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Kenth Skogsvik (Sweden), Stina Skogsvik (Sweden) 

On the choice based sample bias in probabilistic bankruptcy 

prediction

Abstract 

Probabilistic bankruptcy prediction models based on accounting numbers and other financial information are 

commonly estimated from non-random samples of firms, where the proportion of bankrupt firms is much larger than in 

most real world situations. This “choice based sample bias” leads to estimated bankruptcy probabilities that are biased. 

Given that unbiased probabilities are required in risk assessments or discounted cash flow valuation modelling, such 

probabilities can be severely misleading. The purpose of the paper is to analyze this bias in probabilistic bankruptcy 

prediction models (typically probit/logit analysis), and to investigate whether it can be mitigated without having to 

resort to cumbersome model re-estimations. The authors show that there is a clear-cut linkage between sample based 

probabilities and the corresponding unbiased probabilities. Also, the authors show that sample based probabilities can 

be calibrated for the choice based sample bias, provided that randomly selected firms from the sub-populations of 

bankrupt and survival firms are used in the estimation of a prediction model.  Non-calibrated bankruptcy probabilities 

are commonplace in previous empirical research, implying that reported misclassification errors and/or 

misclassification costs can be more or less misleading. Observed regularities in previous studies are in line with the 

presented analyses, demonstrating a need for a more insightful treatment of this bias in future research.  

Keywords: bankruptcy prediction, business failure, choice based sampling, logit, probabilistic prediction, probit. 

JEL Classification: G33, C53. 

Introduction

A considerable number of empirical studies on the 

association between financial statement numbers 

and firm bankruptcies have been made for 

industrial, retailing and financial firms over the 

years1. Recently, researchers have taken a particular 

interest in insurer insolvency prediction2. Various 

statistical techniques have been used to explore this 

association, ranging from crude applications of 

regression analysis to more sophisticated variants of 

probit/logit analysis3. It has been observed that the 

statistical assumptions of regression analysis and 

discriminant analysis typically are not well fulfilled in 

the context of bankruptcy prediction4. The methods are 
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support from the Torsten and Ragnar Söderberg Foundation and FPG 
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1 Early attempts go back to Smith & Winakor (1935) and Merwin (1942), 

but research of this kind has flourished from the mid 1960s and 

onwards, cf. Beaver (1966), Altman (1968), Edmister (1972), Altman 

(1973), Blum (1974), Altman et al. (1977), Ketz (1978), Ohlson (1980), 

Mensah (1983), Zavgren (1985), Skogsvik (1990), and more lately, 

Dewaelheyns and Van Hulle (2006), and Pereira Leal and Machado-

Santos (2007). 
2 Cf. for example, Cummins et al. (1997), Carson and Hoyt (2000), and 

Brockett et al. (2006). 
3 Cf. Jones (1987), Jones and Henscher (2004), and Bellovary et al. (2007). 
4 Inconsistent with the assumptions of regression analysis, the dependent 

variable is dichotomous in a prediction of firm bankruptcy. Multivariate 

discriminant analysis presumes that the independent variables are 

multivariate normally distributed in the sub-populations of bankrupt and 

survival firms, and that the variance/covariance matrices of the 

independent variables are the same for both sub-populations. As 

observed in Foster (1986, pp. 107-111) and Skogsvik (1987, pp. 210-

214), financial ratios typically do not fulfil these assumptions. 

also somewhat awkward since they do not directly 

provide estimates of bankruptcy probabilities. In 

this regard probit/logit analysis is better, as this 

method implies a probabilistic association between 

the independent variables (e.g. accounting numbers) 

and the outcome variable (e.g. “bankruptcy” versus 

“non-bankruptcy”)5.

Bankruptcy probabilities constitute important para-

meters in many decision contexts. The relevance of 

such probabilities in discounted cash flow bond and 

equity valuation is illustrated in Shaffer (2004) and 

Skogsvik (2006). Valuation models involving 

“expected values” presume that it is possible to assess 

unbiased probabilities in the sense that the 

probabilities are representative for the population of 

firms. Unbiased bankruptcy probabilities are rarely 

directly observable, but have to be estimated. In the 

context of bankruptcy prediction, probit/logit 

analysis then has appeared to be particularly useful 

(cf. Ohlson, 1980). However, the issue requires 

careful attention to the distorting impact of non-

random sampling in the estimation of such models. 

Since bankruptcies tend to occur rather infrequently, 

prediction models have in general been estimated 

from non-random samples of bankrupt and survival 

firms. The proportion of bankrupt firms in the 

sample has then typically been much larger than the 

fraction of such firms in the population. Often a 

“matched-pairs” design has been used, implying a 

                                                     
5 In recent years, other statistical approaches have been suggested in the 

context of bankruptcy prediction (cf. Shumway, 2001; and Jones & 

Henscher, 2004). However, standard logit/probit is still the predominant 

method (Jones & Henscher, 2004). 
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sample proportion of bankrupt firms of 0.501. The 

sample proportion of bankrupt firms being 

exaggerated as compared to the population of firms 

is the root of the “choice based sample bias”, 

leading to more or less biased probabilities in 

standard probit/logit models2.

