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Abstract

This paper studies how to construct and compare various optimal portfolio frame-
works for investors in the context of the Vietnamese stock market. The aim of the 
study is to help investors to find solutions for constructing an optimal portfolio strat-
egy using modern investment frameworks in the Vietnamese stock market. The study 
contains a census of the top 43 companies listed on the Ho Chi Minh stock exchange 
(HOSE) over the ten-year period from July 2010 to January 2021. Optimal portfolios 
are constructed using Mean-Variance Framework, Mean-CVaR Framework under dif-
ferent copula simulations. Two-thirds of the data from 26/03/2014 to 27/1/2021 con-
sists of the data of Vietnamese stocks during the COVID-19 recession, which caused 
depression globally; however, the results obtained during this period still provide a 
consistent outcome with the results for other periods. Furthermore, by randomly at-
tempting different stocks in the research sample, the results also perform the same 
outcome as previous analyses. At about the same CvaR level of about 2.1%, for example, 
the Gaussian copula portfolio has daily Mean Return of 0.121%, the t copula portfo-
lio has 0.12% Mean Return, while Mean-CvaR with the Raw Return portfolio has a 
lower Return at 0.103%, and the last portfolio of Mean-Variance with Raw Return has 
0.102% Mean Return. Empirical results for all 10 portfolio levels showed that CVaR 
copula simulations significantly outperform the historical Mean-CVaR framework and 
Mean-Variance framework in the context of the Vietnamese stock exchange.
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INTRODUCTION

In the world, the stock exchange was formed a long time ago, has 
grown strongly and has become a significant part of the global finan-
cial market. The stock market plays a vital role in the growth of indus-
tries in many countries that eventually affects the economy to a great 
extent. Realizing the importance of the stock exchange to the economy, 
the stock exchange in Vietnam has been officially operated since 2000. 
After 20 years, it has taken certain steps, providing new investment 
opportunities for both corporations and investors, as well as develop-
ing the financial market. The stock market has not only been noticea-
ble but has become an integral part of socio-economic life; therefore, 
it has attracted many investors. Furthermore, the Vietnamese capital 
market is still primarily a stock market, with over 80% of capital flows 
being stocks. 

The main objective of this study is to construct optimal portfolios and 
strategies for investors in the Vietnamese market. After that, the re-
sults of the research were conducted and solutions were provided to 
investors for more effective investment strategies. By doing these, the 
research will tend to answer the following questions: What are the 
optimal portfolio construction and investment strategies for inves-
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tors? How to develop and analyze the context and condition for constructing optimal portfolios in the 
Vietnamese market? The applicability of the Mean-CVaR framework and other modern investment 
theories in portfolio management in the Vietnamese stock market was evaluated.

This study contributes to the portfolio management literature. It provides an overall picture of opti-
mal portfolio construction theories. In addition, it will lead several methods to obtain optimal portfo-
lios based on different criteria of investors on the Vietnamese stock exchange. This study also consoli-
dates the application of Mean-CVaR framework and Mean-Variance framework to the practical cases. 
Individual investors can be supported with more effective investment knowledge to limit risk and gain 
profits; at the same time, it is also beneficial for developing the Vietnamese stock market and improving 
the competitiveness of financial service providers in Vietnam.

1. LITERATURE REVIEW

1.1. Mean-conditional value-at-risk 

framework

The Markowitz Portfolio Framework (Markowitz, 
1952) is known as the Mean-Variance Framework 
and the basement of Modern Portfolio Theory. 
Harry Markowitz first published this framework as 
Portfolio Selection in the Journal of Finance in 1952. 
In 1959, he published a book with the same title for-
mally published his theory (Markowitz, 1959). The 
traditional investment methods mainly focus on 
predicting the trend of price movements of securi-
ties based on the use of basic and technical analy-
sis methods. Markowitz developed a method that 
focuses on building a portfolio of multiple assets 
based on a combination of risk and return. 

The Markowitz Portfolio Framework remained a 
cornerstone in the modern portfolio optimization 
theory by its initial mathematical application in 
constructing an optimal portfolio by quantitative 
methods. However, the variance in this framework 
is only efficient in measuring the symmetric risks 
of financial instruments. In fact, the distribution 
of many kinds of securities in the market is not 
symmetric, so that the variance factor is not ap-
propriately an adequate risk measurement factor 
for these kinds of financial assets. Value-at-Risk 
(VaR) measurement is one of the most popular 
risk measurement factors to estimate the down-
side risk of financial instruments, and this factor 
is widely used by financial institutions, banking, 
investors, and practitioners. However, many stud-
ies proved the non-efficiency of VaR in optimiz-
ing investment portfolio because of mathematical 
problems such as non-subadditivity or non- con-

vexity (Rockafellar et a., 2000; Artzner, 1999; 
Kolm et al., 2014). On the other hand, Conditional 
Value at risk has been recently submitted as an 
effective risk measurement factor to measure 
downside risks of the assets with asymmetric re-
turn distribution. The efficient application and the 
trustworthiness of CVaR outperform the VaR that 
can be easily seen by the replacement of risk meas-
urement of Basel III from VaR to CVaR. 

