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A multifactoral Cross-Currency LIBOR Market Model

with an FX volatility skew 

Abstract 

Based on LIBOR Market Models, we develop a rigorous pricing framework for cross-currency exotic interest rate 

instruments under a uniform probability measure and in a multifactoral environment that accounts for the empirically 

observed foreign exchange skew. The model resorts to a stochastic volatility approach with volatility dynamics follow-

ing a square-root process and is designed to be flexible enough to allow for the incorporation of as much market infor-

mation as possible. Using the Fourier transform, we produce closed-form valuation formulas for FX options by obtain-

ing an explicit expression for the characteristic function, though in a mildly approximate fashion for the sake of ana-

lytical tractability. The main focus is placed on FX markets, in terms of which the calibration of model parameters can 

be performed on a wide range of FX options expiries and strikes. 

Keywords: Cross-Currency LIBOR Market Model, stochastic volatility, Fourier transform, foreign exchange skew, 

forward probability measure. 
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Introduction

The origins of the proposed Cross-Currency LIBOR 

Market Model (CCLMM) can be traced back to the 

need of developing a unified pricing framework for 

a number of cross-currency exotics. Initially con-

fronted with a hybrid structure that required the 

simultaneous description of highly correlated inter-

est rate markets, foreign exchange (forex) rate and 

hazard rate dynamics, the present work gained im-

petus from the necessity to determine the value of a 

cross-currency swap, which was to serve as an un-

derlying of various derivative products, at an arbi-

trary future date. Typically, FX options exhibit a 

significant volatility skew that manifests itself in the 

at-the-money (ATM) implied volatility’s underesti-

mation of in-the-money (ITM) option prices and 

overestimation of out-of-the-money (OTM) ones, 

whereby the ATM implied volatility has been ob-

tained by inversion of an ATM option pricing for-

mula based on a lognormal stochastic evolution of 

the forward forex rate. Moreover, it seems impossi-

ble for the most cross-currency derivatives to 

choose a particular strike, or a specific maturity of 

an FX option since they usually represent long-

dated exotic structures that either cannot be decom-

posed into plain-vanilla FX options, or at best de-

pend on FX options for a wide range of strikes and 

maturities. Aggravating matters even further, exotic 

cross-currency interest rate derivatives are rarely 

structured to depend on ATM volatilities. They are 

usually designed with strikes far away from at-the-

money. Hence, the volatility function needs to be 

calibrated to prices of FX options across all avail-

able maturities and strikes as suggested by Piterbarg 

(2006). He asserts that a model similar to that of 

Schloegl (2002) based on LIBOR Market Models, 

yet accounting for forex smiles in a proper manner, 

and a good FX option calibration algorithm still 

awaits development. For this purpose, it appears 

natural to resort to an extension of the lognormal-

type dynamics of the forward forex rate that is based 

on stochastic volatility. 

This paper proposes an integrated CCLMM under a 

uniform pricing measure in a multifactoral environ-

ment that allows for as much flexibility as possible 

in calibrating model parameters to market data. The 

pricing measure will be uniform as it will be appli-

cable to (i) simple financial instruments that are 

affected only by the domestic interest rate market or 

the foreign interest rate market but not both, as well 

as to (ii) complex financial instruments that are af-

fected by both the domestic and foreign interest rate 

markets linked by the forex market. With the inten-

tion to derive valuation formulas, we deflate all 

stochastic price processes using a single numeraire 

regardless of the market the price process belongs to 

or is affected by, thus ensuring pricing consistency 

between the markets and allowing the evaluation of 

complex financial structures within a LIBOR Mar-

ket Model setup. The model design must be capable 

of reflecting market implied volatilities and exoge-

nously assigned correlation structures between the 

interest rates and FX dynamics. However, the main 

focus will be placed on the calibration to FX options 

for various maturities and strikes simultaneously, 

while retaining one-factor assumptions for both 

interest rate markets. Though somewhat restrictive 

at first glance, this choice keeps the number of 

model parameters to be calibrated low affecting 

high speed of calibration without sacrificing accu-

racy of valuation. In addition, the model developed 

here can easily be used as a stepping stone to incor-

porating interest rate volatility smiles on a multi-

currency basis, which remains a subject of future 

research. The various extensions of the forward 

LIBOR models could serve as a starting point of this 

effort. One possibility would be the postulation of 

alternate interest rate dynamics such as local volatil-



Banks and Bank Systems, Volume 3, Issue 4, 2008

74

ity type of extensions based on constant elasticity of 

variance (CEV) processes pioneered by Andersen et 

al. (2000), or the adoption of a displaced-diffusion 

approach as elaborated, for example, by Benner et 

al. (2007). Jump-diffusions are treated in Glasser-

man et al. (2003a, 2003b), but have not gained much 

acceptance due to their producing of non-time-

homogeneous volatility term structures and some 

other calibration complications. Finally as the mod-

elling technique with probably the greatest explana-

tory power, the inclusion of stochastic volatility in 

the LMM is considered by three main research 

streams: Andersen et al. (2005) and Andersen et al. 