There are statistical techniques that generate unbiased 
parameter estimates in probabilistic models, even in 
the presence of “choice based” sample proportions. 
These techniques require that the estimation procedure 
is calibrated for some a priori probability of 
bankruptcy. As long as an estimated prediction model 
is used in contexts where the a priori bankruptcy 
probability is the same as the proportion of bankrupt 
firms in the sample, the estimated probabilities will be 
appropriate. However, if the a priori probability in 
some context does not correspond to the proportion of 
bankrupt firms in the sample, the estimated 
probabilities will be biased. Changes in the a priori
probability of bankruptcy can be due to, for example, 
variations in firm characteristics, business cycle effects 
or regulatory changes. A cumbersome way of dealing 
with this problem would be to re-estimate the 
prediction model with a new a priori probability. 
However, for a user of some prediction model this 
might not be a viable alternative – not having access 
to the original empirical data would obviously be an 
effective impediment.  

The main purpose of this article is to put forward an 
adjustment formula that will allow users of 
probabilistic prediction models to eliminate the 
impact of the choice based sample bias on 
bankruptcy probabilities. The paper provides 
guidelines for the use of probabilistic prediction 
models in out-of-sample contexts, potentially 
valuable for both academics and practitioners. 
Additionally, empirical consequences of not making 
any adjustments to model-based probabilities are 
addressed, with references to previous research. 

The outline of the article is as follows. The choice 
based sample bias of bankruptcy probabilities is 
analyzed in section 1. In section 2, the ranking 
characteristics of biased probabilities are evaluated, 
and in section 3 the calibration of biased probabilities 
is analyzed. Section 4 provides guidelines for choosing 
probability cut-off values when evaluating the classify-

                                                     
1 In a survey of failure prediction studies, Zmijewski (1984) observed 

that a “matched-pairs” design had been used in about 70% of previous 

studies. Similarly, “matched-pairs” sampling has been predominant in 

insurer bankruptcy studies (Carson and Hoyt, 2000). 
2 Ohlson (1980) constitutes an exception from the “matched-pairs” sampling 

procedure, as Ohlson’s sample included 105 bankrupt and 2058 survival US 

industrial firms (i.e. the proportion of failure firms was less than 5%.) One 

might hence expect that Ohlson´s prediction model became comparatively 

representative for the population of US industrial firms, which might have 

contributed to the fairly robust performance of this model over time (cf.

Begley et al., 1997; and Boritz et al., 2007). 

cation accuracy of probabilistic models. Implications 
for the evaluation of the prediction performance of 
bankruptcy prediction models is discussed in section 5. 
The last section concludes the paper. 

1. The impact of the choice based sample bias 
on assessed probabilities 

Probabilistic bankruptcy prediction models have 

commonly been estimated from non-random 

samples in previous research. Given that standard 

(unweighted) statistical techniques have been used, 

estimated coefficients have then been affected by 

the chosen sample proportions. In order to analyze 

this effect, we use the following notation: (t) is the 

proportion of bankrupt firms year t in the population of 

firms, i.e. the a priori probability of bankruptcy year t;
)(

)( tj,failp  is the unbiased probability of bankruptcy 

(consistent with the a priori probability of bankruptcy 

in the population) year t for firm j, conditioned on 

firm survival at the end of year t-1; prop is the 

proportion of bankrupt firms in the estimation 

sample; 
)(

)(

prop

tj,failp  is the sample based probability of 

bankruptcy (consistent with the proportion of 

bankrupt firms in the estimation sample) year t for 

firm j, conditioned on firm survival at the end of 

year t-1; and {Xj,t-1} is the set of financial descriptors 

for firm j, observable at time t-1. 

In a decision context, the idea is that a decision 
maker is armed with some (previously estimated) 
bankruptcy prediction model, and that: 

Values of the descriptor variables for some firm 
{Xj,t-1} (including accounting numbers as 
indicators of profitability, interest cost, financial 
leverage, etc.)3 are measured.  

Based on the probabilistic prediction model, a 

probability of firm bankruptcy 
)(

)(,

prop

tfailjp  is 

calculated over some forecast horizon. 

In order to simplify the notation, let henceforth 

the indices j and t be suppressed. Recognizing that 

both sample based and unbiased probabilities are 

conditioned on the set of descriptor variables, we 

can then write: 

,
)()( propprop

fail Xfail pp

p fail

)( )(
Xfail p .

Assuming that 0 <  < 1.00, the unbiased bankruptcy 

probability 
)(

failp  can be analyzed in accordance 

with Bayes theorem as follows4:

                                                     
3 Cf. for example, Skogsvik (1990, p. 145 and pp. 155-157). 
4 Cf. for example, Chou (1984, p. 411). 
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)(

failp =
)(

Xfailp
)(1

)()(

)(

survXpfailXp

failXp
=

= ,
1

1

1

)(

)(

failXp

survXp
                                          (1) 

where
)(

failXp  is the unbiased probability of 

observing {X} (at time t) conditioned on firm 

bankruptcy in year (t+1); and 
)(

survXp is the 

unbiased probability of observing {X} (at time t)

conditioned on firm survival in year (t+1).

