated by both Critical values 

proposal and Regression proposal. Regression 1 uses the same simulated paths to estimate the optimal exercise strategy and the 

option value, whereas Regression 2 employs different sets of simulations. We consider a mixed Brownian-Poisson process. 

Geometric-Brownian drift is 15%, with alternative volatilities of 10%, 20% and 30%. For the jump motion, we consider a range 

of volatilities between 25% and 500% with an average number of annual jumps of 0.20. The number of simulated paths, H, is 

400,000 (200,000 from direct approximations plus 200,000 antithetical estimations. M and K in the “critical value” proposal are 

equal to 400. 

Greater dispersion reflected in the regression based 

results contrasts with greater flexibility inherent to 

this procedure, where computational effort 

increases lineally with the number of exercise 

opportunities. These results highlight the need to 

achieve a trade-off between the accuracy of 

estimates and the requirements – in terms of modelling 

and use of computer resources – needed for 

implementing each proposal. 

As regards the relation between the value of the 

option and the jump volatility, the valuation results 

reflect that its sign depends on the level of the latter. 

Thus, in those scenarios with lower jump dispersion 

the value of the option increases
1
, as a result of a 

higher total volatility. This result is due to the fact 

that we assume the average size of the jumps to be 

null and not affecting the average drift of the state 

variable. However, as jump volatility increases, this 

relation is inverted and is more prominent in higher 

levels of discrete volatility. This result remains as 

long as the average size of the jumps, k, is null and 

does not affect the drift term for the process 

followed by demand. This assumption implies that 

the mean of the logarithm of the jump depends 

inversely on the value designated to the volatility of 

the jump (  = –
2
/2) and, therefore, an increase in 

the latter for values over 100% reduces this average 

and with it the value of the underlying.  

We also find certain unusual features in the relation 

between continuous volatility and the value of the 

option. Specifically, we observed a negative 

influence of volatility on option values for some 

high jump volatility scenarios, which is apparently 

contrary to the ceteris paribus relation established 

                                                      
1 Only when jump volatility is 25% is any slight reduction observed in 

the value of the option that is recouped as volatility increases. 

by the OPT. Nevertheless, this outcome is coherent 

with stochastic evolution of the state variable and 

the discretisation method employed. In addition to 

the value reduction suffered when jump dispersion 

is over the 100% level, the hypothesis that the state 

variable evolves in the continuous field following a 

lognormal diffusion process leads to its relative 

variation being distributed normally with a 

tendency reduced 0.5 times the variance of the 

process. As a result, the volatility parameter not 

only affects the volatility of future values, but also 

the average simulated values. It follows that the 

increase in volatility not only widens the range of 

possible future values of the underlying asset, but 

also reduces its average simulated value and, 

hence, the possibilities of optimal exercise of the 

option to expand. 

In addition, we have analyzed how the value of the 

option is affected by the existence of an upper 

absorbing boundary of 50,000,000 physical units for 

the state variable, which may be a reasonable 

feature in this type of options. This boundary can be 

derived from economic factors outside the scope of 

the enterprise, but also from technical reasons such 

as the maximum production capacity of plants and 

equipment. The results are shown in Table 3. 

A quick look confirms the expected reduction in the 

value of the growth option when an upper limit 

restricts upward variations of the state variable. In 

addition, as was to be expected, the differences are 

more significant the greater the possibility of the 

limit being reached, i.e. for the higher levels of 

continuous volatility considered. Greater volatility 

means larger dispersion of the lower values, 

whereas the higher values remain bounded by this 

maximum capacity and, as a result, any increase in 

volatility will reduce the expanded value. 
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Table 3. Value of the option to grow (state variable bounded by an upper limit) 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

 = 10% 

Critical values 4 553 757 4 528 903 4 564 327 4 564 403 4 559 350 3 361 724 2 492 501 2 156 461 1 918 284 

Regression 1 4 565 153 4 500 405 4 563 103 4 588 026 4 542 885 3 372 517 2 565 782 2 159 300 1 984 446 

Regression 2 4 571 992 4 513 612 4 511 240 4 522 015 4 407 836 3 355 618 2 512 140 2 159 739 1 939 450 

 = 20% 

Critical values 4 538 402 4 493 742 4 500 246 4 440 375 4 484 839 3 338 236 2 423 226 2 068 322 1 917 960 

