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Implied volatility and future market return

Abstract

This study examines the predictability of the implied volatility (IV) of stock option contracts on the future market re-
turn. Using return and options data of the S&P 100 index between 1996 and 2008, we find that when the market return
drops significantly, a high IV strongly predicts a future market reversal. On the other hand, when the market return
drops only modestly, a high IV actually predicts a continuing market loss. We, then, develop and explore two trading
strategies based on our findings, which yield much higher risk-adjusted returns than the S&P 500 index.

Keywords: implied volatility, predictability, contrarian trading strategy, momentum trading strategy.

Introduction

Does the implied volatility (IV) of stock options pre-
dict stock returns? The answer to this question particu-
larly pertains to a strand of trading strategy called vola-
tility timing, and could potentially help investors to
make more accurate asset allocation in the portfolio.

Previous studies (e.g. Giot, 2005; Doran et al., 2010)
found that IV was a weak predictor of the future mar-
ket return’, although many practitioners suspect that a
stronger relation exists between current IV and future
return. In addition, it is widely accepted that volatility
timing can improve portfolio returns (see Eraker et
al., 2003; Fleming, Kirby and Ostdiek, 1999; and
Johnnes et al., 2001). These studies have shown that
current state of the conditional volatility is very in-
formative about future daily or weekly returns. Given
that IV is a natural measure of the conditional volatil-
ity, there may be a stronger correlation between IV
and future returns.

However, the current literature has mixed results re-
garding this issue. Backus and Gregory (1993) report a
decreasing or zero relation between future market risk
premium and conditional variance of market return.
Whitelaw (1997) also calibrated reasonable parameters
for a negative relation in a single factor model. But
Scruggs (1998) shows that there could be a positive
relation, if more factors are included in the model.

In this paper, we investigate the relation between fu-
ture market return and market’s conditional variance
based on a different approach. Using a standard dy-
namic factor model of return proposed by Campbell
and Yogo (2006), and Fama and French (1988), we
show analytically that the sign of the relationship is
nonlinear, i.e., the prediction of IV is not universal
across all states of the market, instead it depends on

© Ping Hsiao, Ming Li, 2010.

! Giot (2005) reported high level of VIX predicted of future market
return reversal weakly. Doran et al. (2010) showed that a specific type
of skewness in implied volatility predicted future returns. Other related
research include: Copeland and Copeland (1999) reports strong negative
correlation between contemporaneous market return and implied volatil-
ity. Banerjee et al. (2007) reported that VIX is negatively correlated
with stock market returns, a risk factor affecting the stock market. But
these results did not establish clear predicting direction of implied
volatility as they are about the contemporaneous relationship.
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current market return. We attribute this nonlinear rela-
tion to the fact that market will change its course when
it reaches a reference point, otherwise, it will continue
its trend”. We show analytically that such reference
point depends on the level of IV. Therefore, identical
IV value may forecast future return differently depend-
ing on how the market is currently performing.

Our method of empirical analysis is inspired by the
regime-switching® method that is used extensively in
modeling nonlinearity. Using return and options data
of the S&P 100 from 1996-2008, we examined the
relationship between future weekly market return and
the IV on S&P 100 for both near- or at- the money call
and put options. We ran simple OLS regressions of
future market return onto the current IV conditional on
immediate return of the S&P 100 index. Our regres-
sion results confirm the theoretical hypothesis of
nonlinearity. To be specific, when current weekly
return on S&P 100 is below -2%, the regression coef-
ficient is positive, implying that a high IV predicts a
possible future market reversal when current weekly
return on S&P 100 is between -1% and -2%, the re-
gression coefficient is negative, implying that a high
IV predicts a continuing future market loss; when
current weekly return on S&P 100 declines by less
than 1% or rises, there is no clear relationship between
level of the IV and the subsequent market return. In
contrast to the previous papers, these results suggest
there is not a simple, uniform relationship between the
future market return and the conditional volatility
across all market conditions.