(2002), on which Piterbarg (2003) builds using the 

method of calibration by parameter averaging as 

described in Piterbarg (2005a, 2005b) and providing 

formulas that relate market and model skews and 

volatilities directly without the need to develop 

closed-form solutions of European option valuation 

problems. Joshi et al. (2003) choose a distinctly 

different way of analyzing the evolution of the 

swaption volatility matrix over time by assuming a 

specific time-homogeneous instantaneous volatility 

function whose parameters are allowed to vary sto-

chastically. 

The paper is organized as follows. Section 1 devel-

ops a unified pricing framework under a uniform 

domestic forward measure. It determines both the 

dynamics of the domestic/foreign LIBORs and the 

forward forex rate with stochastic volatility. The 

reason why forward forex rates are being modelled 

directly is that, by definition, they represent price 

processes of tradable securities as opposed to spot 

forex rates. In fact, each forward forex rate follows 

a martingale under its natural forward measure, so 

that its dynamics are, under such a measure, fully 

specified by its volatility process. Section 2 derives 

an FX option pricing formula with stochastic forex 

volatilities based on mildly approximate assumptions 

in order to preserve the analytical tractability of the 

model. It also offers an elaborate overview of the 

implemented calibration procedure. The last section 

concludes with a brief summary of the main results 

and some suggestions for future work. For the sake of 

lucid presentation, all purely technical details are 

reserved to the appendices at the end of the paper. 

1. Cross-Currency LMM under uniform probability 

measure

1.1. Definitions. Given a filtered probability space 

0[ , ]
, , N

N

t

t t t t
PF

 satisfying the usual condi-

tions, let the tuple 0

1,2,3,4
( )

[ , ]
( )

N
N

d
d

t
t t t

W t
 denote a d-

dimensional Brownian motion that introduces the 

source of uncertainty to the correlated dynamics of 

the foreign exchange market, both the domestic and 

foreign interest rate markets and to the mean-

reverting square root process of the common volatil-

ity ( )V t  shared equally by forward forex rates of 

any maturity. In addition, we assume that the filtra-

tion 0[ , ]N
t t t t

F
 is the usual 

NtP -augmentation of 

the natural filtration generated by 0

1,2,3
( )

[ , ]
( )

N
N

d
d

t
t t t

W t
,

so that it is right-continuous and complete. A com-

mon set of LIBOR maturities 0 10 ... Nt t t
 is 

defined for both the domestic and the foreign cur-

rency markets. May the following symbols 

( , , )L s t T  and ( , , )fL s t T  indicate domestic and 

foreign (forward) LIBORs as of time s , starting at 

time t  and maturing at time T  respectively with 

s t T . For the sake of simplicity, 

1( ) ( , , )
it i iL t L t t t

 and 1( ) ( , , )
i

f f

t i iL t L t t t
 are 

designated to represent one-year forward rates start-

ing at it  and ending at 1 1i it t
 with 

0,..., 1i N
. Moreover, 

( , , )iL t t t
 and 

( , , )f

iL t t t

specify spot rates, whereas ( )Q t  stands for the spot 

forex rate as units of domestic currency per unit of 

foreign currency. The forward forex rate, at which 

investors can buy or sell foreign currency for set-

tlement at a future date, is determined by 

( ) ( , ) ( ) ( , )f

i i iFX t B t t Q t B t t
.

In terms of zero-coupon bonds, ( , )iB t t  and 

( , )f

iB t t  denote the domestic and foreign bond 

respectively, while the LIBORs are given by: 

1 1

1

1 1

( , ) ( , )
( ) 1 , ( ) 1 1.

( , ) ( , )i i

f
fi i

t i t i i i if

i i

B t t B t t
L t L t with t t

B t t B t t

In particular: 

1 1

1 0 1 0 0 1

1 1

1 1
( , , ) 1 , ( , , ) 1 1.

( , ) ( , )

f

f
L t t t L t t t with t t

B t t B t t
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Their stochastic evolution is characterized solely by 

the respective volatility functions ( )i t  and ( )f

i t ,

which are assumed deterministic within the main 

framework and can be calibrated independently for 

the domestic and foreign LIBORs to single-currency 

caps and swaptions using the well-known tech-

niques for the single-currency LMM suggested by 

Rebonato (2002) and Brigo et al. (2002). To capture 

the implied volatility’s functional dependence on the 

corresponding interest rate option’s strike, a dis-

placed-diffusion approach according to Rubinstein 

(1983) can be adopted, as shown by Benner et al. 

(2007). However, it will not be further pursued in 

this place since we primarily concentrate on retain-

ing sufficient control over forex smiles and develop-

ing a practicable FX option calibration algorithm for 

a wide range of maturities and across a variety of 

strikes. For convenience, the terminal forward prob-

ability measure 
Nt
P  associated with the domestic 

bond maturing at the terminal date Nt  is chosen to 

be the uniform martingale measure throughout the 

paper. Though of marginal importance to the analy-

sis, the structure of both bond volatilities 
( ) ( , )f

Nt t  is nonetheless needed and is determined 

according to Benner et al. (2007): 

( ) ( )1
( ) ( ) ( )1 0 1

1 1( ) ( )
1 1 0 1

( , , ) ( , , )
( , ) ( , , ) ( , , ).

