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Gabriella Piscopo (Italy) 

Italian deposits time series forecasting via functional data analysis 

Abstract 

In this paper we develop a Functional Data Model for forecasting Italian Deposits Time Series. Bank deposits play 

an important role in ensuring the banks borrowing capacity and for this reason its correct modeling and forecasting 

represent an interesting task for policy makers. As it is well known, deposit series are affected by seasonality. In the 

Central Banks and other research institutions the standard procedure applied to this kind of monetary time series is 

to operate a preliminary seasonal adjustment in order to filter out typical calendar effect and within-year 

fluctuations. We assume a different starting point in modeling and forecasting seasonal time series, taking into 

account how the seasonality evolves across the years and trying to incorporate this feature in the model via 

functional data analysis. We utilize the Phase Plane Plot in order to show the evolution of the seasonality of the 

Italian Deposits from 1998 to 2008, working on a monthly time series and producing different plots for each year. 

We fit the data on the historical values using principal component techniques and construct forecast intervals 

projecting the model components with ARIMA process. The empirical results are presented using a range of 

graphical analysis.    

Keywords: deposits, forecasting, functional data analysis, seasonal time series, smoothing. 

JEL Classification: C14, C22, E17. 

Introduction © 

Monetary aggregates represent important 

information variables for monetary policy-making 

of Central Banks. Many monetary time series are 

affected by several seasonal movements that occur 

during particular periods of the year, like public 

holidays, tax payment days, school year beginning 

and so on. Consequently, many statistics are 

subjected to seasonal adjustment in order to filter 

out usual seasonal fluctuations and typical calendar 

effects. In this paper we analyze the fluctuations of 

bank deposits, which play an important role in 

ensuring the ongoing banks borrowing capacity. 

Deposit demand can be influenced by 

macroeconomic factors, like business cycles and 

interest differentials with other countries, and by 

microeconomic factors, like the perceived riskiness 

of individual banks, liquidity buffers, interest 

margins and consumption cycles (see Finger and 

Hesse, 2009). Both aspects have influence on the 

long run of the time series as well as on the seasonal 

fluctuations. Despite the diffuse procedure of 

seasonal adjustments (see Cividini, 1989; Dossé, 

1996; Central Bank, 2000; Silvestrini, 2009), we 

propose a different starting point in the modeling of 

deposit series, considering seasonality and its 

evolutions across the years. In this regard, we 

believe it is interesting to study how the seasonal 

cycle evolves, in particular in presence of 

exceptional events, like financial crisis. To pursue 

this aim, we suggest to apply functional data 

analysis to deposit time series. As far as it is within 

our knowledge, this application of functional data 

procedure has  not  been  previously  proposed.  The 
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statistical foundations of this work derive essentially 

from dynamic time series models, nonparametric 

smoothing techniques and principal component 

methodology. We do not use any observable 

variables which could have effects on the deposits, 

because we do not want to investigate the influence 

of macroeconomic or microeconomic factors on 

the deposit demand, but we fit the model on the 

basis of the deposits historical values, using 

Singular Value Decomposition. This is the first 

step of the approach proposed, which principal aim 

is to forecast deposit series. The statistical tools 

used are based on a huge literature developed in 

the last decades and enriched of interesting 

contributions in the last years. A classical approach 

to the time series modeling and forecasting consists 

in using the well known ARIMA process (see Box 

& Jenkins, 1976) and SARIMA specification for 

seasonal time series. The problem of time series 

with high variation and outlier data has been 

handled with the suggestion of opportune use of 

smoothing techniques. Simple exponential 

smoothing has been developed in the 1950s; Holt’s 

linear method (see Holt, 1957) is an extension of 

simple exponential forecasting that allows a locally 

linear trend to be extrapolated. For seasonal data 

the Holts-Winters method has been introduced by 

Holt (1957); more recent contributions for time 

dependent data have been proposed in the 1990s 

(see Härdle W., Vieu P., 1992; Hart J.D., 1996). 

From the 1990s, the new paradigm of functional 

data analysis (see Ramsey and Silverman, 1997) has 

been used for non-parametric modeling and 

forecasting in a different subject areas, including the 

contribution in macroeconomic fields. Recently, 

Aneiros-Pérez and Vieu (2008) have presented an 

application of functional data analysis to forecast 

seasonal time series. 
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The paper is organized as follows: in section 1, we 

describe the model; section 2 shows the empirical 

investigation on the Italian deposit time series; 

section 3 is dedicated to the fitting and forecasting 

of deposits series via functional data analysis; 

concluding remarks are offered in the final section. 

