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Abstract

The attempt to predict stock price movements has occupied investors ever since. 
Reliable forecasts are a basis for investment management, and improved forecasting re-
sults lead to enhanced portfolio performance and sound risk management. While fore-
casting using the Wiener process has received great attention in the literature, spectral 
time series analysis has been disregarded in this respect. The paper’s main objective 
is to evaluate whether spectral time series analysis can produce reliable forecasts of 
the Aurubis stock price. Aurubis poses a suitable candidate for an investor’s portfo-
lio due to its sound economic and financial situation and the steady dividend policy. 
Additionally, reliable management contributes to making Aurubis an investment op-
portunity. To judge if the achieved forecast results can be considered satisfactory, they 
are compared against the simulation results of a Wiener process. After de-trending the 
time series using an Augmented Dickey-Fuller test, the residuals were compartmental-
ized into sine and cosine functions. The frequencies, amplitude, and phase were ob-
tained using the Fast Fourier transform. The mean absolute percentage error measured 
the accuracy of the stock price prediction, and the results showed that the spectral 
analysis was able to deliver superior results when comparing the simulation using a 
Wiener process. Hence, spectral time series can enhance stock price forecasts and con-
sequently improve risk management. 
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INTRODUCTION

Stock return forecasting has been a widely discussed task among tech-
nical analysts (Shalini et al., 2019; Picasso et al., 2019; Reschenhofer 
et al., 2019) and investors making discussions based on fundamental 
analysis principles (Xidonas et al., 2009). Some authors suggest com-
bining these two approaches to get an optimal output of a selected 
portfolio (Fernandez et al., 2019; Hasuike & Mehlawat, 2018; Meng & 
Chen, 2018; Eiamkanitchat et al., 2016). Forecasting of a stock price 
should be based on appropriate methods, which, as a result, can con-
tribute to a higher return of portfolio (Yu, 2011; Östermark, 1991). 
Various methods and approaches exist for picking the stocks, creating 
the portfolio, and forecasting future returns. The authors previous-
ly discussed the economic value added as a possible stock selection 
method (Maitah et al., 2015). In this paper, the Wiener process and 
the spectral time series analysis as methods for deriving stock price 
forecasts are employed using the stock price data from the Aurubis 
stock price. Consequently, it is determined which method produced 
more reliable forecasts. 

The Black-Scholes model assumes that the underlying follows a 
Geometric Brownian motion and has received great attention regard-
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ing the simulation of stock returns after its introduction in the 1970s by Myron Scholes, Fischer Black, 
and Robert Merton. It became popular among traders internationally, making it one of the most used 
models to simulate the return on assets to financial price options (Hull, 2009). 

Despite the popularity of the model, the assumption that the stock price follows a GBM is not supported 
by empirical studies. The Black-Scholes model assumes a smooth movement of asset prices (no jumps), 
and it would describe stock behavior perfectly in the case of an ideal situation without the information 
of the outside world. In reality, markets tend to jump based on good and/or bad news entering the mar-
ket regarding the entire economy or an individual company. Further, the Black-Scholes model assumes 
a normal distribution of returns. Empirical studies have shown that the return distribution of asset 
returns is skewed to the left while having a higher peak and heavier tails (leptokurtic feature) than as-
sumed by the normal distribution of the Black-Scholes model (Yi, 2010).

In order to produce better forecasting results, spectral time series analysis poses a viable alternative. 
Spectral time series analysis has been used in literature to analyze derivatives and the behavior of time 
series (Oest, 2002). It has also been used to forecast the growth rate and returns (Keim et al., 2006) and 
examine asset volatility and stock return series (Tsay, 2005). It was applied within various areas, in-
cluding business, science, finance, communication, and entertainment. Spectral time series has proven 
to be a resilient tool for various types of analyses, as shown by Fumi et al. (2013), Hassani (2007), and 
Marques et al. (2006), among others.

1. LITERATURE REVIEW

While the Wiener process is widely discussed in 
the literature on stock price forecasting (Abidin & 
Jaffar, 2017; Azizah et al., 2018; Reddy & Clinton, 
2016), spectral time series analysis has not re-
ceived great attention regarding forecasting stock 
price returns. Various studies have been conduct-
ed, which demonstrated the importance of spec-
tral time series analysis and that it can deliver su-
perior results, including those of Fumi et al. (2013) 
and Hassani (2007). Even though the studies have 
demonstrated the superiority of spectral time 
series over other forecasting methods, the stud-
ies have not been used to forecast the stock price. 
Forecasting stock price returns can be considered 
important since it helps investors develop an ef-
fective market trading strategy. Further, they can 
anticipate investment losses and provide optimal 
benefits for investors (Azizah et al., 2020). 