1 ( , , ) 1 ( , , )

f fN
f f fi i i

N i if f
i i i i

L t t t L t t t
t t t t t t t t

L t t t L t t t

1.2. Modeling forward forex rates with stochastic volatility. We begin by assuming the following general 

dynamics for the CCLMM: 

1 2

( ) ( )
( ) ( ) ( ), ( ) ( ) ( ),

( ) ( )

t tN N

f
P Pf fi i

i i i if

i i

dL t dL t
t dt t dW t t dt t dW t

L t L t

1,2,

1 2 12 1 1 2 2

BROWNian motions
( )

( ) ( ) ( ),  . 
( )

( ) ( ) , ( ) ( ) , ( ) ( )

t tN N

N

P Pq q

Q Q t

Q Q Q Q

dQ t
t dt t dW t W P

Q t

dW t dW t dt dW t dW t dt dW t dW t dt

    (1) 

The last forward forex rate within the exemplary tenor structure represents a martingale under 
Nt
P :

2 1 3

2 2 2 2

1,2 1, 2,

1 3 13 2 3 2

( )
( , ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ),

( )

( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

( ) ( ) , ( ) ( )

t t t tN N N N
P P P Pf q fxN

N Q N N

N

fx f q f q q f

N N N N N N Q N Q

dFX t
t t dW t t dW t t t dW t t dW t where

FX t

t t t t t t t t t t

dW t dW t dt dW t dW t 3dt

    (2) 

Strictly speaking, ( )fx

N t  is a stochastic quantity 

through its dependence on the realization of the 

LIBOR rates3. Though, it could be made condition-

ally deterministic to a high degree of accuracy by 

some quite sophisticated and extremely precise ap-

proximation methods, or simply by classical “drift-

freezing” techniques4. Yet another approach of di-

rectly calibrating ( )fx t  as a (deterministically) 

variable model parameter is being pursued hence-

forth since the forward forex rate represents the 

price process of a tradable asset denominated by the 

corresponding numeraire, hence an observable secu-

rity, as it has already been mentioned above. The 

decomposition of the volatility in (2) serves solely 

for the purpose of enabling us to determine the drift 

of any forward forex rate prior to the terminal one 

by switching from the natural to the terminal meas-

ure, as will be shown shortly. 

Such a model of the forward forex rate can safely be 

used to price FX options with different maturities 

but the same strike. When simultaneously pricing 

options with various strikes, however, the natural 

question arises as to how to account for the usually 

observed smile effect. For this reason, we resort to 

an extension of the lognormal-type dynamics of the 

forward forex rate beyond the geometric BROWNian

motion and postulate a stochastic volatility evolu-

tion in conformity with Heston (1993) based on a 

common volatility ( )V t  that follows a mean-

reverting square-root process under the physical 

probability measure: 
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3 4

1 4 14 2 4 24 3 4 34

( )
( ) ( ) ( ), ( ) ( ) ( ) ( )

( )

( ) ( ) , ( ) ( ) , ( ) ( )

tN
PfxN

N

N

dFX t
t V t dW t dV t V t dt V t dW t

FX t

dW t dW t dt dW t dW t dt dW t dW t dt

    (3) 

Any previous forward forex rate no longer follows a martingale, but its dynamics under 
Nt
P  can be deter-

mined according to: 

3

1 1

2 1 1

( )( , ) ( ) ( , )
( ) ( ) ( ) ( ) ( ),

( , ) ( , ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

tN

t tN N

t t t tN N N N

f
Pfx fxii i

i i i

N N i

P Pfx

i i N

P P P Pf q

i Q N i N

dFX tB t t Q t B t t
With FX t t dt t V t dW t

B t t B t t FX t

where t dt t dW t t dW t

t dW t t dW t t dW t t dW t

฀

1

1
1

3 1

1

1
1

13

1

) ( )

( , , )
( ) ( ) ( ) ( ) ( )

1 ( , , )

( , , )
( ) ( ) ( ) ( ) ,

1 ( , , )

tN

t tN N

j

j

P

N
P Pj j jfx

i t

j i j j j

N
j j jfx fx

i t i

j i j j j

t dW t

L t t t
t V t dW t t dW t

L t t t

L t t t
t t t V t

L t t t

while the volatility process evolves under the uniform martingale measure as follows: 

4 4 4 4 14

14 4

( , )
( ) ( ) ( ) ( ) ( , )

( , )

( ) ( ) ( ) ( , ) ( ) ( ).

t tN N

tN

P PN
N

N

P

N

dB t t
With dW t dW t dW t dW t t t dt

B t t

dV t V t V t t t dt V t dW t

Finally, the drift functions of both term structures of 

interest rates under 
Nt
P  remain to be computed. It is 

well-understood that the drift of the domestic LI-

BOR takes on the expression: 
1

1

1 1

( , , ) ( ) ( )
( ) , 1.

