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Modeling complex safety covenant of corporate risky bonds under 

the double exponential jump-diffusion process 

Abstract 

This paper employs the structural approach for valuing corporate bonds under the double exponential jump-diffusion 
process, which offers much more flexibility in describing the empirical asset-return distribution than previous structural 
models. The authors extend the uniform sampling approach to develop a simple and efficient Monte Carlo simulation 
method for valuation of corporate risky bond with a complex safety covenant. Unlike the first passage-time model, our 
model incorporates the caution time setting which allows firm value to stay below the “caution default boundary” for a 
pre-specified time window. We further extend the model assuming an additional “immediate default boundary” in the 
safety covenant. These two models are used to illustrate how different assumptions of default boundaries and firm 
value process affect the possible credit spreads, default probabilities and recovery rates. 

Keywords: modified uniform sampling approach, Parisian option, double exponential jump-diffusion process, Monte 
Carlo simulation, caution time, safety covenant. 
JEL Classification: G12, G32, G33. 
 

Introduction  

After the worldwide financial tsunami hit in 2008, 
corporate credit risk has been getting vast attention 
not only from academics but also from businesses 
and professionals. Specifically, many firms had 
good credit ratings but suddenly defaulted during 
the financial crisis. Hence, accurately modeling 
the default risk of firms has become a much more 
important issue now than before. There are two 
fundamental approaches to modeling default risk 
of companies. One is the structural approach 
which models the firm value, pioneered by Black 
and Scholes, (1973) and Merton (1974), and 
extended by Black and Cox (1976), Longstaff and 
Schwartz (1993) Leland (1994) Zhou (2011), Chen 
and Kou (2009), and others. The other is the 
reduced-form approach, brought up by Jarrow et al. 
(1997), Madan and Unal (1998), Duffie and 
Singleton (1999), and others, using the Poisson 
process to model the default rate directly instead of 
modeling firm value. The reduced form approach 
does not explicitly consider the relationship between 
a company’s capital structure and its default risk. 

The primary purpose of this paper is to build a 
structural model which combines the concept of a 
more realistic safety covenant and left-skewed, 
heavier-tailed empirical asset return distribution. In 
terms of safety covenants of bonds, Fujita and 
Ishizaka (2002) used the Parisian option framework 
to propose the concept of “caution time” in the 
original first-time passage model. In their model, 
when firm value breaches the default barrier, the 
firm goes in the caution time condition. The firm 
defaults if firm value remains below the barrier 
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The Appendix to the article is available at http://web.it.nctu.edu. 
tw/~hhlee. 

beyond the pre-specified caution time. In terms of 
the underlying firm value process, Zhou (2011) 
demonstrated that incorporating jump risk into the 
firm value process is crucial since a firm with a good 
financial standing can suddenly default because of a 
huge drop in its firm value. Accordingly, a structural 
model with jump risk can better characterize the credit 
spread of corporate bonds, as well as various shapes of 
empirical yield spread curves. Moreover, some 
empirical studies have documented that the double 
exponential jump-diffusion process proposed by Kou 
(2002) performs better than the log-normally 
distributed jump-diffusion in equities markets (see 
Ramezani and Zeng, 2007) and structural credit risk 
models (see Wong and Li, 2006). Therefore, our paper 
contributes to the literature by providing a new model 
under the Parisian option framework and the double 
exponential jump diffusion process. The new model 
can better fit the empirical evidence of both short-
term and long-term default rates as well as yield 
spreads.  

Chesney, Jeanblanc and Yor (1997) defined a new 
option called the Parisian option, which is an 
extension of the barrier option. A down-and-out (up-
and-out) Parisian option is an option that expires if 
the underlying asset price goes down (up), hits a 
specific barrier level and stays below (above) the 
barrier for a specified time (window) period. The 
assumption of barrier option is that if firm value 
drops below the pre-specified level, the firm will shut 
down immediately. This first-passage time model 
helps us parsimoniously model safety covenants of 
bonds, but such safety covenants are often too strict 
to firms. Therefore, subsequent researchers such as 
Fujita and Ishizaka (2002) and Francois and 
Morellec (2004) introduced the Parisian option 
framework and proposed the much more complex 
bankruptcy proceedings.  
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Under this notion, Fujita and Ishizaka (2002) 
incorporated “caution time” in the original first-time 
passage model. In their model, when the firm value 
hits the default barrier, the firm goes into caution 
time condition. The firm defaults if its firm value 
remains below the barrier beyond the pre-specified 
caution time. Their model gives more flexibility to 
the structural form model and safety covenant. On 
the other hand, in the literature of capital structure 
models, Francois and Morellec (2004) used the 
notion of Parisian option to model US bankruptcy 
codes of Chapter 11 and provided insights into the 
importance of Chapter 11 modeling1. Moreover, 
Broadie, Chernov and Sundaresan (2007) and 
Paseka (2003) proposed a capital structure model 
comprising of two barriers under both barrier and 
Parisian option framework: one is for modeling 
under Chapter 11 and the other is for Chapter 7. In 
this paper, we mainly focus on bond pricing, not 
capital structure issues. Therefore, we choose to 
build our model by extending the settings of Fujita 
and Ishizaka (2002). 

