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Mean-CoAVaR optimization for global banking portfolios 

Abstract 

This paper proposes mean-CoAVaR portfolio optimization to mitigate the potential loss caused by systematic risk. 

CoAVaR is a natural extension of CoVaR, and is defined as the average value at risk on the condition that the market 

index is in distress. In the same way as CoVaR, CoAVaR accounts for the extent of how affected the institution is by 

systematic distress. The authors expect that the potential loss of the portfolio arising from systematic risk is mitigated 

by minimizing the CoAVaR of the portfolio against the market index. The paper investigates the effectiveness of the 

mean-CoAVaR optimization by using the stocks of global systemically important financial institutions (G-SIFIs). The 

reason for choosing G-SIFI stocks as trial samples is that they are both highly interconnected and potentially affected 

by systematic risk. The joint stock return distribution is predicted by an autoregressive moving average generalized 

autoregressive conditional heteroscedasticity model with multivariate normal tempered stable distributed innovations, 

which is shown to be a better model for G-SIFI stocks in the authors’ separate paper. Throughout the empirical study, 

the authors observe that the mean-CoAVaR portfolio incurs relatively smaller cumulative loss in most cases compared 

with the mean-AVaR and mean-variance portfolios. This implies that the mean-CoAVaR strategy is effective during a 

financial crisis. The results open the applicability of CoVaR methodology to risk management. 

Keywords: mean-CoAVaR optimization, ARMA-GARCH model, multivariate normal tempered stable distribution, 

portfolio selection, G-SIFIs, global banking stock markets. 

JEL Classification: F37, G01, G11, G15, G17, G32. 

Introduction

The recent financial turmoil has so severely 

deteriorated the global investment environment 

that traditional portfolio management theory 

currently has less effect. The failure of Lehman 

Brothers in September 2008 and the subsequent 

financial crisis, referred to as the “Lehman shock”, 

had an adverse impact on global financial markets, 

causing massive spillover effects and bringing 

attention to systemic risk. In such a situation, 

portfolio managers are exposed to and need to 

address undiversifiable risk; loss is more or less 

inevitable no matter how they construct a portfolio. 

Undiversifiable risk is likely to be especially 

applicable to the banking sector because global banks 

are now closely interconnected. Undiversifiable risk 

is also called systematic risk. 

The benchmark of modern portfolio theory is 

Markowitz’s mean-variance optimization theory 

(Markowitz, 1952). The framework of mean-

variance optimization is to construct a portfolio 

minimizing the variance under the expected return. 

However, it has been revealed that the variance is 

not always an appropriate risk measure to be 

minimized. Subsequently, several alternative 

approaches have been proposed to replace the 

variance in Markowitz’s theory with other risk 

measures such as Value at Risk (VaR) and Average 

Value at Risk (AVaR), which are called mean-VaR 

and mean-AVaR optimization, respectively. Such 

approaches are collectively called mean-risk 

portfolio optimization. In general, AVaR is 

preferable to VaR in terms of the optimization 
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problem. While VaR optimization is basically a 

nonconvex and nonsmooth problem with multiple 

local minima, AVaR optimization is a convex and 

smooth problem. See Rachev et al. (2008) for a 

general description and history of mean-risk 

portfolio optimization problems. 

Recently, Adrian and Brunnermeier (2011) proposed 

CoVaR or CoVaR measure for systemic risk. 

CoVaR, specifically CoVaRj i, is defined between 

two institutions i and j. CoVaRj i is the VaR of j on 

a certain condition of i. CoVaRj i is the difference 

between the VaR of j on the condition of i being 

distressed and “normal”. Note that either i or j can 

be the entire system. While the case of j being the 

system usually attracts more attention because 

CoVaRsystem i can quantify the marginal risk 

contribution of i to the overall system, Adrian and 

Brunnermeier (2011) also mention the case of i

being the system. They refer to CoVaRj system as 

“exposure CoVaR” in the sense that it can be 

interpreted as j’s exposure to systemic risk. CoVaR 

and CoVaR are directly extended into the 

counterparts of AVaR, which we call CoAVaR and 

CoAVaR1. We apply the CoVaR methodology to 

stock markets, where the financial system is 

approximated by the market index. 

In this paper, we adopt CoAVaR as the objective 

function and propose mean-CoAVaR portfolio 

optimization. Even though the loss caused by 

systematic risk might be inevitable, we attempt to at 

least mitigate it through CoAVaR optimization. 