1 ( , , )

j i

N
j j j t t

i

j i j j j

L t t t t t
t i N

L t t t

A sequential procedure starting with the terminal 

foreign LIBOR, and moving backwards until the 

spot LIBOR rate is reached, renders the evolution of 

the foreign term structure at last attainable. Since 

any traded asset scaled by the respective numeraire 

will be a martingale under the corresponding meas-

ure, we infer that 1( ) ( , ) ( )f f

N NL t B t t Q t , which 

represents a portfolio of foreign bonds in domestic 

currency, will be driftless when divided by the nu-

meraire ( , )NB t t :

1 1

1 1 23

( ) ( , ) ( ) ( ) ( , ) ( )
( ) ( ) ( ) ( )

( , ) ( , )

N N

f f f f

t N t Nf f fx

N N N

N N

L t B t t Q t L t B t t Q t
d t t t V t dt

B t t B t t

1 1

1 2 3

1 1 23

( ) ( , ) ( ) ( ) ( , ) ( )
( ) ( ) ( ) ( ) ( )

( , ) ( , )

( ) ( ) ( ) ( ) .

t tN NN N

f f f f
P Pt N t Nf fx

N N

N N

f f fx

N N N

L t B t t Q t L t B t t Q t
t dW t t V t dW t

B t t B t t

t t t V t

Applying the same reasoning to an arbitrary foreign LIBOR prior to the terminal one, we obtain: 

1

1 1
1

1
1

1 23

11

( ) ( , ) ( ) ( , )
( ) ( ) 1

( , ) ( , )

( ) ( )( ) ( ) ( ) / ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) / ( ) 1 ( )

i

i

j ji

i i

N j

f f

t i f i
t i

N N

f f
N

j t tt i N f f fx f

i t i tf f
j it i N j t

L t B t t Q t B t t
With L t FX t and i N

B t t B t t

L t td L t B t Q t B t
t t V t t

L t B t Q t B t L t
12

1

2 1 3 1

1

1

1 23 12

1

( ) ( )
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1 ( )

( ) ( )
( ) ( ) ( ) ( ) .

1 ( )

j jt t tN N N

i

j

j j

i i

j

N
j t tP P Pf fx

t i

j i j t

N
j t tf f fx f

i t i t

j i j t

dt

L t t
t dW t t V t dW t dW t

L t

L t t
t t V t t

L t
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Summarizing the results so far, the proposed Cross-Currency LIBOR Market Model with an incorporated 

forex smile is fully described by the following system of stochastic differential equations: 

1
1

1

1 1

1

1 23 12 2

1

( , , ) ( )( )
( ) ( ) ( )

( ) 1 ( , , )

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) 1 ( )

( )

(

j ti N

i i

i

j j ti N

i i

i j

N
j j j t Pt

t t

j it j j j

f N
j t t Pt f fx f

t i tf
j it j t

i

i

L t t t tdL t
t dt t dW t

L t L t t t

L t tdL t
t t V t dt t dW t

L t L t

dFX t

FX t

1
1

13 3

1

14 4

( , , ) ( )
( ) ( ) ( ) ( ) ( )

) 1 ( , , )

( ) ( ) ( ) ( , ) ( ) ( )

( ) ( ) , , 1, 2,3, 4 .

j tN

tN

N
j j j t Pfx fx

i i

j i j j j

P

N

m l ml

L t t t t
t V t dt t V t dW t

L t t t

dV t V t V t t t dt V t dW t

dW t dW t dt where m l and m l

    (4) 

The correlation coefficients ml , , 1, 2,3m l , can 

be chosen either by historical estimation, or by par-

simonious parameterization of the correlation func-

tion1 and subsequent calibration to the information 

extracted from occasionally observed prices of 

quanto interest rate contracts. Assuming that both 

the domestic and the foreign LIBOR volatilities 

have previously been calibrated independently to 

single-currency caps and swaptions as indicated 

above, the model still needs to be calibrated to 

available FX options if it is intended to be used as a 

pricing tool for cross-currency exotics. Therefore, 

the main purpose of this article, aside from deriving 

the CCLMM with a forex smile in (4), consists in 
the development of an effective and fast calibration 
algorithm, at the core of which a closed-form FX 
option valuation formula stands. 

2. Option pricing formulas and calibration  
routines 

2.1. FX option valuation by Fourier transform.

Regardless of the model chosen for the evolution of 

the forward forex rate, the price at 0t  of the 
thi  FX 

option under the natural measure it
P

 and under the 

equivalent measure Nt
P

 is given by: 

0 00 0 0

( , )
( ) ( , ) ( ) | ( , ) ( ) | .

( , )