Prior research has documented that bond price often 
drops surprisingly around the time of default (see 
Duffie and Lando, 2011. Many situations may cause 
the jump in bond price, such as a natural disaster, 
lawsuits or sudden financial turmoil. Accordingly, 
credit spreads styled facts are: (1) credit spreads do 
not converge to zero even for very short maturity 
bonds; and (2) term structure of credit spreads has 
downward, humped, and upward shapes. The double 
exponential jump diffusion model is thus well-suited 
for structural modeling. Kou (2002) and Kou and 
Wang (2004) provided an option pricing approach 
under the double exponential jump-diffusion 
process. This process has many distinct features, 
including the ability to separate the probability and 
magnitude of upside and downside jumps. Because 
of the nice features of the double exponential jump-
diffusion model, the log-normal return assumption 
of Merton (1974) model could be improved. 
Moreover, empirical evidence suggests that return 
distributions of firm values are skewed to left, and 
have higher peak and heavier tails than normal 
distribution. The double exponential jump-diffusion 
model is more flexible in parameter setting than the 
log-normal jump-diffusion model of Merton (1976). 
These features of the double exponential jump 
diffusion can better fit asset return distribution and 
credit spreads to empirical data. 

                                                      
1 Francois and Morellec (2004) used the down-and-out Parisian option 
for modeling risky bonds under Chapter 11 of the US Bankruptcy Code. 
They pointed out that Parisian option’s special feature of window period 
could fundamentally represent that a corporation in financial distress 
renegotiate debt under Chapter 11 of the US Bankruptcy Code. This 
model lets bondholders and shareholders have an unambiguous effect 
on default incentives and credit spread. 

All of the above are motivations for us to evaluate 
risky bonds under the double exponential jump 
diffusion process and the Parisian option framework. It 
is well known that deriving an analytical formula for 
valuation of risky debt under the jump-diffusion 
process is very difficult, especially under the 
assumption of a complex safety covenant. Therefore, 
we develop a Monte Carlo simulation procedure 
combining the uniform sampling approach of 
Metwally and Atiya (2002) and the standard Brownian 
bridge path generation to estimate corporate bonds 
prices under the Parisian option framework. We build 
two models for pricing bonds under different safety 
covenants. Since our main focus is not on capital 
structure issues but risky bond pricing, we assume 
the total market value of the firm as the underlying 
process rather than the asset value (the value of an 
unleveraged but otherwise identical firm) process of 
Chen and Kou (2009). Our first model follows the 
concept of Fujita and Ishizaka (2002) of caution time 
to estimate bond value. The second model follows the 
notion of Broadie, Chernov and Sundaresan (2007) in 
which two distinct default boundaries are assumed: 
one is default barrier and the other is liquidation 
barrier. We use these two models to price bonds and 
for default risk analysis under the double exponential 
jump-diffusion process.  

Our contribution is twofold: first, we develop a 
simple and efficient Monte Carlo simulation method 
to value corporate risky bonds under the jump-
diffusion process and complex safety covenant 
under the Parisian option framework. This approach 
can significantly reduce computation time and 
estimation bias compared to a standard approach. 
This is a substantial advantage over the standard 
short-step Monte Carlo simulation if one needs a more 
accurate and faster calculation of bond prices. 
Secondly, to make our model more realistic, we build 
two models which adopt different default boundary 
assumptions for valuing corporate bonds under the 
double exponential jump-diffusion process proposed 
by Kou (2002). We use these two models to 
evaluate corporate risky bonds and illustrate how 
different assumptions of default boundaries affect 
the possible credit spreads, default probabilities and 
recovery rates under the double exponential jump-
diffusion process. 

The remaining sections of this paper are organized 
as follows. Section 1 presents the structural model 
under the double exponential jump-diffusion process 
and the Parisian option framework. Section 2 proposes 
a fast numerical method to simulate corporate bond 
values and reports the numerical performance of our 
simulation procedure. Section 3 presents the default 
analysis of our new models and compares it with 
prior structural models. The final section concludes 
the paper. 
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1. Model 

1.1. Firm value model. Under the double exponential 
jump diffusion process of Kou (2002), the dynamics of 
a firm’s value comprises of two parts: one is a pure 
diffusion process, as a geometric Brownian motion; 
the other is the jump part. Jump sizes follow the 
double exponential distribution and jump times are 
driven by event times of a Poisson process.  

We use the following equation for modeling market 
value V(t), which follows a double exponential jump 
diffusion process under risk-neutral measure Q: 

( )

1

( )
( ) ( 1)

( )

N t

i

i

dV t
r dt dW t d Z

V t
  (1) 

The solution of the equation is given by 

( )
2

1

1
( ) (0)exp ( )

2

N t

i

i

V t V r t W t Z , (2) 

where r is the constant risk-free interest rate,  is the 
volatility of the firm value, and  is the mean of 
percentage jump size: 

1 1 1
1 1

Y u d

u d

p q
E Z E e .  (3) 

W(t) is a standard Brownian motion under risk-
neutral measure Q, N(t) is a homogenous Poisson 
process with mean , and Zi is a series of 
independent identically distributed nonnegative 
random variables such that Y = ln(Z) has a density of 
the double exponential distribution: 

,1

,)( 00

u

y

y

dy

y

uy IeqIepyf du

     (4) 

where p, q  0, p + q = 1, I{y 0}, I{y<0} are indicator 
functions. The condition u > 1 is to ensure that 
expectation of V(t) is finite. p and q are probabilities 
of upside jump and downside jump, respectively. 
Mean values of the two exponential distributions are 
1/ u and 1/ d. Mean of Y is p/ u – q/ d. In this 
model, W(t), N(t), and Y are assumed to be 
independent. The return process X(t)  ln(V(t)/V(0)) 
is as in the following equation: 

( )
2

1

1
( ) ( )

2

N t

i

i

X t r t W t Y ,            (5) 

where X(0) = 0, and the equation is also under risk-
neutral probability measure Q. If Y is normally 
distributed, the model is the same as the Merton 
jump-diffusion model (1976).  