1. Functional model for seasonal time series 

Let ,0,Y  be a seasonal univariate time 

series which has been observed at N equispaced 

point in the time. Given the observed series 

NYYY ,,, 21  the aim is to predict a future value 

lNY , for some integer 1l . The classical method 

to forecast is to consider an autoregressive process 

with a parametric approach. The problem can be 

also treated via non-parametric approach using 

functional data techniques (see Ramsey and 

Silverman, 1997). Aneiros-Pérez & Vieu (2008) 

assume that N  can be written as TpN , where T  

is the number of trajectories considered and p  is 

the dimensionality of each trajectory, so that the 

univariate series can be decomposed into T  

trajectories composed by p  observations.  

Let )(xyt  be the variable observed in the point x  

of the trajectory t . We have discrete observations of 

the time series but reasonably a continuous function 

describes the evolution of the rate in the continuous 

time. This function can be approximate by an 

underlying smooth function )(xft  that we are 

observing with errors. Thus, we deal with the 

functional time series 

,,...,1,,...,1,)(, pxTtxyx t  where 

,)()()( ,xtttt xxfxy     (1) 

with xt ,  an iid standard normal random variable 

and xt  allows for the amount of noise to vary 

with x . The dataset is smoothed for each t ; using 

a non-parametric smoothing we estimate for each t 

the functions xft from xyx t,  for pi ,...,1 . 

We can calculate the derivatives of the curves in 

order to investigate the velocity and the 

acceleration of the movements of the variable we 

are interested in.  

The second step of our analysis consists in fitting 

the data via a basis function expansion using 

principal component techniques: 

,
1

, xexxxy tk

K

k

ktt    (2) 

where x  is a measure of location of xyt , 

xk  is a set of orthonormal basis functions and 

xet ~ xN var,0 . The error term xet , given 

by the difference between the observed data and the 

fitted curves from the model, is the modeling error. 

This basis set provides fit to the estimated curves 

and gives coefficients that are uncorrelated, 

simplifying the forecast process. In order to forecast 

xyt , univariate time series models are fitted to 

each coefficient kt , , Kk ,...,1 via singular 

value decomposition. Using the fitted series kt ,
ˆ  

the coefficients kt ,  Kk ,...,1 are forecasted for 

hnnt ,...,1  using ARIMA models, structural 

models (Harvey, 1989) or exponential models 

(Hyndman et al., 2002). Finally, the previously 

obtained forecasted coefficients are implemented to 

get the xft  as in formula (2) and xyt  is 

projected from (1). The estimated variances of error 

terms in (2) and (1) are used to compute prediction 

intervals for the forecast.  

2. Analysis of Italian deposits time series 

In the following application we consider the Italian 

deposits monthly time series from 1998 to 2008; the 

data can be downloaded from the website of the 

Bank of Italy (www.bancaditalia.it) where they are 

collected in table TSC20200. The series is plotted in 

Figure 1.  
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Fig. 1. The Italian deposits monthly time series 

The data show seasonality. In Figure 2 the variation 

rate of the deposits is plotted: it is a univariate series 

with N=12*11=132 observations. Following 

Aneiros-Pérez & Vieu (2008), we decompose the 

series into 11 trajectories with 12 monthly 

observations. Let )(xyt  be the deposits observed in 
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the month x  of the trajectory/year t ; Figure 3 

shows the decomposition of the series plotted in 

Figure 2 into 11 trajectories. 
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Fig. 2. The variation rate of the Italian deposits 
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Fig. 3. The decomposition of variation rate of Italian 

deposits monthly series 

According to the paradigm of Functional Data 

Analysis, the economic force generating changes in 

the deposits can be represented by a curve with a 

certain number of derivatives. We construct this 

curve )(th  with a B-spline smoothing (see Ramsey 

and Silverman, 2002) of order 8, considering a number 

of knots equal to the number of the observations. We 

want to study how the within-year oscillations change 

across the years and for this purpose we            

analyze the first and the second derivatives of the 

curve. The smoothing method used is designed to 

give a good impression of the velocity and 

acceleration of the variable; a data driven technique 

guides the choice of the model, in order to capture 

important features in the data and not underestimate 

peak values or overestimate low values. A useful 

graphical tool is the so called Phase Plane Plot, i.e. a 

plot of the acceleration against the velocity. The 

graph shows energy which guides the process 

oscillating between two states: potential and kinetic. 