Our result reaffirms that market timing decision based
on options implied volatility is profitable, but it differs
from previous studies in two important aspects. First,
in contrast to Giot (2005) and Doran et al. (2010), our
result strongly supports the notion that the conditional
volatility derived from options predicts future returns.
Timing based on the IV is potentially profitable. Sec-
ond, levels of the IV point to different directions of
movement in the future return under different state of
the market. It implies that under specific conditions,

% Models in behavioral finance, such as Daniel et al. (1998) and Hong
and Stein (1999), found that stock market return may behave differently
depending on the state of the market.

3 See, for example, James Hamilton (2008).
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reducing market exposure when the market volatility
increases could be detrimental to investors. A smart
investor should in fact add exposure to market when it
just had a big loss even the volatility is high.

Based on our finding, we explore two trading strate-
gies conditional on current market returns and levels
of the IV of S&P 100 options. Given a high level of
the IV, a Contrarian Trading Strategy (CTS) bets the
market is about to revert itself after it was crashed in
the previous week and thus initiates a long position
in the market. On the other hand, given the same
high current level of the IV, a Momentum Trading
Strategy (MTS) indicates that the market will con-
tinue to decline after its moderate drop recently,
thus a short position in the market is established.
Our performance test shows that both strategies
generate very impressive (risk-adjusted) profits. Our
finding indicates that traders, who desire to explore
temperate market inefficiency, could benefit from
trading signal provided by high levels of the IV. We
provide a theoretical justification for these trading
strategies as well.

1. Data and methodology

1.1. Data. We constructed our sample by using the
S&P 100 index' in the CRSP database and the cor-
responding option data from Option Metrics. We
calculated the weighted average of implied volatility
on each Wednesday from June 5, 1996 to Sep 10,
2008 (634 data points overall). We investigated the
relationship between this measure of IV and the
weekly holding period return of the S&P 100. We
dropped index options that trade for $0.05 or less.
All options in the analysis had to have 100 or more
contracts in the open interests. To avoid noise from
far-term options and short-term options, we used
only options that expired in 10-60 days.

1.2. Implied volatility. For all options, we used the
implied volatility of at-the-money and near-the-money
calls and puts as well as the volume of the open inter-
est to construct the weighted average IV. The weight-
ing scheme is suggested by Latane and Rendleman
(1976), and Stewart (1995).

N
D> wiv,
IV — 71:11\/ B
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! We find similar results from S&P 500 index and its options. We do not
supply these results here, but they are available upon request. In this
sense, we believe our results reflect the genuine behaviors of market
return and its related options. We use IV of the index options instead of
VIX index as our predicting variable. VIX is a symmetrical volatility
measure in that it treats sharp movement in both directions equally. Our
interest is mainly to explore the asymmetrical response to past IV in
conjunction with previous market movement.

where the weights w; are the volume of open interests
and /V; is the implied volatility of a given option.

We define the moneyness of an option by the strike-
to-spot ratio, m; = E; / s. An ATM option has a
strike-to-spot ratio between and including 98% and
102%, while a near-the-money option has a ratio
following in either 90%, 98% or 102%, 110%. We
deleted the observations if the strike-to-spot ratio is
outside these ranges.

1.3. Regression model. In this section, we show
analytically that a nonlinear relation exists between
the future market return and conditional variance.
The nonlinearity comes from the state-dependent
nature of the regression coefficient. For this reason,
we justify that the empirical analysis of the relation
must also be state-dependent.

We start with the following basic predictive re-
gression:

2
hLa=a+pfo; +¢&,, ()

where r,,; is the future market return. The predict-
ing variable o] =Var(r,|I,)is the conditional

variance of market return r,, where I, denotes
available information up to time ¢. In our empiri-
cal analysis the measure of the conditional vari-
ance is the I'V.

The coefficient § in equation (1) measures the mar-
ginal effect of the conditional variance on the future
market return. A positive (negative) £ indicates a posi-
tive (negative) relation. The estimation of § is not per-
formed on the whole sample. Instead, we separate our
sample into several sub-samples according to current
market returns ;. To justify this procedure, we cite a
standard information updating process as in Fama and
French (1988), Pertoba et al. (1987), Timmermann, A.
(1996) and Campbell and Yogo (2006). Following the
above authors, we postulate that the market return
follows a dynamic factor model:

ry =X+ v, Vt“’N(Ostz),

(2)
Xp = X1+ Wy.p, wis ~N©, 7)),
where x, is the unobservable latent factor, that drives
the return process. The parameter a measures the
persistency of the return process. In an equilibrium
model, the conditional variance will affect the future
market return r;,; through market participants’ up-
dating mechanism. A typical updating process will
include the past estimates of market return and the
conditional volatility through a non-linear functional
form. To see this, we compute the expected future
market return conditional on information available
at time ¢ using a recursive Bayesian updating for-
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mula. We define the expected return conditional on
time 7 information as X, = E, (xl). Then we have

the following recursive formula:

E, (r

t+1

% =(1-k (02, + (07 ). )

where k, =k, (Utz ) =0, /0] is called the Kalman

)=,

filter gain and the conditional variance itself fol-

2 _2 2 2
(a0}, +0))o

v

lows a recursive formula o, = ) SRR
ao, ,+0,+0,

Equations (3) are the Kalman filtering that are
derived from the Bayesian updating. The formula
indicates that the expected market return is a
weighted average of the observed return and pre-
vious estimation of the factor'. Thus, the coeffi-
cient £ in equation (1) is the derivative of market

return with respect to the conditional variance 0'12 :

aE[(’;-i—l) aﬁ[] 1
=————=g|—5—| —5+k |1 4
h g a i tl

where = is mostly a
ao_tz—l 60-12—1
a5 —ak,—5 -1
oo oo

t 1

positive number.

The value of the Kalman filter gain k, lies between
0 and 1. Based on equation (4), it is now straight-
forward to observe that the sign of £ depends on
the sign of the observed market return r,. § tends to
be positive when X, , (or r,) is a large positive (or

negative) number, and £ tends to be negative or
zero, otherwise. For instance, given a negative

value of fc,_l , the sign of f will become positive if

the current return r, is a large loss, otherwise it
will be negative. Similarly, the sign of S can be
analyzed analogously when given a positive value
X

t—1

2
v

point for the sign of f°. Hence, simply running a
regression of r;,; onto the conditional variance 0,2

of X _,. We recognize that plays a reference

would generate a spurious relation between the
future market return and the conditional variance.

It follows that we should run simple regressions
of equation (1) conditional on the value of current

' For detailed derivation, please referred to Hamilton (1994) or
Green (2008).
> We term this phenomenon the reference effect.
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market return r,. Similar to the regime-switching
models, we therefore sorted weekly market re-
turns into the following brackets® (-0, -2%), [-
2%, -1%), [-1%, 0), [0, 1%), [1%, 2%) and [2%,
+00 ). We term each bracket as one state of the
return, which we denote as s;. We perform analy-
sis conditional on each state of return. Specifi-
cally, equation (1) is slightly modified into the
following conditional regression:

rao=a+pIV.+¢g,, ifres;

fori=1,2,...,6, where s5; = (-0, -2%), 5> = [-2%,-
1%), etc. Here, we use the implied volatility IV, as
the measurement of the conditional variance 0',2.

In addition, the regression is performed across all
moneyness (OTM, ATM and ITM), types of op-
tions (i.e. call and put), and six states of return. A
total of 36 OLS regressions is performed.

2. Empirical results

Our empirical results include descriptive statistics,
regression results, and performance of trading strate-
gies based on state of the index return and the I'V.

2.1. Descriptive results. Table 1 shows the sum-
mary statistics for the sample sorted by the state of
weekly returns in the current week. The first col-
umn lists six groups (states) of current returns.
Within each group we report the average of returns
on Panel A and implied volatiles on Panel B. Aver-
age IV is reported according to the type of options
(call put) in different moneyness as well as the
number of observations.

Panel A shows that the average market return is about
0.89% (-0.06%) following a large negative (positive)
return of less (more) than -2% (2%) in the previous
week, which indicates a return reversal. In contrast, the
market return generally shows momentum when the
return is between [-2%, -1%) or [1%, 2%), because the
return in the next week carries the same sign as that in
the past week. We did not find clear direction in future
return following a return between -1% and 1% in the
current week.

The volatility statistics in Panel B show that a put
option has higher IV than a call option with the
same strike price all the time. For example, when
the return is below -2%, the IV of an out-of-
money call option is 21.55% in the same week,
while the IV of an in-the-money put option is
23.62%. This finding is consistent with previous
works on implied volatility skew (e.g., Doran and
Kreger 2010).