The sample based probability 
)( prop

failp  is affected by 

the proportion of bankrupt firms in the estimation 

sample, where prop can be viewed as the “a priori”

fraction of bankrupt firms in the sample. Assuming 

that 0  prop  1.00, this probability can be 

analyzed in the same manner as the unbiased 

probability 
)(

failp :

)( prop

failp  = 
)( prop

Xfailp =

,
)(1

1

1

)(

)(

prop

prop

failXp

survXp

prop

prop
                (2) 

where
)( prop

failXp  is the sample probability of 

observing {X} (at time t) conditioned on firm 

bankruptcy the following year (t+1); and 
)(prop

survXp is the sample probability of observing 

{X} (at time t) conditioned on firm survival the 

following year (t + 1). 

We now presume that the sample of bankrupt firms 

constitutes a random drawing from the sub-population 

of bankrupt firms and the sample of survival firms 

constitutes a random drawing from the sub-population 

of survival firms, in the sense that 
)( prop

failXp

)(
failXp  and 

)( prop
survXp

)(
 survXp .

Given that both 
)(

failXp  and 
)( prop

failXp

are positive, this means 
)()(

/ failXpsurvXp

)()(
/

propprop
failXpsurvXp . Let this odds 

ratio be denoted Or({X}).

The odds ratio for the population of firms can be 

solved through a rewriting of equation (1), i.e.: 

.
)(1

1
1

)(
Xfailp

XOr            (3) 

Inserting the above solution for Or({X}) in equation 

(2), and recognizing the equalities 

)(
Xfailp  = 

)(

failp  and 
)( prop

Xfailp  = 
)( prop

failp ,

we get:

.
11

1
1

1

)(

)(

)(

fail

failprop

fail
p

p

prop

prop
p    (4) 

The sample based bankruptcy probability is hence a 

function of the unbiased probability 
)(

failp , the 

fraction of bankrupt firms in the population ( ), and 

the proportion of bankrupt firms in the estimation 

sample (prop). As expected, equation (4) shows that 
)( prop

failp  =
)(

failp  if the proportion of bankrupt firms in 

the sample is equal to the a priori bankruptcy 

probability. However, if prop = 0.5 (as in matched 

pairs sampling) and  = 0.02, the value of 
)( prop

failp

would be 
)(

)(

9796.00204.0 fail

fail

p

p
, meaning that the 

sample based probability would be exaggerated as 

long as 0 <
)(

failp  < 1.00. For example, setting 
)(

failp

alternatively to 0.01, 0.02 or 0.10, the sample based 

probability 
)( prop

failp  in a matched-pairs sampling design 

would be equal to 0.33, 0.50 and 0.84, respectively. 

In order to better understand the linkage between 

sample based probabilities and the proportion of 

bankrupt firms in the estimation sample, we can 

calculate the derivative of equation (4) with respect 

to prop:

.
1

1-1

)(
2)()(

)()()(

failfail

failfail

prop

fail

pproppropp

pp

prop

p
(5)

Limiting the analysis to settings where 0 <  < 1.00, 

0 < prop < 1.00 and 0 <
)(

failp  < 1.00, the RHS of (5) is 

positive, in turn meaning that 
)( prop

failp is positively 

affected by the sample proportion of bankrupt firms. 

Alternatively, given that prop > , equation (4) and (5) 

imply that the bias of 
)( prop

failp  is positive and increasing 

in the proportion of bankrupt firms in the estimation 

sample. 
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2. Ranking characteristics of sample based 

probabilities 

In accordance with equation (4) above, a sample 
based bankruptcy probability ( )( prop

failp ) constitutes a 

biased assessment of the probability 
)(

failp  when 

prop . However, in some decision contexts, 
estimated probabilities are only used for classifying 
firms as bankrupt or non-bankrupt entities. The 
focus will then be on the ranking of firms based on 
the sample based probabilities, in combination with a 
chosen probability cut-off value. It is thus interesting 

to know whether a sample based probability 
)( prop

failp ,

being more or less biased in relation to 
)(

failp ,

nevertheless might provide a correct ranking of firms. 
That is, reintroducing the company index and letting j
and j  denote two different companies  if 

)(

',

)(

, jfailjfail pp  will then 
)(

',

)(

,

prop

jfail

prop

jfail pp ?

In order to answer this question, we calculate the 
derivative of equation (4) with respect to the 

unbiased probability 
)(

failp :

0.
1

11
2)(

)(

failfailfail

prop

fail

pproppropp

propprop

p

p
(6)

Equation (6) shows that there is a positive 

relationship between 
)( prop

failp and
)(

failp , implying that 

a sample based probability is a consistent indicator 

of bankruptcy risk in the following sense: 

Proposition: Let 
)(

, jfailp  denote the unbiased bankrupt-

cy probability and 
)(

,

prop

jfailp  the sample based bankrupt-

cy probability of firm j. Then it holds: 

if
)(

, jfailp  > 
)(

', jfailp , then 
)(

,

prop

jfailp  > 
)(

',

prop

jfailp ;

if
)(

, jfailp  = 
)(

', jfailp , then 
)(

,

prop

jfailp  = 
)(

',

prop

jfailp ;

if
)(

, jfailp <
)(

', jfailp , then 
)(

,

prop

jfailp <
)(

',

prop

jfailp .