t ti N
P P i

i i i t N i t

N

B t t
FXopt t B t t E FX t K B t t E FX t K

B t t
F F

The5 driftless dynamics of ( )iFX t  under their own 

natural probability measure will produce the correct 

option price only if the discounting of the payoff is 

carried out using the appropriate numeraire – in this 

case the bond maturing at it . The use of any other 

measure will introduce a covariance between the 

discounting and the payoff itself, for example when 

the pricing of plain-vanilla options on the whole 

spectrum of forward forex rates ( )iFX t ,

1,...,i N , is accomplished under a single measure 

like the terminal one. In order to recover the same 

option value, this fact has to be compensated for by 

altering the drift of the forward forex rate as shown 

previously. However, facing a complex pricing 

problem, which entails simultaneously several FX 

rates, a particular measure has to be specified and 

once it has been chosen, the presence of non-zero 

drifts is unavoidable and the need to formulate a 

model for the stochastic evolution of the underly-

ing(s) like (4) is inevitable. This has been the main 

purpose of our work – the development of a viable 

pricing model for exotic cross-currency interest rate 

instruments, which is at the same time flexible 

enough to allow for the incorporation of the entire 

market information, as of FX markets essentially 

meaning calibration to the whole range of FX op-

tions prices across all available maturities and 

strikes. As a step prior to the actual pricing of de-

rivative structures, the calibration of the model can 

be carried out under any probability measure since 

we calibrate to plain-vanilla FX options, whose 

payoffs involve only a single forward forex rate at a 

particular point of time. It is acceptable to use a 

model separately calibrated for each option expiry 

since vanillas depend on the terminal distribution of 

the underlying only as opposed to exotics whose 

values usually depend on the full dynamics through 

time of a whole range of FX rates. Consequently, we 

revert every time to the natural measure 
it
P , effec-

tively using for calibration always the same model 

though under different probability measure, to cir-

cumvent the unpleasant dependence alluded to above, 

which will admittedly complicate the producing of a 

closed-form solution to the option pricing problem.  
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The value of the FX option can be rewritten in terms 

of the real part of its Fourier transform, where the 

only unknown parameter is the conditional charac-

teristic function 
0
( )i

t  of ln ( ) ( )i iFX t Y t

0 0

( )
( ) |ti i

P iuY ti

t tu E e F , eventually arriving at: 

0 0

0

ln ln

0
0

0 0 0

( ) ( )( ) 1 1 1 1
( ) Re Re .

( , ) 2 ( ) 2

iu K i iu K i

t ti
i i

i t

e u i e uFXopt t
FX t du K du

B t t iu i iu
              (5) 

Similar descriptions of the option price in a different 

form have already been derived by numerous au-

thors, e.g., Bakshi et al. (2000) and Scott (1997), 

and numerically determined on the assumption that 

the characteristic function is known analytically. 

One disadvantage of the formula above is the singu-

larity of the integrand at the required evaluation 

point 0u , which ultimately precludes the applica-

tion of the Fast Fourier Transform (FFT). Therefore, 

Carr et al. (1999) develop a new analytic expression 

for the Fourier transform designed to use the FFT to 

price options efficiently. In the appendix we propose 

a different approach, which draws directly upon 

Lévy’s inversion theorem, and avail ourselves of the 

Gauss-Laguerre Quadrature to obtain the best nu-

merical estimate of the Fourier integrals in (5). 

Therefore, the option pricing reduces to the calcula-

tion of the unknown conditional characteristic func-

tion. The dynamics directly relevant to valuing the 

FX option are: 

1
0

1 0

2

3

14 4

( ) ( )
( , ) ( ) ( ); ( ) ( ) ; , 1,3, 4

1 ( ) 1 ( )

1
( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( , ) ( ) ( )

( )

j

j

j

ti

ti

j

j

i
j t t

i t t m l ml

j j t t

Pfx fx

i i i

P

i

t

t

L t L t
With t t t t dW t dW t dt m l

L t L t

dY t t V t dt t V t dW t

dV t V t V t t t dt V t dW t

dL t

L

1
1

1

1 1

( , , ) ( )
( ) ( ) ( ).

( ) 1 ( , , )

tk i

j j

i
Pk k k t

t t

k j k k k

L t t t t
t dt t dW t

t L t t t

   (6) 

It is well-known that according to the Markov property the characteristic function: 

0 0 1

( )

0 1 0 0 0 0 0 1( , , , ,..., ) | ( ) , ( ) , ( ) ,..., ( )ti i

i

P iuY ti

t i i t t iu y v l l E e Y t y V t v L t l L t l

is determined as the solution of a partial differential 
equation (PDE) that can be found through Feynman-
Kac’s theorem. To provide a closed-form solution in 
the spirit of Heston (1993), however, we need to 
ensure the linearity of the coefficients in the related 
PDE. This property is obviously destroyed by the 
presence of the drift correction term 

14( ) ( , )iV t t t  in the dynamics of the volatility 

process due to the change of measure. It becomes 
immediately apparent that the only way to explicitly 
calculate the wanted characteristic function is by 
making the drift of the volatility process an affine 

function of ( )V t  and by eliminating the stochastic 

dependence on the LIBORs via the bond volatilities 

( , )it t  since the asymptotic form of the drift in the 

dynamics of the LIBORs rules out linearity with 

respect to kl , 0,..., 1k i . The classical approach 

to handling the LIBORs is by freezing them at their 
initial value. In addition, we need to approximate 
the square root of the volatility process within the 

drift function. Consequently, the dynamics of ( )V t

become approximately of a square-root type and 
after redefining the system of SDEs (6): 
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ti
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V t t t dt V t dW t
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    (7) 

we come by the following PDE in the backward variables and the respective boundary condition: 
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    (8) 

Suggested by the linearity of the PDE’s coefficients in v , we propose a solution like: 
0 0

0

( ) ( )
( , , ) , (0) 0 (0) 0.