From the perspective of optimizing investment 
portfolio, Rockafellar et al. (2000) developed a 
framework of minimizing CVaR under the con-
dition of the given minimum portfolio expected 
return. In their research, the Mean-CVaR opti-
mization framework demonstrates that the con-
vex programming problem can be reduced by the 
framework and can be solved as a linear program-
ming problem. In other studies, this framework 
has been applied and developed in different con-
straints such as the work of Krokhmal et al. (2002), 
which examined this framework under multi-
ple constraints; the application of Mean-CVaR 
for portfolios of derivative assets (Alexander et 
al., 2006); optimizing the portfolio Mean-CVaR 
framework with copulas (Kakouris & Rustem, 
2013); the extended framework of Mean-CVaR 
with transaction costs factor (Chen et al., 2012). 

Compared to the traditional Mean-Variance 
framework, the Mean-CVaR framework has also 
theoretically and practically proven the best per-
formance among studies. In fact, one of the most 
obvious evidences that makes the Mean-Variance 
framework not appropriate in terms of measuring 
risks is the underestimation of this framework to 
downside risks. Actual return distributions of fi-
nancial instruments are non-normal or asymmet-
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ric with tails, skewness or kurtosis, and the Mean-
CVaR framework can solve these problems. Many 
studies have concluded that the Mean-CVaR 
framework has better performance in allocating 
financial assets in the portfolio than the Mean-
Variance framework (Topaloglou et al., 2002; 
Andersson et al., 2001). Chen et al. (2012) also stat-
ed that the adaption of linear optimization is more 
robust than the quadratic optimization of the tra-
ditional Markowitz Mean-Variance framework.

1.2. Empirical studies  

of the mean-CVaR framework 

Dao (2014) conducted one of the first studies to 
apply the Mean-CVaR framework to optimize a 
portfolio of options. The study examined the tar-
get population of derivative financial instruments 
with four correlated assets, two calls, and two puts. 
The results have shown that the optimization in 
the context of CVaR, the efficient frontier in this 
case, is the most convex and smooth. In contrast, 
the non-convexities were found in the context of 
using VaR and Standard Deviations as risk meas-
urements. Therefore, the Mean-Variance frame-
work was once again confirmed by empirical ap-
plication with different types of financial assets, 
especially in relation to options in this case.

Nguyen et al. (2018) conducted a study to give a 
precise answer of Does Mean-CVaR outperform 
Mean-Variance in both theoretical and practi-
cal perspectives. The study examined the per-
formance of these two frameworks for the whole 
stocks in the US market in almost a century, from 
1926 to 2006. The research analysis shows the 
better performance of the Mean-CVaR frame-
work compared to the Mean-Variance framework 
by the influence of different features of stock re-
turns such as means, volatilities, skewness, and 
kurtoses. Furthermore, by comparing these two 
frameworks under different market conditions, 
the Mean-CVaR framework also shown a positive 
effect in distress markets. However, the benefits of 
Mean-CVaR significantly decrease when the study 
considers some practical factors such as transac-
tion costs. 

Iyengar et al. (2009) provided a fast gradient de-
scent method for Mean-CVaR optimization. The 
research financial instrument universe consists 

of treasury bonds with a maturity of 2, 5, 10, and 
30 years. The results of this research once again 
proved the efficiency of the Mean-CVaR frame-
work in the empirical context and provided an 
alternative algorithm to the linear programming 
approach to solve this framework with a larger 
target population. This study is also an evidence 
of appropriately applying the Mean-CVaR optimi-
zation in a specific financial asset, which is a treas-
ury bond.

Hafsa (2015) examined the application of the 
Mean-CVaR framework on the French market. 
The study investigated the target population of 
daily data of 20 stocks of the SBF 250 index listed 
companies from 2005 to the end of the year 2009. 
The results of this study have shown a positive im-
pact of the Mean-CVaR framework in terms of 
the relationship between mean returns and the 
return-to-CVaR ratio. The empirical examination 
of the study also showed the significant impact of 
this framework to the financial crisis on the cap-
ital market. In addition, the performance of the 
Mean-CVaR framework in this specific market is 
also affected by the non-normality of financial as-
sets such as the skewness and the kurtosis of these 
assets.