Given that a probabilistic prediction model has been 

estimated with a sample proportion of bankrupt firms 

prop , the probability 
)( prop

failp  is biased but 

according to the Proposition the ranking of firms with 

the biased and the unbiased probabilities will 

nevertheless be the same. Hence the choice based 

sample bias in probabilistic bankruptcy prediction does 

not affect the reliability of 
)( prop

failp , only its ability to 

correctly depict the unbiased probability 
)(

failp .

3. Estimating unbiased bankruptcy probabilities 

In the previous section it was shown that even if the 

probability 
)( prop

failp  is biased, it still provides a correct 

ranking of firms. In a typical bond or equity valuation 
problem however, a decision maker needs to transform 

sample based bankruptcy probabilities into their 
unbiased counterparts. This section shows how to 
transform such biased probabilities into unbiased 
probabilities. 

According to equation (4), a sample based 
probability can be written as a function of the 
unbiased probability, the fraction of bankrupt firms 
in the population, and the proportion of bankrupt 
firms in the estimation sample. Our focus is now on 

estimating the probability 
)(

failp . Rewriting equation 

(4) gives the following adjustment formula for how 
to calibrate the sample based probability: 

,
1

1

1
1

1

)(

)(

)(

prop

fail

prop

failadj

fail
p

p

prop

prop
p (7)

where
)(adj

failp  is the sample based probability of 

bankruptcy year t (for firm j) conditioned on firm 
survival at the end of year t-1, calibrated for the 
fraction of failure companies in the population. 

Equation (7) shows how an unbiased probability 
)(adj

failp  can be calculated as a function of  the fraction 

of bankrupt firms in the population ( ), the 
proportion of bankrupt firms in the estimation 
sample (prop) and the biased bankruptcy probability 

(
)( prop

failp ). For example, if the bankruptcy frequency in 

the population is 0.02, the sample proportion of 
bankrupt firms is 0.50, and an estimated prediction 

model generates 
)( prop

failp  = 0.60, the calibrated 

bankruptcy risk would be 

1

)(

60.0

)60.01(

)50.01(

50.0

02.0

)02.01(
1adj

failp = 0.03.1

Note that 
)(adj

failp  in equation (7) constitutes an estimate 

of the unbiased probability 
)(

failp . As standard 

probit/logit techniques do not provide any sampling 

errors associated with 
)( prop

failp , it is hard to make a 

precise statement on the sampling characteristics of 
)(adj

failp . However (as stated in section 1), a necessary 

condition for 
)(adj

failp  to be an unbiased estimator of 
)(

failp  is that the samples of bankrupt and survival firms 

constitute random drawings from the sub-populations 
of bankrupt and survival firms, respectively. 

4. Implications for the use of probabilistic 
prediction models 

A couple of methodological consequences of the 
choice based sample bias will be addressed in this 
section. The first issue is concerned with the 

                                                     
1 Evidently, if there is no choice based sample bias, then prop =  and 

)( adj

failp  = )( prop

failp in equation (7).



Investment Management and Financial Innovations, Volume 10, Issue 1, 2013

33

magnitude of estimated coefficients in standard 
probit/logit models and the second issue deals with the 
classification accuracy of estimated prediction models. 

Regarding the magnitude of the estimated 

coefficients, equation (4) shows that 
)( prop

failp will be 

positively biased when prop > . When the 
proportion of bankrupt firms in the estimation sample 
is larger than the fraction of such firms in the 
population (as typically has been the case in previous 
empirical research), the estimated coefficients can 
hence be expected to be “exaggerated”. However, as 
more carefully discussed in Manski & Lerman (1977), 
it is difficult to more precisely specify the bias of the 
coefficients of the independent variables. Empirical 
tests in Zmijewski (1984) and Bergström et al. 
(1999) show that significance tests of the 
coefficients in the main appear to be unaffected by 
variations in prop, at least as long as there are 40 or 
more bankrupt firms in the estimation sample.

Concerning the classification accuracy of 

bankruptcy prediction models, tests of this kind 

involves the choice of a cut-off value failp such 

that firms with fail

prop

fail pp )()(
 are classified as 

bankrupt (survival) firms. Defining “error type I” as 

an erroneous classification of a bankrupt firm and 

“error type II” as an erroneous classification of a 

survival firm, it is easily recognized that the choice 

of failp  involves a trade-off between the size of 

type I and type II errors1.

Regarding the choice of failp , basically two 

approaches have been used in previous research 
an “empirical” and an “analytical” approach. 
According to the former approach, a cut-off value, 

here denoted 
)(emp

failp , is determined empirically as 

the cut-off probability associated with the lowest 
“average error rate”, or “average error cost”, for the 
estimation sample. As regards the measurement of 

the average error rate, ( )(erate ), the following 

definitions have been used in previous research: 

)]/2,()([)( III erateerateerate                         (8a) 

),()(1)()´( III erateprope rateproperate (8b)

)´´(erate )( Ierate ),()(1 IIerate      (8c) 

where rate(eI) is error rate type I, i.e. the number of 

errors type I in relation to the number of bankrupt 

firms in the sample; and rate(eII) is error rate type II, 

i.e. the number of errors type II in relation to the 

number of survival firms in the sample. 