C t t D t t v iuyi

t u y v e where C and D     (9) 

By plugging this ansatz into (8), we obtain two ordinary differential equations (ODEs): 

2 2 2 2 20
14 0 34 0 0

0 0

0 0 14

0

( , )1 1 1 1
( ) ( ) ( )

2 2 2 2( )

1
( ) ( , ) .

2

fx fx fxi
i i i

i

t tD
D iu t D u t iu t

t V t

C
D V t t t

t

  (10) 

As shown in the appendix, the first one is a Riccati 

equation (see Oksendal (2000) Chapter 6) which can 

be solved by reducing it to a second-order linear 

ODE, whereas the second one is solved by direct 

integration. By means of their explicit solutions, as 

given by (B16) and (B18) respectively, we obtain an 

analytical expression for the characteristic function 

(9) that enables us to numerically determine the 

option price (5). 

2.2. The calibration algorithm. For illustration 

purposes, we now consider a fictitious example of 

fitting the model to FX options across five different 

expiries and strikes. It is unnecessary to accentuate 

that the procedure can theoretically be extended to 

an arbitrarily wide range of maturities and strikes at 

the expense of rising computational time since the 

number of model parameters to match increases ac-

cordingly. Market prices of FX options in basis points, 

as displayed in Table 1, for strikes generated by 

1,5.0,0,5.0,15,...1

,1.0
0

jandi,jwhere

etFXiK ji
ij  (11) 

have been taken as a basis for the ensuing calibra-

tion routine.  

Table 1. Market prices of FX calls (in bp) for differ-

ent strikes and maturities 

Expiry FXopt 1 FXopt 2 FXopt 3 FXopt 4 FXopt 5 

1y 74.31572 47.68933 25.64710 11.21897 3.99027 

2y 90.20941 53.70243 23.56308 6.77430 1.26618 

3y 98.96450 56.78179 21.40343 4.11798 0.38920 

4y 103.73044 58.84490 20.92330 3.29027 0.20156 

5y 105.93154 60.10471 21.14829 3.11624 0.15548 

In the first place, we can check whether the FX op-

tion market is flat-smiled or not. The standard pro-

cedure would be to take the ATM strike, which hap-

pens to be that of the third FX option in the table 

above since ( ) 0j  and consequently 

0( ) ( )j iK i FX t , and to compute the ATM implied 

volatility by inversion of the lognormal option 

valuation formula. The same volatility is then util-

ized to price options with different strikes given by 

(11). The results, presented in Table 2, underline 

once again the fact that FX options exhibit a pro-

nounced volatility skew with ITM options being 

underestimated whereas OTM ones are being sys-

tematically overestimated. From there the need 

stems to go beyond the standard geometric 

BROWNian motion and to resort to an extension of 

the lognormal-type dynamics of the forward forex 

rate that is based on stochastic volatility. 

Table 2. FX call prices (in bp) computed with the 

ATM implied volatility 
Expiry FXopt 1 FXopt 2 FXopt 3 FXopt 4 FXopt 5 

1y
71.97134 46.15283 25.64710 11.96459 4.55733 

2y
88.39820 52.03995 23.56308 7.48320 1.54316 

3y
97.65900 55.09986 21.40343 4.78883 0.53401 

4y 102.85492 57.42792 20.92330 3.94375 0.31927 

5y 105.22879 58.83967 21.14829 3.80896 0.28176 

The calibration is performed on the FX call prices 
from Table 1, where the model prices are deter-
mined by (5). To obtain the best numerical estimate 
of both Fourier integrals, we employ the Gauss-
Laguerre Quadrature, which is a Gaussian Quadra-
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ture over the interval [0, )  with a weighting func-

tion ( ) xw x e  (see Abramowitz et al. (1972)). 

The model parameters to be calibrated are: (a) the 
parameters of the volatility process, initially set to 

0.01, 0.02 , 0.001 and 0( ) 0.01V t ;

(b) the FX volatility coefficients, initially set to 

[ ]fx

i i 1 exp( 0.05( 0.2))i , 1,...,5i ; (c) 

the correlation coefficients, set to 

14 34 0.2 . Aiming to reproduce FX option 

values for a wide range of strikes and expiries, we 
solve the calibration problem by simultaneously 
varying the model parameters (a), (b) and (c) until 
the sum of squared basis point differences between 
model and market prices has been minimized, 
which, for the sake of completeness, is reported here 
to have been achieved at 8.56059 bp. We use a fast 
unconstrained non-linear minimization algorithm, 
the Davidon-Fletcher-Powell (DFP) conjugate gra-
dient method as described in Press et al. (1996), to 

make the distance 
2
 between the model and mar-

ket matrices as small as possible:  
25

2 mod

, 1

!market el

ij ij ij

i j

FXopt FXopt Min    (12) 

The calibration has been carried out with identical 
constant weights , which essentially corresponds 

to an attempt to obtain the best global fit to the 
“complete” market information, as represented by 
our market prices matrix. The resulting optimal 
solution is shown in Table 3 below. 