1.2. Pricing corporate debt. The next step is to 
develop the corporate bond pricing models. For 
simplicity, we focus on zero-coupon bond for our 

research. We follow assumptions of the total market 
firm value process described in the previous section 
and develop two models for valuing corporate risky 
debt in this paper. First, we build a model with a 
realistic safety covenant assumption under the 
Parisian option framework. Unlike the first 
passage time model, the caution time setting 
allows firm value to stay below the “caution 
default boundary” for a time window of a pre-
specified length of time. The bond defaults when 
the consecutive time of the firm value remains 
below this barrier for longer than the pre-
specified time (window) period. Secondly, we 
further extend the first model to let it have two 
default boundaries at the same time: one is the 
“caution default boundary” and the other is the 
“immediate default boundary” corresponding to the 
original first passage time model.  

Model 1: Parisian framework (caution default 

boundary).  

In the spirit of Black and Cox (1976), we assume 
the exponential default boundary ( )( ) T t

H t e F , 
where  is boundary discount rate and F is face 

value of the bond. Under the Parisian option 
framework, a bond defaults if a firm’s market value 
is below the boundary, H(t), and the consecutive 

time, t̂ , of firm value below this boundary is over a 
pre-specified time period (caution time) w1

. The first 
time the bond defaults is defined as time . 
Mathematically,  

( )( ) T t
H t e F , 0T , 0 t T                     (6) 

wtt ˆ0inf       (7) 

where 
)()(if

)()(if0
)),((ˆ

tHtVgt

tHtV
ttVt

t

 

and sup | ( ) ( )
t

g s t V s H s ,  

where gt is the last time before t when firm value 
breaches the boundary. Figure 1 shows the “caution 
time” framework. 

Model 2: Caution and immediate default boundaries. 

Model 2 is an extension of Model 1. Several 
structural models in the literature have introduced 
two different barriers: the default barrier and the 
liquidation barrier (for example, see Broadie, 
Chernov and Sundaresan, 2007). Model 2 is under 
the Parisian option framework and the barrier option 
framework at the same time. Hence, there are two 
 
  

                                                      
1 Barrier option is a special case of Parisian option, when the caution 
time is equal to zero. 
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situations in which a bond may default. First, if a 
firm’s market value is below a boundary H(t) (an 
exponential barrier), and the time t̂  for which the 
value remains below this barrier H(t) exceeds the 
length of the time window (caution time) w. Second, 
if a firm’s market value breaches the lower barrier 
 

L(t), the bond defaults immediately. We assume that 
immediate liquidation boundary is a constant 
fraction of caution default boundary, i.e. L(t) = H(t),  
0    1. Figure 2 illustrates these two default 
conditions of Model 2. The first time the bond 
defaults is defined as time . 

 

Fig. 1. Situations when corporate bonds default in Model 1 – Parisian framework (caution default boundary) 

 

Fig. 2. Situations when corporate bonds default in Model 2 – caution and immediate default boundaries 
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Mathematically,  

( )( ) T t
H t e F ,

 
0T , 0 t T ,    (8) 
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and sup | ( ) ( )tg s t V s H s . 

Therefore, Model 1 can be regarded as a special 
case of Model 2, where  = 0. 

1.3. Bond pricing equation. If   T, the bond does 
not default before maturity. In this case, the bond 
defaults when the firm value falls below the face 
value of bond at maturity. If  < T, it means that the 
bond defaults before maturity. While bond defaults, 
bondholders only receive the value of the firm 
minus the write-down of value at default time. In 
general, write-down value is a non-increasing 
function of firm value. We assume the equation of 
write-down value is of a linear form: 

,)( 1 VV       (11) 

where 1 is a non-negative constant and 0  1 < 1. We 
can evaluate the price of a risky bond by using a 
fundamental bond pricing approach, that is, discounted 
cash flows. Bond price B(V, T) is as follows: 

,)()()exp(

))(()()exp(),( )()()()(

T

TTHTVTHTV

Q

IVVrT

IITVTVIFrTETVB

   (12)
 

where Q is risk-neutral probability measure, I is 
indicator function, T is bond maturity, and  is the 
time of default. This equation comprises two parts: 
the first part of equation is present value of the 
cash flow which the bondholder could receive at 

maturity, and the second part is present value of 
the cash flow which the bondholder could receive 
if the bond defaults before maturity. In the Monte 
Carlo method, B(V, T) is obtained as in the 
following equation: 

.)()()exp(

))(()()exp(
1

lim),( )()()()(
1

Tii

TTHTViiTHTV

N

i
N

IVVr

IITVTVIFrT
N

TVB
ii

  (13) 

This equation for evaluating corporate bond price 
could be easily computed by Monte Carlo 
simulations with standard software programs.  

2. Monte Carlo method 

The Parisian option is a path-dependent option 
which takes considerable time to simulate. In order 
to reduce the computing time of the Monte Carlo 
method, Metwally and Atiya (2002) provided an 
approach called uniform sampling for accelerating 
simulation time of the calculation. This approach is 
based on the Brownian bridge concept developed 
by Karatzas and Shreve (1991) and Revuz and Yor 
(1994). The Brownian bridge concept is that if one 
has a Wiener process defined by a series of time-
indexed random variables {W(t1), W(t2),…}, one 
could use the Brownian bridge method to insert a 
random variable W(tk), where ti < tk < ti+1, into the 
series in such a manner that the result of the 
original series remains unchanged. Given W(t) and 
W(t + t1 + t2), one needs to obtain W(t + t1). 
Standard Brownian bridge method for computing 
W(t + t1) is to take a weighted average of W(t) 
and W(t + t1 + t2) plus an independent normal 
random variable: 

,)()()( *
21

**
1 ZtttWtWttW

 
(14) 

* 2

1 2

t

t t
, 

* *1 , 

*
1t , 

where *, * and * are constants to be determined, 
and Z is a standard normal random variable. 