                                                     
1 As one extreme, if failp = 0 there will be no errors type I but all 

survival firms will be classified as “bankrupt firms” (errors type II). On 

the other hand, if failp  = 1 there will be no errors type II, but all 

bankrupt firms will be classified as “survival firms” (errors type I). 

The error rate in equation (8a) is simply the arithmetic 

average of error rates type I and type II, while the error 

rates in (8b) and (8c) are functions of the relative 

frequency of bankrupt firms in the estimation sample 

and the population, respectively. Note that, if 0.5 = 

prop =  the average error rates in equations (8a) to 

(8c) coincide, in turn meaning that the corresponding 

cut-off values 
)(emp

failp  will be the same. 

Alternatively, an empirical cut-off value 
)(emp

failp can 

be determined as the cut-off probability that 

minimizes the average error cost, determined as: 

,II2I1 costwcostwcost                                   (9) 

where costI is the cost associated with a classification 

error type I; costII is the cost associated with a 

classification error type II; w1 is the weight of error 

cost type I; and w2 is the weight of error cost type II. 

In previous research, the weights w1 and w2 have 

commonly been specified as a function of the 

fraction of bankrupt firms in the population and 

empirically estimated values of rate(eI) and rate(eII),

giving an average error cost equal to:  

.)()(1

)(

II

II

)(

costerate

coste ratecost

II

       (10) 

Probability cut-off values based on equations (8a), 

(8b), (8c) and (9) are affected by the choice based 

sample bias in the same way as 
)( prop

failp , i.e. 
)(emp

failp will 

be positively (negatively) biased if prop >  (prop < ).

In principle, this bias is harmless as long as the cut-off 

values are used to evaluate correspondingly biased 

values of 
)( prop

failp . Since rankings based on 
)( prop

failp and
)(

failp  coincide, there will always exist a biased cut-off 

value 
)(emp

failp  that generates the same average error 

rate, or error cost, as an unbiased probability cut-off 

value together with unbiased probabilities 
)(adj

failp 2.

The analytical approach for determining a 

probability cut-off value is derived from some 

decision context where unbiased probabilities are 

presumed. In previous research this choice has often 

been guided by a simple trade-off between expected 

error costs, calculated as: 

Expected error cost of “survival” classification: 

I

)( costp fail
.

Expected error cost of “bankruptcy” classify-

cation:
II

)(1 costp fail
.

                                                     
2 Cf. for example, Skogsvik (1990, pp. 149-150), and in the context 

of probabilistic predictions of firm profitability, Skogsvik (2008, 

pp. 803-804). 
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Decision rule. A “bankruptcy” classification is made 

when
II

)(

I

)( 1 costp costp failfail
; otherwise a 

“survival” classification is made. 

The probability cut-off value, 
*

failp , implied by this 

decision rule can easily be solved1:

.
)/(1

1

I

*

II

fail
costcost

p                                      (11) 

In contrast to empirically determined probability 

cut-off values, analytically derived cut-off values 

only make sense when unbiased bankruptcy 

probabilities are available. As noted previously, 
)( prop

failp  is biased when prop  and such probabilities 

should not be used with analytically derived cut-off 

values. One way to deal with this issue is to first 

transform the sample based probabilities 
)( prop

failp  into 

unbiased probabilities 
)(adj

failp in accordance with 

equation (7), and then use an analytically derived 

probability cut-off value. Alternatively, the problem 

could be handled by the adjustment equation (4), 

which transforms unbiased probabilities into biased 

probabilities, i.e.: 

)*( prop

failp = .
11

1
1

1

*

*

fail

fail

p

p

prop

prop
(12) 

)*( prop

failp  here constitutes the adjusted analytical cut-

off probability 
*

failp , to be used with unadjusted

bankruptcy probabilities 
)( prop

failp .

5. Implications for reported classification/ 

prediction results in previous research 

A vast number of bankruptcy prediction models have 

been estimated and tested over the years, typically 

without any consideration of the importance of the 

choice based sample bias. An interesting issue is thus 

to what extent this negligence has misguided or 

distorted the evaluation of these models. 

Addressing various methodological issues related to 
standard probabilistic bankruptcy prediction 
modeling, the classification accuracy  measured as 

)´(erate  in equation (8b) above  for different 

proportions of bankrupt firms in the estimation 
sample was calculated in Zmijewski (1984). In all 
classification tests a cut-off probability of 0.50 was 
used, presumably viewed as an analytical cut-off 
value based on a symmetric loss function (i.e. 