Table 3. The best overall fit to the matrix of market 

call prices in Table 1 
Expiry FXopt 1 FXopt 2 FXopt 3 FXopt 4 FXopt 5 

1y
73.44406 47.58264 26.25862 11.46718 3.54044 

2y
89.40880 53.47140 24.14783 6.74194 0.80012 

3y
98.25958 56.37568 21.92059 3.97862 0.14489 

4y 103.30069 58.59928 21.35842 3.08668 0.05267 

5y 105.40284 59.02163 19.80163 2.06586 0.00988 

The stochastic volatility model brings about a sig-

nificant improvement over the deterministic volatil-

ity one in any case. Prices of mid-maturity FX calls 

(i.e., 3y and 4y) are reproduced with a very good 

precision. For very short- and long-maturity options 

(i.e., 5y), however, the goodness of fitting worsens 

suggesting that the assumption of a unique volatility 

process ( )V t  common to all forward forex rates 

might be too restrictive, especially when calibrating 

to a very wide range of maturities. 

In order to capture certain features of a given exotic 

instrument, one could alternatively try to achieve the 

best fit to only a specific portion of the matrix of 

market prices sacrificing the remaining part of it. 

The quality of the partial calibration will be gov-

erned by the, in this case, non-constant weights 

assigned to the elements of the 
2
 distance func-

tion. The choice of the weights will mostly depend 

on the particular pricing problem. 

Conclusions

We proposed an integrated Cross-Currency LIBOR 

Market Model under a uniform probability measure 

in a multifactoral environment. The chief purpose of 

our paper has been the development of a viable pric-

ing framework for exotic cross-currency interest rate 

instruments that is at the same time flexible enough 

to allow for the incorporation of as much available 

market information as possible. In terms of FX mar-

kets, on which the main focus of this work has been 

placed, fulfilling this purpose in a satisfying manner 

required the calibration to the whole range of FX 

options prices across all available maturities and 

strikes. This line of modelling has been reinforced 

by the significant volatility skew typically observed 

with FX options and the fact that it seems impossi-

ble for the most cross-currency derivatives to 

choose a particular strike, or a specific expiry of an 

FX option since they usually depend on a variety of 

strikes and maturities. The procedure eventually 

culminated in an extension of the lognormal-type 

dynamics of the forward forex rate beyond the geo-

metric BROWNian motion and the postulation of a 

stochastic volatility evolution in conformity with 

Heston (1993) based on a unique volatility, common 

to all forward FX rates, that follows a mean-

reverting square-root process. After determining an 

analytical expression for the conditional characteris-

tic function in a mildly approximate fashion for the 

sake of mathematical tractability, closed-form for-

mulas for FX option prices have been obtained and 

numerically estimated with the aid of the Gauss-

Laguerre Quadrature. The model prices computed in 

this manner served as the backbone of the ensuing 

calibration routine, by means of which we matched 

the model parameters so that the distance between 

the model and market prices matrices has been 

minimized. We have seen that introducing stochas-

tic volatility led to a substantial improvement over 

the deterministic model in any case, although the 

fitting quality slightly worsened for very short- and 

especially long-dated options as compared to mid-

maturity ones. This feature has been ascribed to the 

possibility of our unique volatility process common 

to all forward FX rates being too restrictive, espe-

cially when faced with a wide maturity spectrum to 
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calibrate to. More flexibility could be introduced by 

considering a different stochastic volatility process 

for the dynamics of each forward FX rate, however, 

inevitably making the calibration more cumbersome 

because of the additional volatility and correlation 

parameters and raising the potential problem of 

overfitting the model due to the increased number of 

parameters. Above all, the pricing of cross-currency 

exotic interest rate products would become a very 

difficult task since the drift functions within the 

dynamics of both the foreign LIBOR and the for-

ward forex rate would, aside from the unpleasant 

stochastic dependence on LIBOR rates, involve 

extra intra- and intercorrelated volatility processes. 

References 
1. Abramowitz, M. and I. A. Stegun (1972). Handbook of Mathematical Functions with Formulas, Graphs, and 

Mathematical Tables, Dover, New York, pp. 890 and 923. 

2. Andersen, L., and J. Andreasen (2000). “Volatility Skews and Extensions of the LIBOR Market Model”, Applied 

Mathematical Finance, 7, 1-32. 

3. Andersen, L., and J. Andreasen (2002). “Volatile Volatilities”, RISK December, 163-168. 

4. Andersen, L. and R. Brothertone-Ratcliffe (2005). “Extended LIBOR Market Models with Stochastic Volatility”, 

The Journal of Computational Finance, 9, 1. 

5. Bakshi, G., and D. Madan (2000). “Spanning and Derivative Security Valuation”, Journal of Financial Economics, 

55, 205-238. 

6. Benner, W., Zyapkov, L., and S. Jortzik (2007). “A Multifactoral Cross-Currency LIBOR Market Model”, SSRN 

working paper. 

7. Brigo, D., and F. Mercurio (2002). “Calibrating Libor,” RISK January, 117-121. 

8. Carr, P., and D. Madan (1999). “Option Valuation using the Fast Fourier Transform”, Journal of Computational 

Finance, 2, 61-73. 

9. Daniluk, A., and D. Gatarek (2005). “A fully lognormal LIBOR Market Model”, RISK September, 115-119. 

10. Heston, S. (1993). “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and 

Currency Options”, The Review of Financial Studies, 6, 2, 327-343. 