Metwally and Atiya (2002) follow the Brownian 
bridge concept to calculate the probability of firm 
value not crossing the barrier. Given two endpoints 
values, their simulation procedure is as the 
following. Let the jump times be T1, T2, …, TM, the 
first variables to be generated. Assuming i

x T  is 

the instant process value before the -i th  jump and 

i
x T  is the instant process value after the -i th  

jump. Hence, between the two jumps, i
x T  and 

1i
x T , the process is a pure Brownian motion. Let 

BS be a Brownian bridge between intervals 1,i iT T . 

The probability of no barrier crossing in the interval 

1,i iT T  is:  
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                                                   (15)

This method is very efficient and unbiased in 
pricing vanilla barrier option1. Metwally and Atiya 
(2002) assume barrier H is flat. In our model, we 
assume that default boundaries are exponential 
functions of time. Therefore, we have to modify the 
drift-term of the double exponential jump-diffusion 
process to let the barrier be constant. In this case, our 
new process of firm value return and barrier become: 

( )

1

( ) ( )
N t

i

i

X t ct W t Y ,        (16)

1 2
2

c r ,
 

e T
H F , 

L H . 

2.1. Algorithms of the modified uniform sampling 

approach. This section describes our Monte Carlo 
method – the modified uniform sampling approach for 
bond pricing under the Parisian option framework 
and the double exponential jump diffusion process. 
To incorporate caution time setting to the uniform 
sampling method by Metwally and Atiya (2002), 
once the boundary crossing is detected in any 
interval between jumps, we switch the simulation 
procedure to standard Monte Carlo method before 
the next jump instant. We present the algorithm of 
Model 1 in detail and refer readers to online 
Appendix (http://web.it.nctu.edu.tw/~hhlee) for the 
algorithm of Model 2 to conserve space. 

Model 1: Caution default boundary 

Step 1. For n = 1 to N, conduct the Monte Carlo 
experiment as Steps 2 to 5. 

Step 2. Generate jump-instants Ti, by generating 
inter-jump times (ti) from a given density function 
(in this paper, we use exponential distribution) and 

set Ti = Ti-1 + ti. Repeat Step 2 until 
1

1

M

ii
t T , 

                                                      
1 The standard Monte Carlo simulation for pure Brownian motion 
simply samples the firm value path at each discrete time interval: 

ttrVtV )(exp)0()( 2
2
1 , where  is a random sample from a 

standard normal distribution. This method can cause estimation bias 
because the firm value below the barrier may occur but be ignored 
during the time between the end points (Metwally and Atiya, 2002). 
Shortening the length of time intervals can reduce bias, but computation 
becomes very slow and bias still cannot be eliminated entirely. 

where M is the number of jumps that happen during 
the entire life of contract. 

Step 3. For i = 1 to M + 1, generate the return of 
firm value for all jump points. 

(I) Let x(t) = lnV(t), initial value x(T0) = x(0) = lnV(0) 
and generate the return of firm value before jump 

ix T  from Gaussian distribution under mean x(Ti-1) + 

+ c(Ti – Ti-1)
 
and standard deviation 1i iT T . 

(II) Generate a random variable from uniform 
distribution U[0, 1]. Use the random variable and 
cumulative distribution function (CDF) of the 
double exponential distribution to generate jump 
size Ji

2. 

(III) Compute the return of firm value after jump: 

i i i
x T x T J . 

Step 4. For intervals i = 0 to M, set default = 0, 

check-time = 0, i = 0 at first, let 0 0x T x , 

while (default = 0) or (i < M + 1), and we continue 
the loop. Check-time denotes the consecutive time 
that firm value remains below the default boundary. 

(I) If ( ) ln( )ix T H , set check-time = 0 

(1) Compute the probability of no barrier crossing Pi 

based on equation (15). 

(2) Following Metwally and Atiya, 2002, let b = 
(Ti+1  Ti)/(1  Pi). b is used to setup a time interval 
for uniform sampling in the following steps to 
simultaneously decide if the firm value crosses the 
barrier and the first passage time if the firm value 
does cross the barrier. 

(3) Generate s  from a uniform distribution in the 
interval [Ti, Ti + b].  

(4) If 1,i is T T , firm value does not cross the 

barrier, skip (5), and set i = i + 1. Repeat Step 4. 

(5) If 1,
i i

s T T , then the firm value crosses the 

barrier for the first time at time s  in interval [Ti, Ti+1].  

Since we know the firm values at time s and Ti+1 are 
lnH' and 1i

x T , we assume that one year could be 

divided by K days and use the standard Brownian 

                                                      
2 In an online Appendix, we provide the detailed derivations of the 
double exponential jump diffusion CDF and we also present the method 
to generate jump size under double exponential jump diffusion. 
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bridge method (equation (14)) to simulate the firm 
value process from s to Ti+1. We check the process 
of each point to see whether the firm value crosses 
the barrier before time Ti+1. 

For intervals j = 1 to [Ti+1  s]·K, repeat (a) to (c). 

(a) If x(s + j/K) < lnH'), then check-time = check-

time + 1/K 

(b) If x(s + j/K)  lnH'), then we reset check-time = 0 

(i) If check-time  w, then default = 1. 

)))()(exp(1(])exp[( 1 xrDiscBond n
 

where ( )j
Ks  is the default time. 

Exit loop, compute another Monte Carlo iteration 
(Step 2-5). 

(ii) Else, j = j + 1 

(c) when j = [Ti+1  s]·K, and check-time < w, let i = i 
+ 1, repeat Step 4. 