3 These brackets are selected through trials and errors.
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Table 1. Summary statistics, June 1996-September 2008

Panel A Panel B. Average IV in the current week
If return in current week is Return in the next week OTM call ITM put ATM call ATM put ITM call OTM put
<-2% Average 0.89% 21.55% 23.62% 24.40% 25.11% 27.33% 28.69%
n 91 91 89 89 91 7 91
[-2%,-1%) Average -0.23% 16.70% 18.88% 18.69% 19.67% 22.02% 22.99%
n 75 75 62 73 75 61 75
[-1%,0) Average 0.12% 15.12% 18.08% 17.24% 17.98% 20.42% 21.39%
n 117 116 80 115 116 100 116
[0%,1%) Average -0.07% 14.25% 17.89% 16.23% 17.14% 19.33% 20.64%
n 125 125 76 122 125 116 125
[1%,2%) Average 0.15% 15.51% 18.62% 17.53% 18.14% 20.96% 21.62%
n 117 117 63 116 116 113 117
>2% Average -0.06% 19.48% 22.41% 22.19% 22.57% 25.52% 26.19%
n 102 103 72 102 102 98 103
Total Average 0.13% 16.86% 20.06% 19.12% 19.83% 22.25% 23.32%
n 627 627 442 617 625 559 627

Note: Panel A shows the average return in the following week for each sample. Panel B shows the average IV for each group. The

size of each sample is indicated by n.

There is a common pattern of IV along the dimen-
sion of current return for all options. The IV is the
highest when the current return is below -2%. It
declines as the current return increases to between
0% and 1%, and then it starts to go up. For exam-
ple, the volatility has its highest value of 28.69%
for the out-of-money put option when the return is
below -2%. The same IV drops to 20.63% when
the current return is between 0 to 1%, and it
creeps back to 26.18% when the market had a
return of more than 2%. This U-shape movement
of the IV along the dimension of return indicates
that the IV is high when the market has more ex-
treme returns, where investors may reflect on
more uncertainty.

2.2. The relation between IV and market re-
turn. We are interested in finding how the IV
predicts the future index return. We conditioned
our OLS regression on each of the six different
states of the market return. We report the results
for both call and put options in separate tables.

Since there are three types of moneyness for each
option, we have 18 regressions in each table.

Table 2 reports estimation results for the 18 condi-
tional regressions for call options. Each non-
parenthesized number represents the estimate of slope
for one type of moneyness conditional on one state of
return. We suppress estimates of intercepts. Column A
indicates that the subsequent return would start to in-
crease if the return has dropped more than -2%. The
size of increase is proportional to the IV because the
regressions generate a positive coefficient with more
than 99% of confidence level. The IV of out-of-money
calls has the largest coefficient with a value of 0.188.
Since the average IV is about 20%, it would add about
3.76% to the next return.

Surprisingly, column B shows that the subsequent
return will continue to decrease if the current week’s
return has dropped by more than 1% but not greater
than 2%. The IV of out-of-money calls predicts
most decline with a negative coefficient of -0.131.

Table 2. Regression coefficients of call option IV on S&P 100 index return.

Vi A. fie(-+0,-2%) B. ne[-2%,-1%) C. ne[-1%,0) D. ne[0,1%) E. e [1%,2%) F. ne[2%,)
OTM cal 0.188** 20131 0.0566 -0.0428 -0.0381 0.0300
(0.0508) (0.0478) (0.0385) (0.0362) (0.0416) (0.0476)
ATM call 0.152+ -0.110** 0.0402 -0.0265 -0.0315 0.0281
(0.0457) (0.0449) (0.0340) (0.0317) (0.0369) (0.0441)
ITM call 0.144* -0.100* 0.0497 0.00658 -0.0359 0.0294
(0.0555) (0.0546) (0.0346) (0.0305) (0.0381) (0.0402)