In contrast with previous studies supporting the 
Mean-CVaR approach, Lim et al. (2009) conduct-
ed a research to show the fragility of CVaR as a 
risk measurement factor in portfolio optimization. 
The sample data of this research are five stocks that 
have multivariate return distribution from August 
3, 1984 to June 1, 2009. Due to the estimation er-
rors of CVaR and the mean, the study showed 
that the portfolio optimization framework such 
as Mean-CVaR or global CVaR is unreliable in 
some specific contexts. This problem occurs when 
the tail of return distribution is getting heavier. 
However, the sample universe of this research is 
quite small, with only five stocks; therefore, the 
conclusion of this research needs to be examined 
by further empirical studies to prove the research 
statements. 

Hu (2012) empirically compared three approach-
es to portfolio selection such as Mean-Variance, 
Minimum Covariance Determinant Robust 
Mean-Variance, and Mean-CVaR framework. The 
research target population consists of ten stocks 
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listed in the Shanghai Securities Composite Index 
50 according to the composite score. The results 
of the study have shown that the CVaR approach 
has better practicability than the remaining two 
frameworks due to the wide selection of finan-
cial assets with different return distributions. 
Furthermore, the Mean-CVaR framework has al-
so shown a more comparative result in terms of 
optimizing portfolio under global minimum risk 
portfolio and tangency portfolio conditions. 

Zhang (2016) conducted the first research about 
optimization with the Mean-CVaR framework 
for multiple portfolios instead of a single portfo-
lio. The numerical results of the study have shown 
that the performance of Mean-CVaR to multiple 
portfolios is relatively better than the individual 
portfolio in terms of improvement rate from inde-
pendent optimization. Additionally, the research 
has also shown that the Mean-CVaR framework 
supports the multi portfolios to reduce the market 
impact cost than the independent decision. The 
contribution of this research is significantly im-
portant, since it has extended the application and 
the development of the Mean-CVaR framework.

Isaksson (2016) examined the robust portfolio op-
timization with Expected shortfall (CVaR) with 
the worst cases and ellipsoidal uncertainty sets 
of data. The results exposed a clear advantage of 
Mean-Expected Shortfall framework asymmetric 
log-return distribution over the Mean-Variance 
optimization. However, the study also indicated 
that the Expected Shortfall approach has a prob-
lem of statistical uncertainty when processing the 
log data instead of the numerical format of data. 

He et al. (2007) progressed a research about meas-
uring the coupled risks like market and credit 
risks by CVaR model integrated with copulas. The 
numerical analysis took 13 listed stocks in the 
Chinese security market to be the target sample 
for research. It was indicated that the copula-based 
CVaR model can measure exactly the coupled risk 
in this financial market and can calculate the pre-
cise results of total risks of companies with bad 
credit risks. Therefore, with a complementary fac-
tor such as copulas simulation to the CVaR frame-
work, investors can effectively prevent total risks 
of the financial stocks on the market and take wis-
er actions. 

Kakouris et al. (2013) published an article about ro-
bust portfolio optimization with copulas to compare 
the efficiency of the Worst-case CVaR framework 
with CVaR Gaussian copula simulation and Worst-
case Markowitz framework. The research took an 
analysis with seven indices: Nikkei225, FTSE100, 
Nasdaq, DAX30, Sensex, Bovespa, and Gold index, 
respectively, in Japan, UK, USA, Germany, India 
and Brazil from 1998 to 2011. This research sample 
not only consists of stocks and indices, but also has 
one commodity index. The results showed that their 
worst case CVaR framework with copulas had better 
performance than using Gaussian copula CVaR or 
worst-case Markowitz only. 

Trabelsi et al. (2019) conducted a research using cop-
ula approach of generalized Pareto distribution to 
utilize the market-risk optimization with the CVaR 
measure among the developed and emerging mar-
kets. The research sample consists of the G7, BRICS, 
and 14 popular emerging stock-market returns from 
1997 to 2008. The results showed that the portfolios 
in the CVaR efficient frontier of simulating returns 
with copulas outperform both the risks and returns 
of domestic portfolios like US stocks. Furthermore, 
the copula simulation gives more proper results than 
historical simulation. In addition, applying copu-
la simulation for stocks in the global level portfolio 
showed nearly similar returns between Gaussian 
copula-based portfolios and t copula-based portfo-
lios. However, this application only tested the results 
for international portfolio diversification but not in a 
specific market; so, it is necessary to conduct another 
research to assess and consolidate the application of 
copula simulation to a specific market.

In the context of Vietnam’s stock market, Nguyen et 
al. (2019) proposed an empirical research on meas-
uring stock price volatility of VN-index by apply-
ing symmetric models (GARCH, GARCH-M) and 
asymmetric models (EGARCH, TGARCH). Time 
series data of the study is the daily price of this in-
dex from March 1, 2001 to March 1, 2019. The re-
sults showed that the asymmetric volatility increases 
market risk, which makes the stocks become more 
attractive and affects the future movement of these 
stocks.