Because CoAVaRj index captures j’s vulnerability to 

                                                     
1 In Adrian and Brunnermeier (2011), CoAVaR is mentioned as CoES, 

where ES stands for expected shortfall. 
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the overall market risk, we expect to make the 

portfolio immune to systematic loss by minimizing the 

CoAVaR of the portfolio against the market index, i.e., 

CoAVaRport index. We perform an empirical study by 

using daily stock return data of 28 listed global 

systemically important financial institutions (G-SIFIs), 

as of November 2011. A G-SIFI stock is a good choice 

for testing the effect of a mean-CoAVaR strategy 

against systematic risk because G-SIFIs are specified 

by financial regulators as the institutions with a huge 

influence on the global financial system, and that 

potentially experience systemic risk in terms of their 

size, interconnectedness, and so on (Basel Committee 

on Banking Supervision, 2011; Financial Stability 

Board, 2011). By comparing the performance of the 

portfolio minimizing CoAVaR with that of the 

portfolio minimizing traditional risk measures such as 

variance and AVaR, we confirm the effectiveness of 

mean-CoAVaR optimization. This paper is a sequel to 

our separate paper (Kurosaki and Kim, 2013). We now 

focus on the management of systematic risk from the 

perspective of a portfolio manager, whereas we 

focused on the measurement of systematic risk in the 

separate paper. See our separate paper (Kurosaki and 

Kim, 2013) for more information on notations, 

description of datasets, and methodology because 

some of these are shared with this paper. 

The rest of this paper is structured as follows. In 

section 1, we formulate mean-CoAVaR portfolio 

optimization. Section 2 provides an empirical study 

by using 28 G-SIFI stocks and an ARMA-GARCH1

forecast. The final section concludes the paper. 

1. Mean-CoAVaR optimization 

In line with the concept of mean-risk optimization, 

we propose mean-CoAVaR portfolio optimization 

to minimize a portfolio’s potential loss caused by 

systematic risk. Because exposure CoVaR is a 

measure of vulnerability to systematic distress, it is 

quite a natural idea to minimize it for the purpose of 

a defense against systematic risk. We select 

CoAVaR as the objective function rather than 

CoVaR because of the drawbacks of VaR 

optimization. Note that we also select CoAVaR 

rather than CoAVaR for the following reason. 

While CoAVaRport index focuses on the increase in 

the risk of a portfolio in the case of financial crisis, 

i.e., exposure to systemic distress, CoAVaRport index

accounts for the portfolio’s idiosyncratic risk in 

addition to its exposure. The latter quantity should 

be minimized in terms of portfolio loss mitigation. 

Let
i

tR  be the return of stock i. The subscript t

stands for a time period. We assume that any return 
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distribution is continuous. Let C(
i

tR ) be a certain 

condition of 
i

tR . Then, the CoAVaR of stock j on 

the condition C(
i

tR ) at the confidence level 1 q is

defined as 
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where j

t
 is a conditional mean of j

tR  on the 

information up to t – 1 and t  is an expected return 

of the portfolio. Note that CoAVaR is defined for 

the portfolio return 
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Short selling is prohibited in line with common 

practice. For simplicity, we do not take transaction 

costs into account. 

2. Empirical study 

We evaluate a mean-CoAVaR strategy through an 

empirical study by using daily stock logarithmic 

return datasets of 28 out of 29 G-SIFIs, as of 

November 2011, where the only exclusion is Banque 

Populaire CdE because it is unlisted. The list of G-

SIFIs is given in the Appendix. We refer to each stock 

by its ticker symbol or abbreviation. We use the S&P 

global 1200 financial sector index (SGFS) to represent 

the global banking stock market. 

The procedure of evaluating a mean-CoAVaR 
strategy is as follows. First, we generate the one-
period-ahead joint stock return distribution using the 
multivariate ARMA(1,1)-GARCH(1,1) model. We 
assume that the innovations of the ARMA-GARCH 
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model follow the multivariate normal tempered 
stable (MNTS) distribution1 because it is a better 
model for G-SIFI stocks compared with the 
Gaussian model in terms of both goodness of fit and 
accuracy of risk measure estimation (Kurosaki and 
Kim, 2013). Subsequently, under the predicted stock 
return joint distribution, we find the optimized 
portfolio wt through three different strategies: mean-
variance, mean-AVaR, and mean-CoAVaR optimiza-
tion. In other words, we minimize the variance, AVaR, 
and CoAVaR of the portfolio under the same 
constraints for the three strategies, respectively, as 
given in equation (2). We regard an equally weighted 
portfolio as the benchmark, and thus set the expected 

return t  as the simple average of conditional means 
j

t . We rebalance the portfolio to the optimum each 

business day. Finally, we compare the performance 
among strategies in terms of long-run loss mitigation 
effects.

The operation period starts on January 1st, 2008 and 
ends at June 30th, 2012, during which systemic risk 
is of great concern. The operation days amount to 
1174 in line with the United States business days. 
Each business day, the parameters of the ARMA-
GARCH model are updated on the basis of the most 
recent 1250 days’ historical stock return data. 
Historical returns are backfilled where missing 
(Kurosaki and Kim, 2013). The confidence level of 
risk measures is set as 1 q = 0.95. We use the Matlab 
fmincon command for optimization problems. 