Note: The model is r,,, = ¢ + B1V,  where IV, is the implied volatility from one of the following call options: out-of-the-money, at-the-
money and in-the-money calls. Each number without parentheses is an estimate of /5 for one of the 18 OLS regressions for call option. The
numbers in parentheses under estimates are the standard deviations of the indicated variable. The sample of each regression is selected
according to the return in previous week. The significance level of estimates is indicated by the number of asterisks: 1% (***), 5% (**) and
10% (*). All sample size of each regression varies from 61 to 124. Intercepts are not reported here. The suppressed intercepts are statistically
negative related to column A and statistically positive related to column B with at least 10% significance level. All other intercepts are

statistically insignificant.
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Another contrasting result is that when the market
return is greater than -1%, the IV has no predictive
power across all types of moneyness because all esti-
mates in column C-F are insignificant at even 90%
confidence level.

The results indicate that information contained in op-
tions is useful for predicting the future return only when
the weekly market return has dropped by more than 1%,
but the predicted direction is completely opposite de-
pending on whether the loss is more than 2% or not.

Table 3. Regression coefficients of put option IV on S&P 100 index return.

V; A. i (-e0,-2%) B. e [-2%,-1%) C. re[-1%,0) D. 1i[0,1%) E. e [1%,2%) F. ne[2%,)
OTM put 0.162* -0.120"* 0.0324 -0.0211 -0.0250 0.0402
(0.0475) (0.0431) (0.0331) (0.0325) (0.0367) (0.0455)
ATM put 0.162* 0417 0.0421 -0.0276 -0.0204 0.0407
(0.0496) (0.0437) (0.0342) (0.0330) (0.0370) (0.0469)
ITM put 0.162* -0.158"* 0.0713 -0.108"* 0.0102 0.0647
(0.0527) (0.0510) (0.0447) (0.0645) (0.0625) (0.0709)

Note: See the notes to earlier tables for variable definition and model information. Sample size of each regression varies from 62 to 124.

Table 3 reports estimates of the 18 OLS regressions
for put options. They are similar to those for the call
options. Column A reports that if the S&P 100 index
drops by more than 2% in current week, the IV pre-
dicts an increase in the index next week by a rate of
0.162 for each moneyness. Column B shows that when
the index loses are between 1% and 2%, the IV pre-
dicts that the market will continue the losing streak for
the next week because the regression coefficients are
negative for all IV across different moneyness. All
these estimates are significantly different from zero at
a 99% confidence level. Similar to the results for call
options, the IV does not have significant predicting
power on the future return when the market return is
greater than -1% in the current week. The estimates are
reported in columns C to F.

2.3. Performance of contrarian and momentum
trading strategies. According to our findings, the
natural portfolio strategy will be timing buy or sell
based on the market return and the level of the IV.
One implication of the finding is that there is a sig-
nificant positive return indicated by the IV after a
more than 2% drop in the market return. A con-
trarian strategy could buy at this market downturn
and profit on the subsequent reversal. On the other
hand, the momentum strategy should short the mar-
ket index when the market return drops more than
1%, but no greater than 2%. But both strategies
should be executed only when the IV is high. Here,
we provide an analytical argument why the strate-
gies would profit under high IV.

2.4. Intuition for the strategies. Imagine that an in-
vestor wants to maximize her standard utility function

E,(U(R.,)),

n
where R, =a+wr, + Z B +¢,, is the port-
i=1
folio return, which includes the equity market return
r.. Under standard assumptions and the mean-
variance analysis, the optimal weight to the equity

56

E,(1.,)

2

o,

market is equal tow, =y , which depends

o . 2 . .
on the conditional variance o, . Since obviously the

weight to the equity market has a positive correla-
tion with the market index, the conditional volatility

Gf will affect the market index too.

We first examine how the conditional variance affects
the investor’s allocation in the equity market. Utilizing
the definition of £ in equation (4), the partial derivative

of optimal weight w, with regard to Gtz is":

%ZL{IB_—E’(ZH)} 5)

oo’ o’ o

t t t

Equation (5) shows that the adjustment of the position
Ez (rtﬂ)

2

t
result indicates that £ can be either positive or nega-
tive, so the investor’s change of the weight on equity
varies depending on the sign of . When the current
market was in a loss state of [-2%, -1%], we know that
[ is negative (from our empirical result). Applying this
knowledge in equation (5), we find that investors will
respond to reduce their position in equity because
ow,
oo’
is more likely in that equity market and the best action
is to follow the Momentum Trading Strategy, i.e.,

selling at the market mild drop to avoid further price
decline.