Regression 1 4 583 037 4 522 017 4 461 144 4 410 490 4 458 645 3 410 736 2 492 306 2 096 498 1 902 715 

Regression 2 4 547 279 4 498 620 4 378 561 4 407 881 4 394 089 3 330 945 2 498 419 2 103 522 1 975 644 

 = 30% 

Critical values 4 687 126 4 568 101 4 592 566 4 420 479 4 247 401 3 233 265 2 391 753 1 999 073 1 955 058 

Regression 1 4 656 870 4 586 813 4 531 310 4 479 680 4 258 302 3 329 831 2 436 804 2 099 870 1 990 820 

Regression 2 4 653 151 4 597 764 4 648 257 4 492 770 4 285 706 3 366 924 2 535 404 2 140 281 2 022 933 

Notes: Initial project demand is 10 million of physical units with an upper absorbing boundary of 50 million, market share is 50%, 

unitary margin is one monetary unit, and life span is 5 years. We assume complete capital markets and a risk-free rate of 6%. The 

option to grow is a quasi-American type call option, which can be exercised at the end of the second, third and fourth years. Its 

exercise implies an outlay of the 20% of initial investment, and it increases the project sales by 50% of the existing level. Option 

values are estimated by both Critical values proposal and Regression proposal. Regression 1 uses the same simulated paths to 

estimate the optimal exercise strategy and the option value, whereas the Regression 2 employs different sets of simulations. We 

consider a mixed Brownian-Poisson process. Geometric-Brownian drift is 15%, with alternative volatilities of 10%, 20% and 30%. For the 

jump motion, we consider a range of volatilities between 25% and 500% with an average number of annual jumps of 0.20. The number of 

simulated paths, H, is 400,000 (200,000 from direct approximations plus 200,000 antithetical estimations. M and K in the “critical 

value” proposal are equal to 400. 

The upper barrier likewise reduces the dispersion in 
the valuations obtained with each proposal, enabling 
the accuracy of the estimations. This lack of any 
significant difference as well as the lower requirements 
involved in the implementation of the regression based 
procedure lead us to opt for the latter, whereas the 
critical values method provides a useful benchmark for 
the valuations obtained. 

Finally, we analyzed the influence of multiple smaller 
size discontinuities on the value of the growth option. 
We specifically consider the case of up to five jumps, 
by way of an average, during the life span of the 
underlying investment (  = 1), with 50% dispersion. 
 

Valuation results are shown in Table 4. Once again, 

the estimates to emerge from the proposals analyzed 

offer little dispersion and only when there is no 

upper barrier in the state variable and the jump 

frequency takes higher values, is the relative variation 

among the various valuations above 3%. It should also 

be noted that, as was the case with jump dispersion, 

the increase in their frequency implies an increase in 

the total volatility of the process, although for the 

values of continuous variation considered,  = 30%, as 

well as discrete,  = 50%, this only ranges between 

38% and 60%, depending on whether  takes values of 

0.2 and 1, respectively.  

Table 4. Value of the option to grow depending on the number of discrete jumps 

 = 30%,  = 50% 
Number of discrete jumps per time unit 

0 0.2 0.4 0.6 0.8 1 

Without upper limit 

Critical values 4 720 324 4 792 212 4 886 447 4 959 297 5 052 782 5 551 509 

Regression 1 4 739 826 4 741 438 4 970 723 5 041 511 5 018 144 5 660 201 

Regression 2 4 702 300 4 703 947 4 917 413 4 850 528 5 189 245 5 504 847 

With upper limit 

Critical values 4 687 126 4 592 566 4 579 373 4 526 308 4 458 098 4 501 015 

Regression 1 4 656 870 4 531 310 4 649 051 4 555 648 4 520 735 4 586 699 

Regression 2 4 653 151 4 648 257 4 761 222 4 497 494 4 488 916 4 623 271 

Notes: Initial project demand is 10 million of physical units, market share is 50%, unitary margin is one monetary unit, and life span 

is 5 years. We assume complete capital markets and a risk-free rate of 6%. The option to grow is a quasi-American type call option, 

which can be exercised at the end of the second, third and fourth years. Its exercise implies an outlay of the 20% of initial investment, and it 

increases the project sales by 50% of the existing level. Option values are estimated by both Critical values proposal and Regression 

proposal. Regression 1 uses the same simulated paths to estimate the optimal exercise strategy and the option value, whereas the Regression 