Nguyen et al. (2020) applied a linear shrinkage model 
to optimize the portfolio selection. The study took 
a research sample of listed companies on the Ho 
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Chi Minh stock exchange without the IPO com-
panies, and the research period was 468 weeks, 
from January 2011 to December 2019. The results 
proposed that the shrinkage framework rendered 
portfolios with higher returns and lower level of 
risk compared to the traditional sample covari-
ance matrix. In addition, the low portfolio turno-
ver in this model can be an advantage in reducing 
the liquidity risk.

The main purpose of this research is to construct 
the optimal portfolios for investors in the context 
of the Vietnamese market by applying the research 
methods that will be presented in the next session. 
Despite proposing a variety of studies on this topic, 
some particular gaps need to be filled, especially in 
the empirical case of the Vietnamese market; oth-
er research used different types of models to opti-
mize portfolios in the context of Vietnam, such as 
the work of Nguyen et al. (2019) and Nguyen et al. 
(2020), but this is one of the first studies to apply 
CVaR frameworks and copulas simulation in this 
particular market, which contributes to the nov-
elty of this paper. By applying various mathemat-
ical and financial models such as the Markowitz 
Mean-Variance model, Mean-CVaR framework, 
and copulas simulation, this study aims to obtain 
optimal portfolios and forecast the risks of these 
portfolios based on the CVaR. The hypothesis 
of this paper is that Mean-CVaR portfolios with 
copula simulations outperform traditional Mean-
Variance portfolios and Mean-CvaR portfolios 
without simulation.

2. METHODOLOGY

This study applies the descriptive research method 
to construct optimal portfolios and strategies for 
investors in the context of the Vietnamese mar-
ket. By applying mathematical and financial mod-
els such as the Markowitz Mean-Variance model, 
Mean-CVaR framework, and copulas simulation, 
the study will proceed to find out optimal portfo-
lios for individual investors and forecast the risks 
of these portfolios based on the Variance, CVaR 
calculation. 

The study includes the top 43 companies listed on 
the Ho Chi Minh Stock Exchange (HOSE). The 
research period is ten years from July 2010 to 

January 2021. The data is collected, presented and 
processed by the data analytical tool Solver, and 
Matlab R2020b to calculate the required factors in 
the model, as well as the matrices between related 
factors, simulations, and frameworks needed for 
the empirical analysis. 

2.1. Theoretical framework 

assumptions

At the given time horizon t > 0, the study assumes 
that: The price of stocks in the portfolio is ;tS N∈  
The initial price of stocks in the portfolio is 0;S  

1 2, , , nx x x  are the weight of stocks in the port-
folio; 1 2, , , nr r r  are the return of stocks in the 
portfolio, with ( )0 0/ ;i tr S S S= −  ( )pE R  (ex-
pected return of the portfolio), 

2

pσ  (variance), pσ  
(standard deviation), and CVaR (conditional value 
at risk) are the factors to derive an optimal portfo-
lio. There is no transaction costs and taxes in the 
theoretical frameworks, and the optimal value of 
the portfolio is determined by Mean-CVaR frame-
work and Mean-Variance framework.

The variance of the portfolio (Variance-Covariance 
Matrix) is proposed as follows:

( )

1

11 1

22

1 2

1

, , , .

n

p n

n nn

n

x
Cov Cov

x
x x x

Cov Cov
x

σ

 
  
  =      

 


   




 (1)

Standard deviation of a portfolio is the square root 
of variance of the portfolio.

The linear correlation matrix is the matrix of 
paired stocks of the correlations and is defined as 
follows:

11 1

1

.

n

p

n nn

R

ϑ ϑ
ρ

ϑ ϑ

 
 = =  
 
 


  


 (2)

2.2. Gaussian copula and t copula 

approach

The Gaussian copula and t copula are two copulas 
in the Elliptical copula family, and these two cop-
ulas are used in this study to simulate the return of 
stocks before putting into the Mean-CVaR frame-
work to find the optimal portfolios.
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2.2.1. Gaussian copula

Gaussian copula is the copula of the multivari-
ate normal distribution, and it can be obtained as 
follows:

( )
( ) ( )( )

1

1 1

1

, , ;

, , ; ,

n

k

n

C u u R

u u Rφ φ φ− −

=

=




 (3)

where 
kφ  is the standard multivariate normal dis-

tribution; 
1φ −
 is the inverse of the standard uni-

variate normal distribution function ;ϕ  and R  is 
the linear correlation matrix.

The density of the Gaussian copula is:

( )

( )
1

1

1

2

, , ;

1 1
exp 1 ,

2

n

T

C u u R

R

R

ω ω−

=

 = − − 
 



 (4)

with ( ) ( )( )1 1

1 , , ;
T

nu u Rω φ φ− −=   is the linear 
correlation matrix.