wy in equity depends on 8 and - Our previous

< 0 now. This implies that further price decline

On the other hand, when the market incurred a deep
loss (a drop of 2% or more in a week), the positive
sign of f from the regression may lead to an increasing
size of the weight on equity in equation (5) if § is large

! Busse (1999) has a similar formula in studying the volatility timing of
mutual funds.
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Ez (’;‘Fl)

2

o,

enough to offset , which creates a profit op-

portunity for following the Contrarian Trading Strat-
egy, i.e., buying at the market dip to exploit possible
price reversal.

To further examining equation (5), we found that

Ez (’;H)
2

o,

the value of becomes relatively small at
high conditional volatility, which minimizes its
impact on the investor’s adjustment of the equity
weight. Therefore, the change in the equity posi-
tion w, relies more on the sign of f§ at high market
volatility (IV), which provides a clearer signal for
investors to follow either MTS or CTS.

2.5. Performance statistics. We have just shown
that the MTS or CTS should be carried out under
the condition of a high IV. To find a sensible
gauge for a high level of the IV, we use the his-
torical distribution of the IV for each option'. We
consider the IV as high if it is above the cutoff of
its 75% percentile’ of its historical distribution.
Table 4 displays the cutoffs of 75% percentile of
the IV for each option. To avoid being arbitrary
on the cutoff points, we perform similar analysis

for cutoffs of other “highs” for robust check in the
next subsection.

Table 4. The 75% percentile of implied volatility

OTMcall
0.20

ITM put
0.23

ATM call
0.23

ATM put
0.24

[TM call
0.26

OTM put
0.27

Table 5 reports weekly returns from contrarian trading
conditional on return being less than -2%. The strategy
generates a weekly return of at least 1.4% if the IV
falls in its top quarter of its historical distribution.
Similar result holds under other measures of the IV.
The standard deviations of these weekly returns under
different IV are around 3%. Given a risk-free rate of
6% annually, the Sharpe ratio is between 2.87 and
3.56, which is very impressive compared to any other
asset in the market. Given the same risk-free rate of
6%, a typical Sharpe ratio for S&P 500 is about 0.2 if
it averages 10% return with a 25% standard deviation
annually.

Although the coefficient is positive, we find that the
contrarian strategy does not generate significant profit
when the IV is not high (below its 75% percentile
cutoff). It may indicate the positive effect of IV on
return is not enough to overcome the reference point,
which would continue its downside pull on the return.

Table 5. Time #+1 returns from contrarian trading when the time ¢ market return was in (-0, -2%)

[Vt high IVt not high
Type of option Mean Standard dev Sharpe ratio Sample size Mean Standard dev Sharpe ratio Sample size
OTM call 1.71% 3.22% 3.56 57 0.48% 2.00% 1.31 34
ATM call 1.51% 2.98% 3.37 53 0.31% 2.03% 0.70 31
ITM call 1.42% 3.27% 2.87 44 0.14% 2.00% 0.07 19
OTM put 1.61% 3.26% 3.30 57 0.31% 2.08% 0.67 34
ATM put 1.53% 3.33% 3.05 57 0.17% 2.00% 0.21 34
ITM put 1.57% 3.67% 2.87 43 -0.28% 2.12% -1.34 48

Note: The Sharpe ratio is calculated assuming 6% risk-free rate. IV, is high if it is above its corresponding cutoff in table 4, other-

wise it is not high.

Table 6 reports returns from momentum trading
that is conditional on that the market return is
between -2% and -1%. Like in Table 5, the high-
est return is achieved when the IV is in the high-
est quartile (above its 75% percentile). The return

ranges from 1.1% to 1.45%. The standard devia-
tion ranges from 3.16% to 3.74%. The Sharpe
ratio would range from 2 to 2.5. Again returns
from other momentum strategies are much less
when the IV is not high.