The portfolio is constructed from G-SIFI stocks. To 
see whether the effectiveness of strategies depends 
on portfolio size or regional specificity, we prepare 
three portfolios constructed from different number of 
stocks and another three portfolios constructed from 
different regional stocks. The three different-sized 
portfolios are referred to as large, middle, and small. 
The large group includes all 28 G-SIFI stocks; the 
middle group includes the following 12 stocks: BAC, 
BARC, BNP, C, CBK, CSGN, DBK, HSBA, MUFG, 
GLE, SMFG, and UBSN; and the small group 
includes the following 6 stocks: BAC, BARC, BNP, 
CBK, MUFG, and UBSN. For the middle and small 
groups, sample stocks are chosen from six countries, 
the United States, the United Kingdom, France, 
Germany, Switzerland, and Japan, which play critical 
roles in the global banking system in the sense that 
more than one institutions are selected as G-SIFIs from 
those countries. The three regional portfolios are 
constructed from G-SIFI stocks in each region: 8 
stocks from the United States, 16 stocks from Europe, 
and 4 stocks from Asia. 

The results are summarized in Tables 1 and 2 for 
different-sized portfolios and different regional 
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portfolios, respectively. They report standard devia-
tion, skewness, kurtosis of the realized daily returns of 
the optimized portfolios, the number of days on which 
the optimized portfolio outperforms the benchmark 
regarding the return, and cumulative return in 
percentage terms. The statistics of the market index 
and equally weighted portfolio are also presented as a 
reference. The main remark in Tables 1 and 2 is that 
the mean-CoAVaR and mean-AVaR portfolios 
generally incur smaller cumulative loss than the mean-
variance portfolio. In Table 1, the mean-variance 
portfolio incurs an even larger cumulative loss than the 
simple equally weighted portfolio in the middle and 
small groups. We frequently observe that the mean-
variance portfolio yields at most the same performance 
as the equally weighted portfolio. This supports the 
idea that the variance is not necessarily a proper risk 
measure during financial turmoil. Second, the mean-
CoAVaR strategy still has loss mitigation effects 
compared with the mean-AVaR strategy in most cases 
in Tables 1 and 2. In Table 1, the loss mitigation effect 
is the least in the large group and the greatest in the 
small group. It can be explained by the size of the 
portfolio. When a portfolio is diversified by 
incorporating a larger number of stocks, the structure 
of the portfolio becomes closer to the market index. 
Therefore, the mean-AVaR optimization for a larger 
portfolio captures systematic risk well even without 
explicitly considering the comovement between the 
portfolio and entire market as CoAVaR does. In Table 
2, the Asia group is the only exception out of all six 
portfolios where the mean-CoAVaR strategy is 
inferior to the mean-AVaR strategy, and moreover, the 
mean-AVaR strategy is inferior to the mean-variance 
strategy in terms of the cumulative loss. However, note 
that the mean-CoAVaR strategy incurs the smallest 
cumulative loss among the three strategies in the other 
five cases. 

The time series of the cumulative return of the 

portfolios optimized by three different mean-risk 

strategies for the small and Europe groups is plotted 

in Figures 1 and 2, respectively. In addition, the 

difference of the cumulative return between the mean-

CoAVaR and mean-AVaR portfolios is also plotted in 

Figures 3 and 4. Note that the small and Europe groups 

constitute the portfolio where the mean-CoAVaR 

strategy has the most pronounced effect of mitigating 

the loss among different-sized portfolios and different 

regional portfolios, respectively. It is observed in the 

figures that the mean-CoAVaR portfolio has a 

noticeable difference in the cumulative return from the 

mean-AVaR portfolio after the collapse of Lehman 

Brothers, which triggered financial turmoil and 

concern about systemic risk. From the observations 

above, we conclude that the mean-CoAVaR 

optimization is as effective or even better compared 

with the mean-AVaR optimization, especially when 

systematic distress is of great concern. 
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Table 1. Portfolio performance of three mean-risk optimizations (by size) 

Portfolio 
Standard 
deviation 

Skewness Kurtosis 
# of outperforming 

days 
Cumulative

return 

SGFS 0.022 -0.041 8.035 N.A. -71.580

Large group (28 G-SIFIs)

Benchmark (equally weighted) 0.026 0.054 9.186 N.A. -127.879

Mean-Variance 0.016 -0.060 6.612 359 -124.692

Mean-AVaR 0.014 -0.028 9.123 599 -78.316

Mean-CoAVaR 0.014 0.068 9.384 606 -77.237

Middle group (12 G-SIFIs)