2.2.2. t Copula

t copula is the Gaussian copula with cumulative 
distribution functions (CDF), and it employs the 
multivariate Student’s t distribution, allowing fat-
ter tails. The formula is defined as follows:

( )
( ) ( )( )1 1

1

; ;

; , , ; ; , .

n

n n

C u R v

u v u v R v

ψ

ψ ψ ψ− −

=

= 
 (5)

where nψ  is the CDF of an n-variate Student’s t dis-
tribution with R correlation; v is the degree of free-
dom parameters, and 

12;v ψ −>  is the inverse of 
the CDF for univariate Student’s t distribution with 
mean zero and dispersion parameter equals to 1.

The density of t copula is:

1 It is a confidence level, in this case the confidence level of a portfolio that it will not exceed the expected loss usually takes values at 95% or 99%.

where
 ( ) ( ) ( )1 1

1; , , ; ; .
T

nu v u vω ψ ψ− − = Γ   is 
the gamma function.

2.3. Mean-CVaR optimal portfolio 

framework

This study follows the framework of Rockafellar 
and Uryasev (2000, 2002), and Krokhmal et al. 
(2002) to minimize the CVaR of a portfolio under 
the given expected return.

According to Rockafellar and Uryasev (2000), 

( );f x y  is the loss associated with the decision 
vector x  (to be chosen from a certain subset 

nX R∈ ), and the random vector y  (from 
mR ).

Denote that Vector x is a portfolio in X available 
portfolios, and Vector y is the uncertainties that 
can affect the loss (e.g.: the market parameters,…). 
With each x, the loss ( );f x y  is a random varia-
ble with a distribution in R, including by that of y. 
The underlying probability distribution of y from 

mR  is denoted by ( ) ,p y  and have a density. 

The probability that ( );f x y  does not exceed the 
threshold α  is:

( ) ( ) ( )
( ),

, . .
f x y

x p y d y
α

ψ α
≤

= ∫  (7)

( ),xψ α  is the cumulative distribution function 
for the loss associated with .x  It is assumed that 
there is no jump, and ( ),xψ α  is everywhere con-
tinuous with respect to .α  The formula for Value 
at Risk ( )βα  is as follows:

( ) ( ){ }min : , .x R xβα α ψ α β= ∈ ≥  (8)

The approach to CVaR at a confidence level β 1 
can be obtained through the VaR ( ) :βα
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where βα  is the corresponding Value-at-Risk of 
the CVaR; β  is the level of confidence of CVaR; 

( )1 2, , , nx x x x ′=   is the weight of n assets in the 
portfolio; ( )1 2, , , nr r r r ′=   is the return of n as-
sets in the portfolio; ( )p r  is the probability den-
sity function of the above return variables; [ ]t +

 is 
the function that takes value t  when 0,t ≥  other-
wise [ ] [ ]max ;0 .t t

+ =

Therefore, minimizing CVaR with respect to x  is 
equivalent to minimizing the ( ),F xβ βα  with re-
spect to ( ),x βα  and minimizing ( )xβφ  which is 
equal to ( ), :F xβ β βα α−

( ) ( )

( )
( )

,

min

min , ,

x X

x X R

CV R x x

F x
β

β β

β βα

α φ

α
∈

∈ ⋅

= =

=
 (10)

where X  is the set of possible choices for .x

The framework is presented as follows:

( )min xβφ  (11)

with:

*,rpE r≥  

*r  is the given Expected Return:

1

1,
n

i

i

x
=

=∑
0.ix ≥  

By proposing the theoretical frameworks, the 
study provides a clear methodology for how the 
research will be conducted, and the empirical 
analysis of the study will be applied to these theo-
retical frameworks.

Table 1. Mean returns and 95% CVaR of 10 portfolios in each case

Portfolio 
number

Mean-CVaR under Gaussian 
copula simulation

Mean-CVaR under t 

copula simulation
Mean-CVaR  

with raw return
Mean-variance  
with raw return

Mean return 95% CVaR
Mean 

return 95% CVaR
Mean 

return 95% CVaR
Mean 

return 95% CVaR

1 0.052% 1.447% 0.036% 1.602% 0.036% 1.489% 0.034% 1.519%

2 0.069% 1.485% 0.057% 1.641% 0.053% 1.533% 0.051% 1.565%

3 0.087% 1.577% 0.078% 1.749% 0.069% 1.659% 0.068% 1.690%

4 0.104% 1.755% 0.099% 1.939% 0.086% 1.873% 0.085% 1.895%

5 0.121% 2.100% 0.120% 2.198% 0.103% 2.148% 0.102% 2.160%

6 0.139% 2.641% 0.140% 2.559% 0.119% 2.464% 0.119% 2.472%

7 0.156% 3.355% 0.161% 2.995% 0.136% 2.835% 0.135% 2.836%

8 0.173% 4.546% 0.182% 3.570% 0.153% 3.427% 0.152% 3.445%

9 0.190% 6.718% 0.203% 4.560% 0.169% 5.425% 0.169% 5.396%

10 0.208% 9.477% 0.224% 6.562% 0.186% 9.389% 0.186% 9.389%

Figure 1. Mean-CVaR efficient frontiers with the 95% CVaR
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3. EMPIRICAL RESULTS  