Table 6. Time r+1 returns from momentum trading when the time ¢ market return was in [-2%, -1%]

[Vt high IVt not high
Type of option Mean Standard dev Sharpe ratio Sample size Mean Standard dev Sharpe ratio Sample size
OTM call 1.10% 3.66% 2.40 14 -0.03% 1.78% -0.34 61
ATM call 1.06% 3.61% 2.34 14 0.03% 1.78% -0.60 59
ITM call 1.00% 3.16% 2.55 16 -0.01% 1.84% -0.40 45
OTM put 1.39% 3.49% 3.11 16 0.08% 1.70% -0.83 59
ATM put 1.16% 3.65% 2.51 15 0.00% 1.72% -0.48 60
ITM put 1.45% 3.74% 3.02 12 0.01% 1.83% -0.48 52

See the notes to earlier table for definition of 7V, high.

! The empirical distribution of historical IV is quite stable over time.
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future returns when the current return is above -1%
in Table 7. Returns from either strategy show insig-
nificant or ambiguous results.

We also experimented on trading under other cir-
cumstances, where the return falls into other brack-
ets. The returns are all discouraging. We reported

Table 7. Time #+1 returns from buy when the time # market return was greater -1%

IVt high [V not high
Type of option Mean Standard dev Sharpe ratio Sample size Mean Standard dev Sharpe ratio Sample size
OTM call -0.06% 3.35% -0.05 83 0.06% 1.78% -0.03 377
ATM call 0.11% 3.26% 0.00 83 0.02% 1.82% -0.05 376
ITM call 0.03% 3.09% -0.03 81 0.02% 1.82% -0.05 352
OTM put -0.07% 3.28% -0.06 83 0.06% 1.81% -0.03 377
ATM put -0.04% 3.28% -0.05 82 0.07% 1.81% -0.02 376
ITM put 0.02% 3.79% -0.02 53 0.17% 2.04% 0.03 229

Note: All returns come from buy position. See the notes to earlier table for definition of 1V, ; high.

2.6. Performance under different high IVs. We
provide results analogous to Table 5 and Table 6
under different levels of high IV. To save space, we
only report the results when the IV is high. We also
suppressed standard deviations. We define IV, as
high if it is above the corresponding cutoff points.
They are shown in Table 8 and Table 9.

Table 8 reports contrarian returns, when the 1V, is
high. The results resemble to those in Table 5 in that
the weekly return is above 1% with very impressive

Sharpe ratios. We also note that the average return
and Sharpe ratio generally increase as we push up
the cutoff for high IV. But the number of weeks for
contrarian trading also decreases at the same time.
Therefore, it is not necessary a good idea to increase
the cutoff. A good balance between a higher average
return and a good size of sample would need more
investigation. A similar situation is in Table 9 com-
pared to Table 6, which reports returns from the
momentum trading.

Table 8. Time #+1 returns from contrarian trading when the market return was in (-o0, -2%) at time ¢

Type of Mean | Share ratio | Sample size Mean | Share ratio | Sample size Mean | Share ratio | Sample size
option IV High (>50%) High (>67%) High (>80%)
OTM call 1.04% 2.14 80 1.33% 2.69 65 1.69% 3.33 50
ATM call 1.06% 2.21 76 1.25% 2.54 64 1.77% 3.55 48
ITM call 1.07% 2.25 59 1.19% 245 52 1.36% 2.60 38
OTM put 1.01% 2.04 79 1.30% 2.67 66 1.84% 3.57 48
ATM put 1.00% 2.07 82 1.32% 2.76 98 1.65% 3.25 52
ITM put 1.21% 2.50 72 1.40% 2.69 57 1.50% 2.55 35
High (>87.5%) High (>90%) High (>95%)
OTM call 1.62% 2.77 34 1.85% 3.01 28 2.51% 3.89 19
ATM call 1.89% 3.37 34 1.74% 2.84 28 2.64% 412 18
ITM call 1.42% 2.34 26 1.69% 2.69 22 2.69% 419 15
OTM put 2.06% 3.59 34 2.03% 3.40 28 2.82% 436 19
ATM put 1.90% 3.24 32 2.03% 3.33 28 2.65% 3.89 17
ITM put 2.39% 4.05 25 2.70% 4.25 20 2.47% 3.44 13

Note: The number in each pair of parentheses is the percentage cutoff for a high volatility from the historical distribution of the IV.