                                                     
1 The probability cut-off value is implied in equation (11) in the sense 

that it is rational for a risk-neutral decision maker to classify a firm as 

“bankrupt” if 
*)(

failfail pp  and “non-bankrupt” if 
*)(

failfail pp .

costI/costII = 1.00)2. With regard to the observed 

results, Zmijewski stated3:

“The results… generally indicate the existence of a 
bias and the overclassification of bankrupt firms when 
using unweighted probit” (Zmijewski, 1984, p. 72). 

Zmijewski’s observation is not surprising. As the 

bias of 
)( prop

failp  is positively related to the sample 

proportion of bankrupt firms, there will be more 

firms with 
)( prop

failp being larger than 
*

failp = 0.50 

when this proportion is high. Hence, a lower 
fraction of misclassified bankrupt firms  and a 
higher fraction of misclassified survival firms 
trivially follows. 

The prediction accuracy was evaluated by 

Zmijewski with a holdout sample including 41 

bankrupt and 800 survival firms, implying a fraction 

of bankrupt firms in the holdout sample of 0.049. 

The impact of the choice based sample bias on 
)( prop

failp was clearly observed for this sample. When 

the proportion of bankrupt firms in the estimation 

sample was 0.50, the average value of 
)( prop

failp  was 

0.19 in the holdout sample. When the proportion of 

bankrupt firms in the estimation sample was 

reduced  to 0.286, 0.167, 0.091 and 0.048  the 

average value of 
)( prop

failp decreased  to 0.11, 0.09, 

0.07, 0.06 and 0.05, respectively4. Consistent with 

our analysis in section 1 above, average values of 
)( prop

failp were larger than  when prop > 0.048 and 

the average values of the sample based 

probabilities decreased as prop decreased. It is 

particularly worth noting that, when the proportion 

of bankrupt firms in the estimation sample was 

about the same as the fraction of such firms in the 

holdout sample (0.048  0.049), the average value of 
)( prop

failp  (= 0.05) was very close to the “a priori

probability” of bankruptcy in the holdout sample 

(0.049). This illustrates that 
)( prop

failp  is an unbiased 

estimate of 
)(

failp  when prop =  (in line with equation 

(4) above). Hence, our analysis helps to clarify the 

empirical observations in Zmijewski (1984).

Zmijewski also calculated weighted average error 

rates in accordance with equation (8c), setting the 

probability cut-off value to 0.50 for the estimated 

probit models. The reported results were as follows:  

“… the bankrupt firm correlation is positive … 

indicating an overclassification bias; the nonbankrupt 

                                                     
2 Cf. note 16, p. 72, in Zmijewski (1984).
3 “Unweighted probit” in the quotation refers to an application of probit 

analysis where no adjustments are made to handle the choice based 

sample bias. 
4 From Table 5 in Zmijewski (1984, p. 71). 
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firm correlation is negative … indicating an under-

classification bias; and the overall correlation is 

negative, indicating that correct prediction rates 

increase when parameters which are less biased are 

used” (Zmijewski, 1984, p. 73). 

The overclassification bias for the bankrupt firms 

and the underclassification bias for the non-bankrupt 

firms are both consistent with the choice based 

sample bias effect on 
)( prop

failp , as noted above. 

However, claiming that the average error rate 

decreases as the model parameters are more 

unbiased, is more doubtful. As the chosen cut-off 

probability (0.50) was distinctively different from 

the proportion of bankrupt firms in the holdout 

sample (0.049), the cut-off value presumably was 

expected to be optimal in a decision context where 

costI/costII = 1.00. Minimizing the average error cost 

in equation (10) when costI/costII = 1.00 is equivalent 

to minimizing the average error cost calculated as  

0.1)()1(0.1)(
)(

III erateeratecost ,

i.e. in this particular instance the same as 

minimizing the weighted average error rate in 

equation (8c). As argued previously, analytically 

derived cut-off probabilities are only consistent with 

unbiased probabilities, i.e. 
)( prop

failp  based on 

estimation samples for which prop =  or estimates 

of unbiased probabilities (
)(adj

failp ). Since the fraction 

of bankrupt firms in the holdout sample was 0.049 

in Zmijewski’s tests of prediction performance, the 

estimation sample with the lowest proportion of 

failure companies (prop = 0,048) should have 

generated the most unbiased values of 
)( prop

failp . It is 

then only to be expected that the lowest average 

error rate in equation (8c) should be observed for 

this estimation sample. However, about the same 

average error rate should also have been possible to 

observe if the biased probabilities 
)( prop

failp  from the 

other estimation samples had been calibrated in 

accordance with equation (7) above.  

Also, the analyses in Zmijewski (1984) fail to 

recognize that an analytical probability cut-off value 
*

failp  is linked to a specific decision context and that 

the evaluation of prediction models should be based 

on the goal function of that particular context. 

Setting
*

failp = 0.50 in Zmijewski (1984), the 

average error cost according to equation (10) 

happens to coincide with the average error rate in 

equation (8c). However, if  as one typically would 

assume costI/costII  > 1,00, the cut-off probability 

should be less than 0.50 and the average error rate in 

equation (8c) would not have constituted a valid 

indicator of  prediction performance. In such cases, 

estimated average error costs in accordance with 

equation (10) should always be used to assess the 

prediction performance of probabilistic models1.