AND DISCUSSION

3.1. Portfolio optimization with 95% 

of conditional value at risk

With the data input of full 43 stocks, the study es-
timates a 95% CVaR of ten different portfolios in 
each case based on the given return of each port-
folio and the constraints given above.

Figure 1 presents the results given in Table 1 to 
plot the 95% efficient frontiers of four cases. It 
can be observed that the frontiers of CVaR opti-
mization with simulations give better results than 
the frontiers optimized with the raw data input. 
Furthermore, most of the portfolios optimized 

with t copula simulation show the best results with 
higher mean returns with the same 95% CVaR as 
other portfolios in other cases. However, in the 
beginning of the frontiers, the portfolios in the 
Gaussian copula simulation frontier have better 
results than other portfolios with higher returns 
and low 95% CVaR level. Another worth noting 
point is that the frontier of CVaR optimization 
with raw return is always higher than the frontier 
of Mean-Variance optimization. The overall trend 
of these results is that CVaR frontiers are better 
than the Mean-Variance frontier; the portfolios 
optimized with the Mean-CVaR framework and 
simulated with copulas are more superior than the 
those optimized with raw return.

To make the results more reliable, the study ap-
plies similar frameworks on two-thirds of the da-

Table 2. Mean returns and 95% CVaR of 10 portfolios in each case (6.5-year duration)

Portfolio 
number

Mean-CVaR under Gaussian 
copula simulation

Mean-CVaR under t 

copula simulation
Mean- CVaR  

with raw return
Mean-variance  
with raw return

Mean return 95% CVaR
Mean 

return 95% CVaR
Mean 

return 95% CVaR
Mean 

return 95% CVaR

1 0.052% 1.218% 0.042% 1.226% 0.047% 1.222% 0.039% 1.283%

2 0.074% 1.240% 0.082% 1.306% 0.066% 1.271% 0.059% 1.287%

3 0.097% 1.308% 0.122% 1.480% 0.085% 1.399% 0.079% 1.395%

4 0.119% 1.435% 0.162% 1.723% 0.104% 1.601% 0.099% 1.599%

5 0.141% 1.612% 0.202% 2.037% 0.124% 1.866% 0.119% 1.872%

6 0.164% 1.867% 0.241% 2.434% 0.143% 2.181% 0.139% 2.184%

7 0.186% 2.260% 0.281% 2.963% 0.162% 2.559% 0.159% 2.574%

8 0.209% 2.776% 0.321% 3.690% 0.181% 3.021% 0.179% 3.043%

9 0.231% 3.654% 0.361% 4.693% 0.200% 3.676% 0.200% 3.713%

10 0.253% 6.308% 0.401% 6.283% 0.220% 5.842% 0.220% 5.842%

Figure 2. Mean-CVaR efficient frontiers with 95% CVaR (6.5-year duration)
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ta (which is about 6.5 years) and on 23 random 
stocks in 43 stocks to test the reliability of the re-
search results.

Table 2 and Figure 2 show the results of applying 
simulations, Mean-CVaR framework, and Mean-
Variance framework on two-thirds of the data 
from 26/03/2014 to 27/1/2021.

In the shorter period, the results are similar to 
the above results of the research that the high-
est efficient frontier is t copula CVaR, followed 
by Gaussian copula CVaR frontier, CVaR fron-
tier with raw return and Mean-Variance frontier. 
CVaR portfolios simulated with t copula and 
CVaR portfolios simulated with Gaussian copu-
la still outperformed the portfolios optimized by 
historical raw return CVaR framework or Mean-

Variance framework. For investors with low-risk 
preference, the Gaussian copula CVaR portfoli-
os are the best choices with higher returns than 
portfolios in other models and the low CVaR 
level. Likewise, the above results, the frontier 
of CVaR optimization with raw return is al-
ways higher than the frontier of Mean-Variance 
optimization.

Additionally, Table 3 and Figure 3 are the results 
of the optimizational models of 23 random stocks 
selected from the research sample of 43 stocks.