Benchmark (equally weighted) 0.027 0.206 8.323 N.A. -126.879

Mean-Variance 0.022 -0.021 6.902 219 -127.338

Mean-AVaR 0.021 0.059 8.373 611 -99.424

Mean-CoAVaR 0.021 0.048 8.997 610 -96.641

Small group (6 G-SIFIs)

Benchmark (equally weighted) 0.029 0.124 8.312 N.A. -136.908

Mean-Variance 0.025 -0.052 6.885 179 -167.646

Mean-AVaR 0.023 -0.014 7.390 581 -144.940

Mean-CoAVaR 0.023 0.027 7.241 592 -127.064

Note: The cumulative return is the cumulative amount of the weighted average of logarithmic returns of stocks in the portfolio and is 

expressed as a percentage. Thus, it can be lower than -100. N.A. – not available. 

Table 2. Portfolio performance of three mean-risk optimizations (by region) 

Portfolio 
Standard 
deviation 

Skewness Kurtosis 
# of outperforming 

days 
Cumulative

return 

SGFS 0.022 -0.041 8.035 N.A. -71.580

United States group (8 G-SIFIs)

Benchmark (equally weighted) 0.038 -0.041 14.612 N.A. -87.213

Mean-Variance 0.034 -0.580 18.598 165 -130.506

Mean-AVaR 0.032 0.139 14.051 579 -89.881

Mean-CoAVaR 0.033 0.150 14.232 583 -89.520

Europe group (16 G-SIFIs)

Benchmark (equally weighted) 0.030 0.162 7.370 N.A. -155.552

Mean-Variance 0.025 0.099 5.989 313 -104.376

Mean-AVaR 0.024 0.126 6.989 621 -38.265

Mean-CoAVaR 0.024 0.173 6.866 620 -34.009

Asia group (4 G-SIFIs)

Benchmark (equally weighted) 0.022 0.113 7.674 N.A. -98.517

Mean-Variance 0.020 0.250 7.027 82 -73.763

Mean-AVaR 0.019 0.013 7.862 571 -75.031

Mean-CoAVaR 0.019 -0.012 7.939 570 -76.736

Note: The cumulative return is the cumulative amount of the weighted average of logarithmic returns of stocks in the portfolio and is 

expressed as a percentage. Thus, it can be lower than -100. N.A. – not available. 

Fig. 1. Cumulative return of the portfolios optimized by different strategies (small group) 
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Fig. 2. Cumulative return of the portfolios optimized by different strategies (Europe group) 

Fig. 3. Difference of the cumulative return between the mean-CoAVaR and  

mean-AVaR portfolios (small group) 

Fig. 4. Difference of the cumulative return between the mean-CoAVaR and  

mean-AVaR portfolios (Europe group) 
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ahead joint distribution of stock returns, which is 
revealed to be a better model for G-SIFI stocks in our 
separate paper. Throughout the empirical study, we 
observe that the mean-CoAVaR portfolio incurs 
smaller cumulative loss than the mean-AVaR and 
mean-variance portfolios in most cases. Therefore, we 

conclude that the mean-CoAVaR optimization is 
effective during the time of global bear markets. Until 
now, CoVaR has been considered primarily a macro-
prudential tool for measuring the systemic importance 
of an institution. Our results open its applicability to 
risk management usage. 
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Appendix

Table A1. List of 29 G-SIFIs as of November 20111

United States Europe Asia 

Bank of America (BAC) 
Bank of New York Mellon (BK) 
Citigroup (C) 
Goldman Sachs (GS) 
JP Morgan Chase (JPM) 
Morgan Stanley (MS) 
State Street (STT) 
Wells Fargo (WFC) 

Banque Populaire CdE
Barclays (BARC) 
BNP Paribas (BNP) 
Commerzbank (CBK) 
Credit Suisse (CSGN) 
Deutsche Bank (DBK) 
Dexia (DEXB) 
Group Crédit Agricole (ACA) 
HSBC (HSBA) 
ING Bank (INGA) 
Lloyds Banking Group (LLOY) 
Nordea (NDA) 
Royal Bank of Scotland (RBS) 
Santander (SAN) 
Société Générale (GLE) 
UBS (UBSN) 
Unicredit Group (UCG) 

Bank of China (3988)  
Mitsubishi UFJ FG (8306)  
Mizuho FG (8411)  
Sumitomo Mitsui FG (8316) 

Note: Characters in parentheses stand for the ticker symbols in each domestic market. We refer to G-SIFIs by their ticker symbol

except the Asian G-SIFIs. We refer to the Asian G-SIFIs by their abbreviations: BOC (Bank of China), MUFJ (Mitsubishi UFJ FG), 

MHFG (Mizuho FG), and SMFG (Sumitomo Mitsui FG). 

                                                     
1 The most recent list contains revisions owing to the update on November 2012. See Financial Stability Board (2012). 
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