If ( ) ln( )ix T H , since we know the firm value at 

time Ti and Ti+1 is x(ti+) and x(ti+1 ), respectively, we 
directly use the standard Brownian Bridge method 
(equation (14)) to simulate the firm value process in 
interval [Ti,Ti+1] as (Step 4). (I) (5). We check each 
path to see whether it crosses the barrier before time 
Ti+1, for intervals j = 1 to [Ti+1  Ti]·K: 

(1) If x(Ti + j/K) < lnH', then check-time = check-

time + 1/K. 

(2) If x(Ti + j/K)  lnH', then we reset check-time = 0. 

(a) If check-time  w, then default = 1 

)))()(exp(1(])exp[( 1 xrDiscBond n
 

Exit loop, compute another Monte Carlo iteration 
(Step 2-5).  

(b) Else, j = j + 1 

(3) When j = [Ti+1  Ti]·K, and check-time < w, let  
i = i + 1, repeat Step 4. 

(c) When i = M + 1, check x(T): 

(1) If x(T)  ln(H') and default = 0 

exp
n

DiscBond rT F
 

(2) Else, let default = 1 

)))()(exp(1(])exp[( 1 TxTrDiscBond n
 

Exit loop, compute another Monte Carlo iteration 
(Step 2-5). 

Step 5. If n = N, we finish the Monte Carlo simulation. 
We can calculate the estimated risky bond price as: 

1

1 N

n

n

DiscBond DiscBond
N

. 

2.2. Performance of the modified uniform 

sampling approach. For each method, we run the 
MATLAB program on an Intel T4400 2.20 GHz 
CPU for one million Monte Carlo iterations to 
compute the bond price. We compare the results of 
modified uniform sampling method with standard 
Monte Carlo method in Model 1 and Model 2 under 
different bond face values. In Table 1, we use 
parameter settings as follows: V(0) = 100, F = 80, 
r = 0.05,  = 0.05,  = 0.2, 1 = 0.4, p = 0.5, q = 0.5, 

1 = 2.79667154579233, 2 = 2.12168612641381,  
T = 1, w = 1/12, 2 = 0.02. This choice of base-case 
parameters is described in more detail in section 3.1.  

Table 1. Comparisons of different simulation methods: Model 1 

Panel A: F = 80 

Method Std. error CPU time (seconds per million iterations) Std. error × CPU time 

Standard Monte Carlo  = 1/12 0.0227 1096 24.8792 

Standard Monte Carlo  = 1/52 0.0217 4695 101.8815 

Standard Monte Carlo  = 1/252 0.0201 21007 422.2407 

Uniform sampling K = 252 0.0123 66 0.8118 

Panel B: F = 90 

Method Std. error CPU time (seconds per million iterations) Std. error × CPU time 

Standard Monte Carlo  = 1/12 0.0342 1123 38.4066 

Standard Monte Carlo  = 1/52 0.0334 5236 174.8824 

Standard Monte Carlo  = 1/252 0.0325 20629 670.4425 

Uniform sampling K = 252 0.0184 83 1.5272 

Panel C: F = 95 

Method Std. error CPU time (seconds per million iterations) Std. error × CPU time 

Standard Monte Carlo  = 1/12  0.0382 905 34.5710 

Standard Monte Carlo  = 1/52 0.0381 4148 158.0388 

Standard Monte Carlo  = 1/252 0.0379 19437 736.6623 

Uniform sampling K = 252 0.0184 93 1.7112 
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In Panel A of Table 1, the uniform sampling method 
greatly reduces simulation time. From the result of 
Std. error × CPU time, one can find that the uniform 
sampling method is more efficient than the standard 
Monte Carlo method. It is apparent that the standard 
error of the uniform sampling method is also smaller 
than standard short-step Monte Carlo simulation. 
This implies that uniform sampling offers a more 
accurate Monte Carlo simulation result with the 
same time discretization t . In addition to its 
efficiency, the uniform sampling method has lower 
bias than the standard Monte Carlo method. The 
reason is that the uniform sampling method uses 
uniform distribution to generate the time of hitting 
the barrier. Hence, under the barrier option framework 
of Metwally and Atiya (2002), the uniform sampling 
approach produces unbiased estimates of barrier 
options. Our method is, however, not completely bias-
free because time discretization of diffusion paths of 
the Brownian bridge generated from equation (14) 
introduces bias in the estimate. Nonetheless, the bias 
shall be very small compared with standard Monte 
Carlo method because generation of diffusion paths 
of equation (14) is needed only when firm value hits 
the barrier while the time period is chosen to be 
quite small under this condition.  

This setting of F = 80 makes the modified uniform 
sampling method very efficient since the initial firm 
value V(0) is far away from the default boundary 
and, therefore, it has fewer diffusion paths of 
standard Brownian bridge that need to be simulated 
(equation (14)). In Panels B and C of Table 1, we 
increase the face value of bond to reduce the 
advantage of our modified uniform sampling method 
 

while keeping other parameters the same. We 
increase the face value from 80 to 90 and 95 in 
Panel B and Panel C, respectively. Standard error 
increases significantly when the face value is higher, 
in standard Monte Carlo methods.  

The probability of using diffusion path generation of 
the standard Brownian bridge method increases with 
increase of face value in the modified uniform 
sampling method, while the CPU time increases only 
slightly. Computation time is only 6% (F = 80) to 10% 
(F = 95) of the standard Monte Carlo simulation when 

= 1/12. Moreover, our method is much more 
accurate and efficient than the standard Monte Carlo 
simulation even when = 1/252. We conduct a 
performance analysis for Model 2 similar to Table 1 
by adding the immediate default boundary and letting 
 = 0.8. From Table 2, one find that after adding the 

second default boundary, computational efficiency 
of Model 2 is only slightly higher than Model 1. The 
modified uniform sampling method still has lower 
standard error and is much more efficient than the 
standard Monte Carlo method.  