Similarly to the two previous results above, the 
efficient frontier of t copula CVaR still has the 
best overall results compared to other fron-
tiers. Also, in this example, the frontier trends 
exactly match the tendencies of frontiers in the 

Table 3. Mean returns and 95% CVaR of 10 portfolios in each case (23 random stocks)

Portfolio 
number

Mean-CVaR under Gaussian 
copula simulation

Mean-CVaR under t 

copula simulation
Mean- CVaR  

with raw return
Mean-variance  
with raw return

Mean return 95% CVaR
Mean 

return 95% CVaR
Mean 

return 95% CVaR
Mean 

return 95% CVaR

1 0.038% 1.916% 0.032% 1.830% 0.040% 1.800% 0.038% 1.849%

2 0.058% 1.947% 0.058% 1.896% 0.052% 1.839% 0.051% 1.869%

3 0.079% 2.037% 0.085% 2.079% 0.065% 1.945% 0.064% 1.973%

4 0.099% 2.183% 0.112% 2.343% 0.078% 2.103% 0.077% 2.138%

5 0.120% 2.375% 0.139% 2.661% 0.091% 2.313% 0.090% 2.339%

6 0.140% 2.627% 0.166% 3.048% 0.104% 2.560% 0.103% 2.584%

7 0.160% 2.974% 0.192% 3.498% 0.116% 2.853% 0.116% 2.891%

8 0.181% 3.410% 0.219% 4.108% 0.129% 3.209% 0.129% 3.236%

9 0.201% 3.926% 0.246% 5.239% 0.142% 3.692% 0.142% 3.723%

10 0.221% 6.824% 0.273% 6.923% 0.155% 6.556% 0.155% 6.556%

Figure 3. Mean-CVaR efficient frontiers with 95% CVaR (23 random stocks)
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two above figures. The Gaussian copula CVaR 
simulation frontier is higher than the t copula 
CVaR frontier in the beginning, then this fron-
tier traces below the t copula CVaR curve. The 
results from t-copula simulation and Gaussian 
copula simulation with CVaR still surpass the 
results from historical CVaR optimization and 
Mean-Variance optimization. The historical 
raw return CVaR frontier is again always higher 
than the Mean-Variance efficient frontier.

3.2. Portfolio optimization with 99% 

of conditional value at risk

In the case of 99% CVaR with the data input 
of full 43 stocks, the graph undergoes a simi-

lar tendency with the graph of 95% CVaR. The 
Gaussian copula shows the best results of port-
folios with the low level of risk and with high-
est returns compared to other models. However, 
in this case, the t copula CVaR frontier per-
forms more efficient results of portfolios with 
the highest returns, but the CVaR level of these 
portfolios is undermost compared to the re-
maining portfolios. A portfolio with the super-
lative return in t copula frontier holds the risk 
level equal to half of other portfolios’ risk. In ad-
dition, the historical raw return CVaR frontier 
is also higher than the Mean-Variance frontier.

With the data input of the period of 6.5 years, the 
results showed the same trend as the other cases. 

Table 4. Mean returns and 99% CVaR of 10 portfolios in each case

Portfolio 
number

Mean-CVaR under 

Gaussian copula 
simulation

Mean-CVaR under t 

copula simulation
Mean- CVaR  

with raw return
Mean-variance  
with raw return

Mean 

return 99% CVaR
Mean 

return 99% CVaR
Mean 

return 99% CVaR
Mean 

return 99% CVaR

1 0.046% 1.819% 0.037% 2.088% 0.033% 1.904% 0.034% 2.046%

2 0.064% 1.844% 0.058% 2.141% 0.050% 1.978% 0.051% 2.155%

3 0.082% 1.952% 0.079% 2.305% 0.067% 2.170% 0.068% 2.382%

4 0.100% 2.155% 0.099% 2.584% 0.084% 2.483% 0.085% 2.688%

5 0.118% 2.570% 0.120% 2.958% 0.101% 2.866% 0.102% 3.043%

6 0.136% 3.247% 0.141% 3.432% 0.118% 3.332% 0.119% 3.490%

7 0.154% 4.199% 0.162% 3.984% 0.135% 3.881% 0.135% 4.008%

8 0.172% 5.899% 0.182% 4.680% 0.152% 4.624% 0.152% 4.716%

9 0.190% 8.773% 0.203% 5.634% 0.169% 6.853% 0.169% 7.014%

10 0.208% 12.311% 0.224% 7.327% 0.186% 12.338% 0.186% 12.338%

Figure 4. Mean-CVaR efficient frontiers with the 99% CVaR
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Table 5. Mean returns and 99% CVaR of 10 portfolios in each case (6.5-year duration)