Conclusions

The purpose of the article has been to enhance the 

usefulness of (unweighted) probabilistic bankruptcy 

prediction models. Specifically, problems associated 

with the choice based sample bias have been 

addressed, as previous research is vague and 

sometimes even misleading on this issue. Future 

empirical research can benefit from the provided 

guidelines of how to handle the choice based sample 

bias in this type of prediction modeling. 

Bankruptcy probabilities have commonly been 

estimated in probabilistic statistical models, as, for 

example, in Ohlson (1980), Zavgren (1985), 

Skogsvik (1990) and more lately, Dewaelheyns & 

Van Hulle (2006) and Pereira Leal & Machado-

Santos (2007). A consequence of the choice based 

sample bias is that estimated probabilities in 

standard probit/logit models are not representative 

for the population, if the proportion of bankrupt 

firms in the estimation sample differs from the 

corresponding fraction in the population. In 

previous empirical research, the proportion of 

bankrupt firms in estimation samples has commonly 

been distinctively larger than the corresponding 

population fraction.   

We have shown that there is a specific linkage 

between sample based and unbiased (population 

based) probabilities. A sample based probability 
)( prop

failp  is a function of the unbiased probability 
)(

failp , the proportion of bankrupt firms in the 

estimation sample, and the fraction of such firms in 

the population. Characterizing this linkage it was 

found that 
)()(

fail

prop

fail pp  if prop >  and vice versa, 

but that the ranking of firms based on 
)( prop

failp or
)(

failp  is the same. Having specified the linkage 

between
)( prop

failp and
)(

failp , the choice based sample 

bias of 
)( prop

failp can be disentangled to get a 

calibrated probability. There is hence no need to re-

estimate probit/logit models only because the 

sample proportion of bankrupt firms is non-

representative. Rather, it is important to collect 

sufficiently large samples of randomly selected 

bankrupt and survival firms. 

In sum, there are alternative approaches for handling 

the choice-based sample bias depending on the 

decision context. In situations where bankruptcy 

                                                     
1 In line with, for example, the methodology outlined in Skogsvik 

(1990, p. 150, in particular footnote 22). 
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probabilities are only used for classifying companies 

as bankrupt or survival firms, the choice-based 

sample bias is (in expectation) unproblematic as 

long as the probability cut-off value is empirically 

assessed. This approach has for example been used 

in Ohlson (1980), Zavgren (1985), and Skogsvik 

(1990). As a contrast, if the probability cut-off value is 

analytically derived, either the cut-off value itself has 

to be calibrated in order to be applicable to biased 

firm-specific probabilities, or the firm-specific 

bankruptcy probabilities have to be transformed into 

unbiased probabilities. However, in many situations 

unbiased probabilities are required, e.g. in financial 

risk management or in equity or bond valuation 

problems. Biased probabilities should then be 

transformed into unbiased probabilities by applying 

the calibration equation (7).  

An alternative approach to handle the choice based 

sample bias would be to estimate bankruptcy 

prediction models using “weighted” probabilistic 

statistical techniques, as suggested in Zmijewski 

(1984, p. 74). Since an a priori probability of bankrupt- 

cy has to be specified when estimating a model 

according to these techniques, re-estimations of the 

prediction model would then be necessary as soon as 

this a priori probability changes (due to e.g. shifting 

business conditions). Obviously, the approach 

proposed in the paper is more flexible and less costly, 

since no re-estimation of the prediction model is 

needed.  

Empirical observations in previous research can be 

explained by our results. In line with our inferences, 

average values of 
)( prop

failp  have been found to be larger 

than 
)(

failp  when prop > , and to increase as the 

proportion of bankrupt firms in the estimation sample 

goes up. Furthermore, with a probability cut-off value 

equal to 0.50, an “overclassification” bias of bankrupt 

firms and an “underclassification” bias of survival 

firms have been observed for samples where prop > .

This follows from the bias of 
)( prop

failp  being positive in 

situations when prop > . However, suggestions in 

previous research that prediction results improve if the 

choice based sample bias is reduced, are misleading.  

References 

1. Altman, E.I. (1968). “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, The 

Journal of Finance, No. 4. 

2. Altman, E.I. (1973). “Predicting Railroad Bankruptcies in America”, Bell Journal of Economics and Management 
Science, Spring. 

3. Altman, E.I., Haldeman, R.G. & Narayanan, P. (1977). “ZetaTM Analysis – A New Model to Identify Bankruptcy 

Risk of Corporations”, Journal of Banking and Finance, No. 1, June. 

4. Beaver, W.H. (1966). “Financial Ratios as Predictors of Failure”, Journal of Accounting Research, Supplement to 

Vol. 4. 

5. Begley, J., Ming, J. & Watts, S. (1997). “Bankruptcy Classification Errors in the 1980s: An Empirical Analysis of 

Altman’s and Ohlson’s Model”, Review of Accounting Studies, Vol. 1, No. 4. 

6. Bellovary, J.L.G., Giacomoni, D.E. & Akers, M.D. (2007). “A Review of Bankruptcy Prediction Studies: 1930 to 

present”, SSRN working papers. 