3. Numerical results and empirical implications 

This section presents the default analysis of impact 
from two of the distinctive features of our model: the 
complex bond safety covenant and the double 
exponential jump diffusion process of firm value. To 
compare with prior structural models, we illustrate the 
effect of the caution time setting on default 
probabilities, credit spreads, and recovery rates, as well 
as the differences between our model and the Merton’s 
jump-diffusion model [18]. Finally, we compare the 
difference between Model 1 and Model 2.  

Table 2. Comparisons of different simulation methods: Model 2 

Panel A: F = 80 

Method Std. error CPU time (seconds per million iterations) std. error × cpu time 

Standard Monte Carlo  = 1/12  0.0223 1217 27.1391 

Standard Monte Carlo  = 1/52 0.0209 4827 100.8843 

Standard Monte Carlo  = 1/252 0.0196 23052 451.8192 

Uniform sampling K = 252 0.0124 79 0.9796 

Panel B: F = 90 

Method Std. error CPU time (seconds per million iterations) Std. error × CPU time 

Standard Monte Carlo  = 1/12  0.0334 1017 33.9678 

Standard Monte Carlo  = 1/52 0.0326 4472 145.78724 

Standard Monte Carlo  = 1/252 0.0324 21071 682.7004 

Uniform sampling K = 252 0.0184 88 1.6192 

Panel C: F = 95 

Method Std. error CPU time (seconds per million iterations) Std. error × CPU time 

Standard Monte Carlo  = 1/12  0.0379 963 36.4977 

Standard Monte Carlo  = 1/52 0.0377 4208 158.6416 

Standard Monte Carlo  = 1/252 0.0375 18493 693.4875 

Uniform sampling K = 252 0.0214 97 2.0758 
 

3.1. Empirical implication of caution time settings 

(Model 1). Following Zhou’s approach (2001), we 
control for the overall mean and volatility of firm 

value returns when changing parameter values that 
affect random components of firm value. Accordingly, 
we know that the variations of bond values are truly 
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caused by different combinations of model parameters 
rather than by changes in overall mean and volatility of 
firm value returns. We denote X  as the return of firm 
value, and control EX and Var(X) by the moments of 
return X in different models to observe the effect 
caused by changing the parameter. In order to perform 
the analysis, we have to obtain, under the risk-neutral 
measure Q, mean and volatility of firm return of these 
models. From Ramezani and Zeng (2007), we know 
the moments of firm value returns of these models 
under physical measure. Therefore, we can easily 
obtain the moments of firm value returns under risk-
neutral measure Q

1
. In the following figures, each 

estimate is obtained through one million Monte Carlo 
simulations for acceptable precision. 

First, we present the difference between the 
structural models under a barrier option and a Parisian 
option framework. In this case, we perform the 
analysis of the double exponential jump-diffusion 
model. We control parameter settings such that total 
variance = 0.09, total mean = 0.005, V(0) = 100,  
F = 80, r = 0.05, = 0.05,  = 0.05, 1 = 0.4, p = 0.5, 
q = 0.5 and jump variance = 0.35. The choices of 
parameters such as total variance, r, , F and 1 
are similar to those in previous literature and it is 
plausible to set r  and p = q = 0.5. One set of 
parameters satisfy the above condition is that  

u = 2.79667154579233, d = 2.12168612641381, 
and variance of pure diffusion 2 = 0.0725. We 
change the caution time from zero to 5 days, 10 
days, 15 days, 1 month, 6 months, and 1 year to 
observe the effects of these changes. Note that the 
model with zero caution time goes back to the model 
 

under the barrier option framework. Because there 
are no apparent differences among caution time 
beyond 15 days, Figures 3 and 4 only present the 
results of no caution time up to 15 days. Figure 3 
presents the relationship between cumulative default 
probability and maturity under various settings of 
caution time. It shows that longer caution time 
results in lower cumulative default probability. 
Figure 4 shows that credit spreads decrease as 
caution time increases for all caution time settings 
for bonds over 1 year to maturity. Interestingly, 
credit spreads for bonds that are over 2 years to 
maturity without caution time are lower than those 
with 5 days caution time. To further explore this 
result, we examine average recovery values of 
models with no caution time and 5 days caution 
time. Recovery value is the firm value at default 
minus write-down value in equation (11). We 
simultaneously perform the simulation and record the 
recovery values of no caution time and 5 days caution 
time from each iteration. One can find that the average 
recovery value for bonds over 2 years to maturity for 
the model with no caution time is higher than that of 5 
days caution time. This explains the phenomenon of 
credit spreads being lower under no caution time than 
with 5 days caution time. Average recovery values in 
Figure 5 explain the results of credit spreads in Figure 
3 since the model with 5 days caution time has lower 
average recovery values than zero caution time with 
over 2 years to maturity. In other words, the financial 
standing of a firm can be even worse as the firm value 
keeps dropping, given the 5 days caution time. The 
high credit spreads under 5 days caution setting is due 
to the low recovery values.  

 

Note: ( ) denotes no aution time; (--) denotes 5 days; (-·) denotes 10 days; (···) denotes 15 days. 

Fig. 3. Relationships between cumulative default probability and maturity under various caution time settings  
1 

                                                      
1 In an online appendix, we present the first three moments of the double exponential jump diffusion model. 
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Note: ( ) denotes no caution time; (--) denotes 5 days; (-·) denotes 10 days; (···) denotes 15 days. 