Table 9. Time 7+1 returns from momentum trading when the market returns was in (-2%, -1%) at time ¢

Type of Mean | Share ratio | Sample size Mean | Share ratio | Sample size Mean | Share ratio | Sample size
option IV High (>50%) High (>67%) High (>80%)
OTM call 0.40% 0.74 38 0.66% 1.27 25 1.31% 2.31 13
ATM call 0.29% 0.46 36 1.15% 2.55 24 1.13% 1.82 11
ITM call 0.55% 1.09 33 1.25% 2.64 21 1.81% 3.44 12
OTM put 0.71% 1.52 34 1.28% 2.58 19 1.42% 2.65 13
ATM put 0.74% 1.58 32 1.07% 2.12 21 1.31% 2.22 12
ITM put 0.98% 2.08 26 1.66% 3.04 13 1.58% 2.58 9
High (>87.5%) High (>90%) High (>95%)
OTM call 3.14% 773 7 3.51% 7.32 5.22% 15.21
ATM call 3.38% 7.00 5 3.56% 6.43 5.22% 15.21
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Table 9 (cont.). Time #+1 returns from momentum trading when the market returns was in (-2%, -1%) at

time ¢
Type of Mean | Share ratio | Sample size Mean | Share ratio | Sample size Mean | Share ratio | Sample size
option IV High (>87.5%) High (90%) High (>95%)
ITM call 1.79% 2.46 6 5.22% 15.21 3 5.22% 15.21 3
OTM put 2.46% 3.95 7 2.24% 2.94 5 6.51% 35.42 2
ATM put 1.96% 3.15 8 4.14% 12.44 5 5.22% 15.21 3
ITM put 3.19% 7.09 6 4.14% 12.44 5 6.51% 35.42 2

See notes in previous tables.
Conclusion

In this paper, we find an asymmetric pattern for the IV
of the S&P 100 options as a predictor of the future
market return. Practitioners have long suspected that a
high IV signals an oversold market. Our finding sup-
ports the validity of such claim only when the weekly
market return drops by more than 2% and the IV is at a
high level. We believe this reversal phenomenon is
robust because it has occurred at least 43 weeks during
1996-2008. In contrast to previous studies, we also
discovered that when the loss in the market is moder-
ate (i.e., weekly loss between 1% and 2%), the IV in
fact predicts a continual loss.

Researchers have focused on the link between the
implied volatility and the future realized volatility.
Few studies deal with the possible relationship be-
tween the implied volatility and future returns. We
hope our finding can make up some of the missing
part in the empirical research on this aspect. In ad-
dition, the standard finance theory cannot explain
readily why a high IV should predict significant
market returns. The predictability of return and ab-
normal returns from our test strategies is against the
hypothesis of market efficiency. We hope that future
study may reconcile this anomaly with a judicious
theory of finance.
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Appendix. Derivation of the regression coefficient S

_ (’;H)
as ff = —8(7

t

The coefficient is defined From equation (1) we find that

E (r " ) =E, (ax, +w +v ) =ak, (x,) = aX, . Therefore, combining with the formula of Kalman filtering, the first

t
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Given that o, =5 > 5. we have the following derivative, P 5 = 2 , where — s
a o, ,+o,+0, o {1_0 ] o,
2
O-V

2
O,
typically interpreted as the singal-to-noise ratio in the return data. The typical value of —VZV is in the range of [100,200]

o,
o2
(see Koop, 2003; Li, 2008). It can be shown that —tz S (0,1) since O't2 is a weighted average of (O'lz_] + O'Z) and
GV
o o
O'VZ. We find that ’;l is a very large positive number. A simulation for a=0.9 shows that the range of ’;l is
t 1
between 500 and 2000.
. 2 A . e e . a)’(\:, 85&[_1
Assume the first-order effect of ¢ on X, converges to constant as time approaches the infinity, i.e. = = F
t -1

Collecting terms in the above equation, we arrive a simplified formula for the derivative:

OE, ax, 1 a
(t;l)— '2’1— —5 +k, ||, where g =
oo o o 80 oo’
t v v =1 _ k -1
80}2 Gaf
_da, . o
since Py is very large, g is mostly positive given that a and k, are both between 0 and 1.
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