11. Gil-Pelaez, J. (1951). “Note on the Inversion Theorem”, Biometrika, 38, 3/4, 481-482. 

12. Glasserman, P., and N. Merener, 2003a, “Numerical Solution of Jump-Diffusion LIBOR Market Models”, Finance 

and Stochastics, 7, 1, 1-27. 

13. Glasserman, P. and S.G. Kou (2003b). “The Term Structure of Simple Forward Rates with Jump Risk”, Mathe-

matical Finance, 13, 3, 383-410. 

14. Joshi, M., and R. Rebonato (2003). “A Displaced-Diffusion Stochastic Volatility LIBOR Market Model: Motiva-

tion, Definition and Implementation”, Quantitative Finance, 3, 6, 458-469. 

15. Oksendal, B. (2000). Stochastic Differential Equations. An Introduction with Applications, Springer Verlag, Berlin 

Heidelberg New York. 

16. Piterbarg, V. (2003). “A Stochastic Volatility Forward LIBOR Model with a Term Structure of Volatility Smiles”, 

SSRN Working Paper. 

17. Piterbarg, V. (2005a). “Stochastic Volatility Model with Time-Dependent Skew”, Applied Mathematical Finance, 

12, 2, 147-185. 

18. Piterbarg, V. (2005b). “Time to Smile”, RISK May, 71-75. 

19. Piterbarg, V. (2006). “Smiling Hybrids”, RISK May, 66-71. 

20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and B.P. Flannery (1996). Numerical Recipes in C. The Art of 

Scientific Computing, Cambridge University Press, Cambridge, pp. 425-430. 

21. Rebonato, R. (2002). Modern Pricing of Interest Rate Derivatives. The LIBOR Market Model and Beyond, Prince-

ton University Press, New Jersey. 

22. Rubinstein, M. (1983). “Displaced Diffusion Option Pricing”, Journal of Finance, 38, 213-217. 

23. Schloegl, E. (2002). “A Multicurrency Extension of the Lognormal Interest Rate Market Models”, Finance and 

Stochastics, 6, 173-196. 

24. Schoenmakers, J., and B. Coffey, 2003, “Systematic Generation of Correlation Structures for the LIBOR Market 

Model”, International Journal of Theoretical and Applied Finance, 6, 4, 1-13. 

25. Scott, L. (1997). “Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: 

Application of Fourier Inversion Methods”, Mathematical Finance, 7, 413-426. 

Appendix A. FX option pricing formula 

Based on a derivation of the inversion theorem by Gil-Pelaez (1951), we determine the probability of finishing in-the-

money, where ln ( ) ( )i iFX t Y t  and ln( )K k , as follows: 

0
( ) ( ) cos( ) sin( ) ( ),i iuY

tWith u e dP Y uY i uY dP Y



Banks and Bank Systems, Volume 3, Issue 4, 2008

82

0 0

0

0 0

2 sin( ) cos( ) ( ) 2cos( ) sin( ) ( )
( ) ( )

cos( ) sin( ) ( ) sin( ) cos( ) ( )
( )

Re

( ) (1 1
P ( )

2 2

iuk i iuk i

t t

iuk i

t

iuk i iuk i

t t

i

i uk uY dP Y uk i uY dP Y
e u e u

iu iu

uk i uY dP Y i uk uY dP Y
e u

and
iu iu

e u e u
Y t k 0

0 0

) ( )1 1
Re

2

iuk i

te u
du du

iu iu

0

0

( )1 1
P ( ) 1 P ( ) Re

2

iuk i

t

i i

e u
Y t k Y t k du

iu
 (A12) 

The delta of the option is somewhat convoluted, though it can be determined by similar techniques. For any positive 

numbers  and , we have: 

0
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t

Y Y
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e dP Y du e dP Y du

iu u

Proceeding from this expression now, we obtain the step function by simply letting  tend to zero and  tend to in-

finity as shown in Gil-Pelaez (1951). Thereafter, we conveniently arrive at the wanted conditional expectation in the 

following manner: 
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essentially meaning that the delta of the option is defined by: 
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Thus, additionally observing that 
0 0

( ) ( )

0( ) | ( )ti i
P i i Y ti

t t ii E e FX tF , the option price is readily computed in 

terms of the conditional characteristic function like: 
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Appendix B. Solution of the ordinary differential equations 

Starting with the Riccati equation in (10): 
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 (B15) 

it has been led back to a second-order linear differential equation by substitution: 
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The solution ansatz is of an exponential type and is plugged into the ODE to be solved: 

0

2
( ) 2

1,2

4
0 ,

2

z t t b b ac
e z bz ac z

ultimately arriving at the following general solution along with the respective boundary condition: 
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However, we are not aimed at finding an explicit solution of the second-order linear differential equation. We do not 

need to compute A  and B  separately, which is by the way based on a single boundary condition impossible, the ratio 

/A B  would suffice since we actually seek to determine 0( )D t t . Having made this crucial observation, we obtain: 
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The second ODE: 
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is solved by direct integration: 
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In conclusion, we hold (B16) and (B18) to be the solutions of the ordinary differential equations in (10) being integral 

part of the characteristic function (9), whereby a , b , c  and _  are the substitutes defined previously by (B15) 

and (B17) respectively. 
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