7. Bergström, C., Eisenberg, T., Sundgren, S. & Wells, M.T. (1999). “Methodological issues in bankruptcy 

prediction”, in Gren, B. (editor), Risk Behaviour and Risk Management in Business Life, Kluwer Academic 

Publishers. 

8. Blum, M. (1974). “Failing Company Discriminant Analysis”, Journal of Accounting Research, No. 1. 

9. Boritz, J.E., Kennedy, D.B. & Sun, J.Y. (2007). “Predicting Business Failures in Canada”, SSRN working paper. 

10. Brockett, P.L., Golden, L.L., Jang, J. & Yang, C. (2006). “A Comparison of Neural Network, Statistical Methods, 

and Variable Choice for Life Insurers’ Financial Distress Prediction”, The Journal of Risk and Insurance, Vol. 73. 

11. Carson, J. & Hoyt, R.E. (1995). “Life Insurer Financial Distress: Classification Models and Empirical Evidence”, 

Journal of Risk and Insurance, 62. 

12. Carson, J. & Hoyt, R. (2000). “Evaluating the Risk of Life Insurer Insolvency: Implications from the US for the 

European Union”, Journal of Multinational Financial Management, 10. 

13. Chou, Y. (1984). Statistical Analysis (second edition), Holt, Rinehart and Winston.

14. Cummins, J.D., Grace, M.F. & Phillips, R.D. (1999). “Regulatory Solvency Prediction in Property-Liability 

Insurance: Risk-Based Capital, Audit Ratios, and Cash Flow Simulation”, Journal of Risk and Insurance, 66 (3). 

15. Dewaelheyns, N. & Van Hulle, C. (2006). “Corporate Failure Prediction Modeling: Distorted by Business Groups’ 

Internal Capital Markets?”, Journal of Business Finance & Accounting, Vol. 33, No. 5-6. 

16. Edmister, R.O. (1972). “Test of Financial Ratio Analysis for Small Business Failure Prediction”, Journal of 

Financial and Quantitative Analysis, March. 

17. Foster, G. (1986). Financial Statement Analysis (second edition), Prentice-Hall International. 

18. Jones, F. (1987). “Current Techniques in Bankruptcy Prediction”, Journal of Accounting Literature, 6. 

19. Jones, S. & Henscher, D.A. (2004). “Predicting Firm Financial Distress: A Mixed Logit Model”, The Accounting 

Review, Vol. 79, No. 4. 



Investment Management and Financial Innovations, Volume 10, Issue 1, 2013

37

20. Ketz, J.E. (1978). “The Effect of General Price-Level Adjustments on the Predictive Ability of Financial Ratios”, 

Journal of Accounting Research, supplement to Volume 16. 

21. Manski, C.F. & Lerman, S.R. (1977). “The Estimation of Choice Probabilities from Choice Based Samples”, 

Econometrica, 45 (8), November. 

22. Mensah, V.M. (1983). “The Differential Bankruptcy Predictive Ability of Specific Price Level Adjustments: Some 

Empirical Evidence”, The Accounting Review, April. 

23. Merwin, C. (1942). Financing Small Corporations, National Bureau of Economic Research, New York. 

24. Ohlson, J.A. (1980). “Financial Ratios and the Probabilistic Prediction of Bankruptcy”, Journal of Accounting 
Research, 18 (1), Spring. 

25. Pereira Leal, C. & Machado-Santos, C. (2007). “Insolvency Prediction in the Portuguese Textile Industry”, 

European Journal of Finance and Banking Research, Vol. 1, No. 1. 

26. Schaffer, S. (2004). “Corporate Failure and Equity Valuation”, Working paper, University of Wyoming. 

27. Shumway, T. (2001). “Forecasting Bankruptcy More Accurately: A Simple Hazard Model”, Journal of Business,

Vol. 74, No. 1. 

28. Skogsvik, K. (1990). “Current Cost Accounting Ratios as Predictors of Business Failure: The Swedish Case”, 

Journal of Business Finance & Accounting, 17 (1), Spring. 

29. Skogsvik, K. (2006). “Probabilistic Business Failure Prediction in Discounted Cash Flow Bond and Equity 

Valuation”, SSE/EFI Working Paper Series in Business Administration (SWOBA), 5. 

30. Skogsvik, S. (2008). “Financial Statement Information, the Prediction of Book Return on Owners’ Equity and 

Market Efficiency: The Swedish Case”, Journal of Business Finance & Accounting, 35 (7) & (8).  

31. Smith, R.F. & Winakor, A.H. (1935). Changes in the Financial Structure of Unsuccessful Corporations,

University of Illinois, Bureau of Business Research. 

32. Zavgren, C.V. (1985). “Assessing the Vulnerability to Failure of American Industrial Firms: A Logistic Analysis”, 

Journal of Business Finance and Accounting, Spring. 

33. Zmijewski, M.E. (1984). “Methodological Issues Related to the Estimation of Financial Distress Prediction 

Models”, Journal of Accounting Research, 22, Supplement.


	“On the choice based sample bias in probabilistic bankruptcy prediction”