Fig. 4. Relationships between credit spread and maturity under various caution time settings  
 

 
Note: ( ) denotes no caution time; (--) denotes 5 days. 

Fig. 5. Relationship between average recovery value and maturity under various caution time settings  

3.2. Empirical implications of double exponential 

jump diffusion process. Next, we report the 
advantage and flexibility of modeling asset value 
under the double exponential jump-diffusion process. 
We compare the double exponential jump-diffusion 
model with the log-normal jump-diffusion model by 
Merton (1976), given the same EX, Var(X) and jump 
intensity . Given no caution time, we control the total 
mean EX = 0, total variance Var(X) = 0.09, r = 0.05 
and  = 0.2, and adjust the remaining parameters to 
generate various levels of skewness. In Merton’s 
jump-diffusion model, flexibility of skewness is 
limited. In this case, we set skewness = 0 and 
variance of pure diffusion 2 = 0.01 and find a 
possible combination of parameters (mean of jump 

size  = 0.016250257 and variance of jump size 
 = 0.399738782) which can satisfy these constants 

under the Merton jump-diffusion model. Next, we 
generate three different sets of combinations each 
with different levels of skewness under the double 
exponential jump diffusion process. Since log-
normal jump-diffusion has no way to adjust the 
probabilities of upside and downside jumps, to 
facilitate comparison between these two models, we 
keep the probabilities of both upward jump p and 
downward jump q in our model as 50%. In the first 
case, we set skewness = -0.5, p = 0.5 and q = 0.5, and 
solve for the remaining parameters ( u = 2.470527501, 

d = 2.241299129 and 2 = 0.017418446). In the 
second case, we control skewness = 0, p = 0.5 and  
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q = 0.5, and solve for the remaining parameters  
( u = 2.616159165, d = 2.616159142 and 2 = 
0.03155712). In the third case, we set skewness = 0.5, 
p = 0.05 and q = 0.5, and solve for the remaining 
parameters ( u = 2.85627674, d = 3.658956675 and 

2 = 0.050546344). Figure 6 demonstrates the 
relationship between credit spreads and time to 
maturity for different levels of skewness under the 
Merton’s log-normal jump-diffusion model and our 
double exponential jump-diffusion model.  

As shown in Figure 6, under the setting of negative 
skewness, bond credit spread is lower than that 
under positive skewness most of the time, which is 
 

not intuitive since a firm with negatively skewed 
firm return distribution has larger probability of 
losing a greater amount of value in the short term. 
Accordingly, it should have a higher credit spread 
due to the higher probability of making its 
corporate bond default. In Figure 6, we do observe 
that the negatively skewed return distribution leads 
to a higher credit spread than the other settings in a 
very short run as bond maturity approaches zero. 
Therefore, we conjecture that weights of variances 
between pure diffusion and jump size, instead of 
the skewness of return distribution, cause this 
phenomenon.  

 

Note: ( ) denotes Merton jump-diffusion model with skewness = 0,  = 0.2, 2 = 0.01,  = 0.016250257,  = 0.399738782; the 
double exponential jump-diffusion model,  = 0.2, p = 0.5 and q = 0.5; (--) denotes skewness = -0.5; (-·) denotes skewness = 0; 

(···) denotes skewness = 0.5. 

Fig. 6. Relationships between credit spread and maturity in different models and skewness  

To confirm our conjecture, we change jump 
intensity  from 0.2 to 0.05 so that we can adjust the 
weights of variances between pure diffusion and 
jump size under the same skewness, as well as 
probabilities of upside and downside jumps. We 
generate a parameter setting in which  = 0.03403074,  
 = 0.825697084 and 2 = 0.48714694 under Merton’s 

jump-diffusion model. In addition, we also solve the 
three parameter settings under the double exponential 
jump diffusion process: (1) u = 1.83694595044413,  

d = 1.58459906319395 and 2 = 0.0552696595816093 
given skewness = -0.5; (2) u = 1.92390672760078, 

d = 1.92390672759791 and 2 = 0.0629838660328502 
given skewness = 0; and (3) u = 2.07131120647897, 

d = 3.54067693331008 and 2 = 0.0743575057803415 
given skewness = 0.5. We increase the weights of 
variance in the pure diffusion part in each setting. 
Figure 7 demonstrates that for all settings, compared 
with those in Figure 6, short-term credit spreads 
increase after 0.5 year to maturity and decrease in 
very short maturities of less than half-a-year. In the 

long term, credit spreads are very close to each other 
since they are under the same EX and Var(X). This 
result supports our conjecture that it is the weights 
of variances between pure diffusion and jump size, 
instead of the skewness of return distribution, that 
determine short-term credit spreads. More precisely, 
the variance of jump size crucially affects very 
short-term credit spreads. It appears that the 
skewness of return distribution is not a main factor 
determining the shape of credit spreads; skewness 
still constraints the variability of parameter 
combinations. Our model under the assumption of 
double exponential jump diffusion process has 
more flexibility in parameter setting if one controls 
the moments of firm value returns. One can use this 
model to generate more different types of credit 
spread curves than the Merton jump-diffusion 
model. It is worth noting that one can still adjust the 
probabilities of upside jump p and downside jump q 
in our model, though we fix them at 50% in the 
discussion above.  
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Note: ( ) denotes Merton jump-diffusion model with skewness = 0,  = 0.05,  = 0.03403074,  = 0.825697084 and 2 = 
= 0.48714694; the double exponential jump diffusion model  = 0.05, p = 0.5 and q = 0.5: (--) denotes skewness = -0.5; (-·) denotes 

skewness = 0; (···) denotes skewness = 0.5. 