Portfolio 
number

Mean-CVaR under Gaussian 
copula simulation

Mean-CVaR under t 

copula simulation
Mean- CVaR  

with raw return
Mean-variance  
with raw return

Mean return 99% CVaR
Mean 

return 99% CVaR
Mean 

return 99% CVaR
Mean 

return 99% CVaR

1 0.056% 1.496% 0.028% 1.504% 0.048% 1.454% 0.039% 1.677%

2 0.078% 1.518% 0.069% 1.570% 0.067% 1.532% 0.059% 1.723%

3 0.100% 1.629% 0.111% 1.735% 0.086% 1.703% 0.079% 1.867%

4 0.122% 1.831% 0.152% 2.058% 0.105% 1.934% 0.099% 2.062%

5 0.144% 2.118% 0.193% 2.508% 0.124% 2.236% 0.119% 2.371%

6 0.166% 2.493% 0.235% 3.062% 0.143% 2.645% 0.139% 2.784%

7 0.188% 2.922% 0.276% 3.720% 0.162% 3.146% 0.159% 3.300%

8 0.209% 3.487% 0.318% 4.495% 0.181% 3.694% 0.179% 3.970%

9 0.231% 4.543% 0.359% 5.509% 0.200% 4.506% 0.200% 4.621%

10 0.253% 6.985% 0.401% 6.980% 0.220% 6.451% 0.220% 6.451%

Figure 5. Mean-CVaR efficient frontiers with 99% CVaR (6.5-year duration)

Table 6. Mean returns and 99% CVaR of 10 portfolios in each case (23 random stocks)

Portfolio 
number

Mean-CVaR under Gaussian 
copula simulation

Mean-CVaR under t 

copula simulation
Mean- CVaR  

with raw return
Mean-variance  
with raw return

Mean return 99% CVaR
Mean 

return 99% CVaR
Mean 

return 99% CVaR
Mean 

return 99% CVaR

1 0.034% 2.453% 0.036% 2.468% 0.038% 2.396% 0.038% 2.568%

2 0.055% 2.489% 0.063% 2.546% 0.051% 2.475% 0.051% 2.621%

3 0.075% 2.573% 0.089% 2.775% 0.064% 2.607% 0.064% 2.743%

4 0.096% 2.729% 0.115% 3.101% 0.077% 2.822% 0.077% 2.939%

5 0.117% 2.970% 0.141% 3.555% 0.090% 3.079% 0.090% 3.197%

6 0.138% 3.321% 0.168% 4.096% 0.103% 3.428% 0.103% 3.522%

7 0.159% 3.819% 0.194% 4.830% 0.116% 3.815% 0.116% 3.947%

8 0.180% 4.437% 0.220% 5.757% 0.129% 4.315% 0.129% 4.416%

9 0.201% 5.141% 0.246% 6.936% 0.142% 4.882% 0.142% 4.989%

10 0.221% 7.802% 0.273% 8.819% 0.155% 7.064% 0.155% 7.064%

The results of the optimizational models of 23 ran-
dom stocks selected from the research sample of 
43 stocks with 99% CVaR perform the same out-
come as the previous analyses. However, in this 
case, with the CVaR level lower than 0.45%, the 

Gaussian copula CVaR frontier is higher than the 
frontier of t copula CVaR simulation. After the 
risk level of 0.45% CVaR, the t copula CVaR sim-
ulation frontier has better performance than the 
other three frontiers.
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CONCLUSION

This study has constructed and analyzed optimal portfolios for investors in the Vietnamese market. To 
find an optimal portfolio, four frameworks were used such as the Mean-CVaR approach and simulated 
with t copula and Gaussian copula, as well as the traditional Mean-Variance framework. Empirical re-
sults show that in the context of the Vietnamese stock exchange, the Mean-CVaR framework generally 
scores better than the Mean-Variance framework. Furthermore, the frontiers of portfolios simulated 
with copulas have superior results than the frontiers of historical raw return CVaR portfolios and Mean-
Variance portfolios in both cases of 95% CVaR and 99% CVaR. In addition, it can be observed that if the 
risk aversion of investors is low, the Gaussian copula CVaR simulation exposes better results compared 
to other cases. Overall, however, portfolios simulated using the t copula CVaR framework have the su-
perlative results across the four models in terms of both return and risk. 

In practice, the results of this study can help individual investors with better investment knowledge to 
limit risk and gain profit throughout this research. The study can also be a worthy recommendation for 
investors to make reasonable investment decisions, avoiding choosing stocks with high volatility or low 
returns that adversely affect their portfolios.

From an academic point of view, this paper also proved the consistent outcome of the new approach 
with copula simulation of Mean-CVaR framework on the particular data of the Vietnamese stock ex-
change, not only in different time frames, but also with disparate data inputs. This paper confirms the 
hypothesis that the CVaR portfolio optimization framework simulated with copulas performs better 
than the historical raw return CVaR framework and Mean-Variance framework in terms of empirical 
results in the context of the Vietnamese stock market.
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