2 employs different sets of simulations. We consider a mixed Brownian-Poisson process. Geometric-Brownian drift is 15%, with alternative 

volatilities of 10%, 20% and 30%. For the jump motion, we consider a range of volatilities between 25% and 500%, with an average 

number of annual jumps ranging of 0.20 to 1. The number of simulated paths, H, is 400,000 (200,000 from direct approximations plus 

200,000 antithetical estimations. M and K in the “critical value” proposal are equal to 400. 

Once more, the desire to strike a trade-off between the 

accuracy of the estimations and the computational 

requirements would seem to justify the use of the 

regression based procedure. The results also reveal that 

the value of the option increases with the number of 

discrete variations, thus increasing the underestimation 

error when its influence is not reflected. However, 

when including an upper boundary in the evolution 
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of the demand, the option tends to lessen the effect 

mentioned. In this case, omitting jumps leads to an 

overestimation of the chance to extend the project, 

possibly giving rise to the option being exercised 

before the optimal date and even to accepting non-

profitable projects.  

Conclusion  

Throughout this paper, we have addressed the issue 

of valuing American-type real options contingent on 

a continuous stochastic process subject to random 

jumps. This combination of American-type and 

random jumps prevents any closed-form solution for 

the fundamental pricing equation. Usual numerical 

techniques, such as binomial trees or finite differences, 

also fail to provide satisfactory results. 

Strange though it may seem, an option pricing 

technique which had for many years been restricted 

to the analysis of European-type derivatives has 

recently been re-appraised and proposed to value 

real complex options such as those described. The 

reason behind this apparent delay is the nature of the 

traditional simulation models which prevents 

identification of the optimal exercise policy. Monte 

Carlo simulation is a forward induction procedure, 

which generates future values of the variable from 

its previous value and therefore is not suitable for 

valuing assets generating cash flows contingent on 

future events, such as is the case of American-type 

options. Recent research has proposed overcoming 

this restriction through the joint use of simulation 

and some backward induction technique that enables 

its application to valuing American-type options.  

In order to evaluate two alternative simulation 

proposals, and after adapting them for the real option 

problem, we value a numerical example which 

consists of a finite-life project that incorporates a 

growth option contingent on a state variable 

following a geometric Brownian motion subject to 

average null size random jumps.  

Our numerical results reflect the need to consider a 

trade-off between the accuracy of the estimations 
 

and the effort required in terms of abstraction, 

modelling and computerization, particularly in the case 

of high volatility of the discontinuities. In these cases, 

the valuations that emerge from the regression based 

procedure show greater dispersion, although imple-

mentation in this case is less costly as it depends 

lineally on the number of opportunities for exercise. 

By contrast, the proposal based on critical values is 

generally found in an intermediate position in 

comparison with the previous ones, yet requires the 

simulation of new paths for the state variable at each 

point at which exercise is allowed. 

In addition, we have considered an upper boundary 

in the state variable evolution and multiple smaller 

size discontinuities. Our results have revealed no 

significant differences in valuations offered by both 

proposals, and consequently, the regressions based 

procedure has proved more convenient as it involves 

a lower cost in terms of resources. 

As regards the evolution of the state variable, we 

observed that the possible occurrence of a single 

random jump during the project life span leads to an 

increase in the growth option value, for the lower 

levels of discrete volatility considered. In such 

cases, omitting discrete discontinuities can lead to 

an underestimation of the option value, with the 

subsequent deferral in exercise, and even the 

execution of profitable projects being discarded.  

Nevertheless, for higher jump volatilities the effect of 

a single random jump on the option value is inverted 

and may even fall below the value obtained from 

conventional evaluation models that do not 

contemplate discontinuities. Moreover, the combined 

effect of the jump and an upper boundary in the 

evolution of the state variable also adds differences in 

the valuation results. In contrast to what occurs in the 

absence of this kind of restriction, there is a reduction 

in the option value as the number of random jumps 

increases. As a result, the over-valuing to which the 

omission of these discontinuities leads may cause 

exercise prior to the optimal date and even the 

acceptance of non-profitable projects. 
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