Fig. 7. Relationships between credit spread and maturity in different models and skewness  

3.3. Empirical implications of the complex bond 

safety covenant after adding immediate default 

boundary (Model 2). In this part, we compare the 
difference between Model 1 and Model 2. We use 
the same parameters setting as in 4.1 by letting V(0) 
= 100, F = 80, r = 0.05, = 0.05,  = 0.05, 1 = 0.4, 
p = 0.5, q = 0.5, u = 2.79667154579233, d =  
= 2.12168612641381 and caution time window 
period w = 15 days. Recall that the immediate default 
barrier is a fraction of the caution default boundary, 
i.e., L(t) = H(t). When  = 0, the imme-diate default 
boundary does not exist. We present the changes of 

credit spreads, cumulative default probabilities and 
recovery values under different levels of fraction . 
Figure 8 shows the relationship between credit spreads 
and bond maturity. One can observe that if  = 0.9 
credit spreads are higher than those of Model 1, 
whereas there are almost no differences for  = 0.8 and 
 = 0.6. When  is relatively low, the immediate 

default barrier can hardly affect default probabilities 
since the firm can default if the firm value stays below 
the caution barrier long enough. We graph the 
cumulative default probability and average recovery 
value to see which factor causes this phenomenon.  

 
Note: ( ) denotes Model 1; (--) denotes  = 0.9; (-·) denotes  = 0.8; (···) denotes  = 0.6. 

Fig. 8. Relationships between credit spread and maturity for various levels of p  
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Figure 9 depicts the relationship between cumulative 
default probability and maturity at different levels of 
. It shows that higher values of  can lead to higher 

cumulative default probabilities. However, if  is 
lower than 0.6, default probabilities are almost no 
different from those in Model 1. As one knows that 
credit spreads are determined by both default 
probability and recovery value. Figure 10 presents 
the relationship between average recovery value and 
maturity at various levels of  This figure shows that 
a higher  results in higher average recovery value. 
In case of  = 0.9, as well as  = 0.8, average 
recovery values are higher than those in Model 1. 
Only when  = 0.6, the average recovery value is 
lower than Model 1. The intuition behind this is that 
the immediate default boundary can prevent the firm 

value from falling too low in the presence of the 
caution condition and thus make the average 
recovery higher. Note that a higher default 
probability leads to higher credit spreads, while 
higher recovery value results in smaller credit 
spreads. Accordingly, the interaction of these two 
effects determines the credit spread of the corporate 
bond. Combining the observations of Figures 9 and 
10, our numerical results imply that the effect of 
default probability is larger than recovery value, on 
credit spreads. Therefore, credit spreads of Model 2 
under  = 0.9 are higher than those of Model 1. 
Finally, we shall interpret this phenomanom with 
caution because other possible combinations of 
parameters may yield different results and have 
different implications.  

 

Note: ( ) denotes Model 1; (--) denotes  = 0.9; (-·) denotes  = 0.8; (···) denotes  = 0.6. 

Fig. 9. Relationships between cumulative default probability and maturity for different values of p 
 

 

Note: ( ) denotes Model 1; (--) denotes  = 0.9; (-·) denotes  = 0.8; (···) denotes  = 0.6. 

Fig. 10. Relationships between average recovery value and maturity for various levels of p 
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Conclusion 

This paper develops two models for risky corporate 
bonds valuation and default risk analysis under the 
Parisian option framework and double exponential 
jump diffusion process. Our models have more 
flexibility in parameter settings than Merton’s log-
normal jump-diffusion model under a barrier option 
framework (see Zhou, 2011). We develop a Monte 
Carlo method that can efficiently produce accurate 
estimates of corporate bond prices under a Parisian 
option framework. Our modified uniform sampling 
simulation approach combines the uniform sampling 
approach of Metwally and Atiya (2002) and standard 
Brownian bridge simulation. This approach can 
significantly reduce computation time and bias of 
estimates compared to a standard approach. This is a 
substantial advantage over the standard Monte Carlo 
simulation approach where one needs more accurate 
and fast calculation of bond prices. Moreover, this 
method is also very efficient in pricing risky debt with 
complex safety covenant, and can be easily applied to 
other jump-diffusion processes. 

We also demonstrate the shapes of credit spread 
curves under different caution time settings. Caution 
time leads to a variety of shapes of credit spread 
curves, default probability and recovery value for 
different maturities. Our results indicate that longer 
caution time results in lower cumulative default 
probability of corporate bonds. In general, credit 

spreads decrease as caution time increases. The only 
exception is that very short caution time (5 days) 
can result in credit spreads higher than under zero 
caution time for bonds with maturities longer than 2 
years. The reason is that the average recovery value 
under this condition is lower than that under zero 
caution time. In addition, the features of two-side 
exponential jumps are capable of producing various 
shapes of credit spread curves compared with log-
normal jumps. Furthermore, we also conduct default 
analysis when a second “immediate default boundary” 
is introduced into the model. The numerical results 
show that default probabilities and credit spreads 
generally increase as we incorporate the immediate 
default boundary. 

There are still some possible improvements and 
interesting applications for future research to explore. 
First, variance reduction methods of Monte Carlo 
simulation could be explored for improving the 
estimates; for example, Ross and Ghamami (2010) 
improved the method of Metwally and Atiya (2002) by 
well-known variance reduction techniques. Second, it 
may be of interest to study corporate securities under 
complex capital structure such as the case where a firm 
issues both senior and junior debts. Finally, it would be 
a potentially fruitful research to calibrate the model to 
actual bond prices in the market, and examine if a 
more complex firm value process and bond safety 
covenant can better fit the real data. 
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