Kinetic energy is maximized when the second 

derivative is zero; potential energy is maximized 

when velocity is zero. After a period of intense 

accumulation of deposits or a period of crisis we 

may see that both potential and kinetic energy are 

low and the phase-plane curve is close to zero. 

When we analyze a Phase Plane Plot, we have to 

look for the cycles, the size of radius of each cycle, 

the location of the center of the cycles and the 

changes in the shapes of the cycles across the years. 

In particular, the larger the radius size is, the more 

energy is transferred in the process. In the following 

figures, we show for each year the Phase Plane Plot; 

visible differences between the graphs give evidence 

of the evolution of the seasonality. If we look at 

Phase Plan Plot of the 1998, we note two cycles, the 

first one is from January to March, and the second 

one is from March to June and then a period of 

relative stability. At the beginning of the first cycle 

the velocity is positive and the acceleration is very 

high: the deposits increase at an exponential rate. 

However, the acceleration decreases in the mid of 

January, at certain point it becomes negative and 

after a further decrement the process enters the 

state of maximal potential energy. In this case, the 

energy developed is negative, the first derivate 

becomes negative and the deposits decrease. At the 

end of January the process is in the state of kinetic 

energy: the deposits continue to fall. Between 

February and March potential energy is developed 

and the deposits return to grow. Between March 

and June the second cycle takes place, with less 

intensity; as expected, deposits show a negative 

velocity in April, when the Easter holidays and tax 

payments occur, and in June, during the summer 

holiday. The cycle is followed by a period of 

relative stability. We can also find this period 

during 1999 and 2000. From 2001, the pattern of 

the process is modified and the number of cycles 

rises. In 2003, the velocity is positive until June 

and the curve lies on the right part of the plot; 

between June and August and between October and 

November the velocity appears negative and the 

deposits fall: these periods coincide with the 

summer holidays and the school year beginning, 

when the withdrawals increase. A similar feature is 

tracked in 2004, 2005, 2006 and 2007: as expected, 

the deposits fall between June and July and 

between October and November. Finally, in 

September 2008 when financial crisis exploded 

instability enhanced.  
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Fig. 4. The phase plane plot of the Italian deposits for 1998 
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Fig. 5. The phase plane plot of the Italian deposits for 1999 
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Fig. 6. The phase plane plot of the Italian deposits for 2000 
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Fig. 7. The phase plane plot of the Italian deposits for 2001 

-5 0 5

-3
0
0

-2
0
0

-1
0
0

0
1
0
0

2
0
0

3
0
0

Velocity

A
c
c
e
le

ra
ti
o
n

jF
m

A
MJ

J

A

S
O

N

D

j

 
Fig. 8. The phase plane plot of the Italian deposits for 2002 
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Fig. 9. The phase plane plot of the Italian deposits for 2003 
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Fig. 10. The phase plane plot of the Italian deposits for 2004 
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Fig. 11. The phase plane plot of the Italian deposits for 2005 
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Fig. 12. The phase plane plot of the Italian deposits for 2006 
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Fig. 13. The phase plane plot of the Italian deposits for 2007 

-1e+09 -5e+08 0e+00 5e+08 1e+09

-5
.0

e
+

1
0

0
.0

e
+

0
0

5
.0

e
+

1
0

1
.0

e
+

1
1

1
.5

e
+

1
1

Velocity

A
c
c
e

le
ra

ti
o

n

jFmAMJJ AS
O

N

D

j

 
Fig. 14. The phase plane plot of the Italian deposits for 2008 

3. Functional data fitting and forecast of the 

deposit series 

In the previous section we have shown how the 

deposits variations change across the years. Now   

we want to produce forecasts for the next year.    

The problem can be treated via non-parametric 

methods using functional data techniques. Let   

)(xyt  be the deposits observed in the month x   of the 

trajectory/year t . The observed time series 

13221 ,,, YYY  can be divided into 11 paths of 

length 12 in the following sets: 

11,,1,),1(, tpttpYyt . The aim is 

to forecast future deposits value 0,hy hT  from 

the observed data. To pursue this scope, we apply a 

non-parametric method: via principal component 

analysis we decompose the )1112(  matrix 

111 ,, yyY  into a number of principal 

components and associated coefficients using the 

Singular Value Decomposition: 

,ˆˆˆˆˆˆ '

1

'

KKKY  

where 
'

ˆ,,ˆ,ˆˆ
1221 is the mean vector, 

K
ˆ,,ˆ,ˆ

21  are the estimated principal components 

( kkk ,12,1
ˆ,,ˆˆ ) ; k

ˆ,,ˆ
1  are uncorrelated 

basis functions (
'ˆ,,ˆˆ

,11,1 kkk ); ˆ  is the zero 

mean )1112( residual matrix. Figure 15 shows 

fitted basis functions and coefficients for an 

expansion of order 8. We highlight that increasing 

the order of the model the basis functions estimated 

in the previous model do not change and only other 

functions are considered; this is due to the 

methodology of Singular Value Decomposition. The 

expansion order is chosen according to a data driven 

technique; we have increased the number of basis 

functions until residuals from the fitting have shown 

an irregular pattern. In the first line of Figure 15, the 

first graph represents ˆ  across the months and the 

other graphs show the fitted basis functions 

8,1,ˆ kk ; in the second line the graph 

represents the fitted coefficients

 

.8,,1,ˆ kk

 

As 

it is clear from Figure 15, the basis functions 

model different movements in the deposits across 

the months. For this reason, the model is able to 

explain the within-year variations. The mean term 

is a month-specific component independent of the 

years, the coefficients are year-varying 

parameters. In particular, the first coefficient 

represents the trend in the deposit series and the 

first basis function explains how deposits change 

in each month when the general level in the 

deposits moves. The second basis function mainly 

models the first months of the year, while the 

third one models the last months. The other 

functions are more complex and capture the 

differences between all months.  
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Fig. 15. The fitted coefficients and basis functions 

In the analysis conducted we have assumed a different 

point of view with respect to traditional seasonal 

adjustment methods for time series. One of these is the 

widely used decomposition of time series by loess (cf. 

Cleveland et al., 1990). In the following, we present 

the classical decomposition in order to compare the 

results obtained with respect to functional analysis and 

reflect them upon the two different approaches. Figure 

16 shows the decomposition of Italian deposits time 

series into trend and seasonal effect.  
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Fig. 16. The decomposition of Italian deposits time series 

Using this approach movements in seasonality are not 

pointed out, unlike what happens applying functional 

data analysis. Consequently, in the former case the 

model neglects some important data features and this 

impacts residuals. Figures 17 and 18 show residuals 

from the models fitted with classical decomposition 

and functional technique: in the latter graph, the 

dispersion around zero is smaller.    
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Fig. 17. Residuals of the Italian deposits fitted series through decomposition by loess 

0 20 40 60 80 100 120

-4
0
0

0
0

4
0

0
0

residuals from functional model

th

re
s
id

u
a

ls

Months 

R
e
s
id

u
a

ls
 

Residuals from functional model 

 

Fig. 18. Residuals of the Italian deposits fitted series through functional data analysis 
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The last step of our work consists in producing 

forecast intervals for the deposits during the next year 

starting from the fitted coeffients and basis function 

of the functional model. Then, conditioning on the 

observed data piTtxy it ,,1;,,1);( and 

on the set of basis functions , we obtain the h-step 

forecasts

,ˆ
~

ˆ,)(~

1

,,, ik

K

k

hkTiihTihT xxxyExy

where  hkT ,,

~

  
denotes  the  h-step  ahead forecast of 

khT ,  
obtained using the estimated time 

series Ttkt ,,1,ˆ
,  

and projecting them with 

opportune ARIMA process. Figure 19 shows the 
results with a level of confidence equal to 95%. 

Concluding remarks 

In this paper we have developed a Functional Data 

Model to analyze and forecast Italian Deposits Time 

Series. As Ramsay and Silverman (2002) write, “the 

aim of the analysis of functional data are…to 

formulate the problem at hand in a way amenable to 

statistical thinking and analysis, to develop ways of 

presenting the data that highlight interesting and 

important features; to investigate variability as well 

as mean characteristics…”. In this regard, we have 

assumed a different point of view with respect to 

standard procedures implemented by Central Banks 

and other research institutions, which apply 

preliminary seasonal adjustment in order to filter out 

typical calendar effect and within-year fluctuations 

of deposit series. Our proposal does not set against 

the current modus operandi, but can be used as a 

complementary tool, useful for highlighting 

important features of data, like seasonality and its 

evolution across the years. The results shown by the 
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ready-understanding Phase Plane Plots can be 

interpreted in the light of events which have impact 

on the economy, like political occurrences or the 

recent financial crisis. The variation of the 

seasonality is captured in fitting and forecasting 

dealing with basis expansions of time series. Further 

works can investigate the forecast accuracy of the 

model. Wide space for the future research is offered 

by the implementation of functional data techniques 

able to produce estimations robust to the outliers data. 
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