Spectral time series describes given phenom-
ena in time and in many cases and “may take a 
chaotic process” (Grzesica & Wiecek, 2016, p. 
254). Financial time series analyses had attract-
ed substantial attention when the Nobel Prize 
was awarded to Engle and Granger (Tsay, 2005). 
Moreover, spectral time series analysis is used for 
the assessment of derivatives, for the investigation 

of the stochastic behavior of time series, and for 
the optimization of portfolios. It is also utilized 
to determine the correlation between different 
products and the prognoses of crises (Oest, 2002). 
Risk and return can be considered the two most 
important asset price characteristics from a stake-
holder’s perspective. Since analysts and investors 
are interested in future growth rates regarding 
the returns, spectral time series analysis poses a 
suitable tool for this type of analysis (Keim et al., 
2006). Jenkins and Priestley (1957) pointed to the 
problem that “the raw data consist of time-series 
which may be essentially discrete in time”. Due 
to this fact, a time series can be presented in the 
form of a trace. According to Grzesica and Wiecek 
(2016), time series analysis helps detect the na-
ture of a time series and allows predicting future 
values. Financial time series analysis relates the 
theory and practice of asset valuation over time 
and can be described as an empirical discipline. 
Nonetheless, it is different from other time series 
analysis forms since financial theory and empiri-
cal time series are related to uncertainty. This un-
certainty is reflected by asset volatility and stock 
return series (Tsay, 2005). Thus, statistical theory 
plays an important role in financial time series 
and the stock market analysis (Tsay, 2005). Time-
related data sets and consequently the analysis of 
these data sets appear in many domains like busi-
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ness and science, including finance (stock market 
data, credit card transactional data), communica-
tion (telephone data, signal processing data, net-
work monitoring) or entertainment, including 
music and videos (Keim et al., 2006). Fumi et al. 
(2013) showed that Fourier analysis could fore-
cast the demand for a fashion company. When 
applying the Fourier transform, the mean aver-
age percentage error regarding forecasting can be 
reduced by approximately 30% compared to oth-
er forecasting techniques, including exponential 
smoothing and moving averages. Also, Hassani 
(2007) forecasted the number of accidental deaths 
in the USA using several forecasting techniques. 
Spectral time series analysis outperformed the 
other techniques as measured by mean absolute 
percentage error. Marques et al. (2006) proved the 
suitability of spectral analysis as a forecasting tool 
based on their prediction of a hydrological time 
series. To sum up, there are three main categories 
which spectral time series analysis focuses on: the 
analysis of financial data (e.g., price changes, vol-
atility, and correlations, crisis analysis), models 
describing financial data (e.g., stable distributions, 
agent models, turbulences), and the handling of 
financial products including the assessment of de-
rivatives, portfolio optimization and risk manage-
ment (Oest, 2002). In other words, spectral time 
series analysis can be specifically used to model 
financial returns, price volatilities, autocorrela-
tion, and accuracy estimates. Further, it can be 
utilized to test random walk hypotheses, trend 
forecasting, and valuing options. Time series anal-
ysis also poses evidence against the efficiency of 
futures markets (Taylor, 2007). The advantages of 
spectral time series analysis include its easy im-
plementation because the underlying behavior is 
interpreted based on the simplest statistical be-
havior (Scargle, 1982). Besides, the technique has 
been developed to detect trends and identify to de-
tect and smooth seasonality. All factors contribut-
ing and influencing the time series are identified 
(Azar et al., 2001). One of the major disadvantages 
of time series analysis is that at least second-order 
stationarity is required to derive meaningful mod-
els. When analyzing the periodogram in more de-
tail, the focus is drawn to microscopic details that 
might lead to biased conclusions (Birr et al., 2016).

Since its stock price reflects a company’s well-being, 
the Aurubis stock can be considered a proxy for 

companies within the copper industry in the EU. 
With millions of jobs at risk, which are concerned 
with the welfare of the copper branch, the analysis 
and prediction of the stock price are supposed to 
deliver clarity regarding the industry’s status quo. 
Aurubis AG, with its headquarters in Hamburg, is 
a leading copper multinational and the biggest re-
cycler of copper globally. Its product assortment 
comprises standard and special products made 
from copper and copper alloying (Aurubis AG, 
2020). In the European Union, the copper indus-
try consists of around 500 companies that gener-
ate a profit of around EUR 45 billion every year 
and employ 50,000 people. When considering the 
downstream industries of copper, including util-
ity companies, car manufacturers, producers of 
electronics, and many more, several million peo-
ple are employed. In 2016, around 12% of global 
copper production was generated within the EU 
(Deutsches Kupferinstitut Copper Alliance, 2020). 
From a macro perspective, the ongoing trade war 
between the US and China has had a major impact 
on copper. It revealed a high correlation with the 
trade war, while no other metal is closely tied to 
the controversy. As a result, global manufacturing 
has experienced a slowdown in the form of an in-
dustrial recession in Japan and Germany. 

2. AIMS

The paper’s main objective is to determine if the 
spectral time series analysis delivers satisfactory 
results when forecasting stock prices. The aim of 
performing a spectral time series analysis poses 
the spectral decomposition which draws atten-
tion to the cyclical process. In order to determine 
whether the results can be regarded satisfactory, 
the obtained forecasts are compared against simu-
lated prices under a Wiener Process. From the pre-
dicted stock prices, it is derived whether spectral 
time series analysis is a suitable tool for forecast-
ing stock returns.

3. METHODOLOGY

In order to determine whether the forecasted re-
sults under the spectral time series analysis are 
satisfactory, the results obtained by the spectral 
time series analysis are compared against the 
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stock price simulation under a Wiener process. 
Well-grounded investment performance predic-
tions are of special importance to an investor’s 
risk management as they help reduce uncertainty 
and provide clear expectations regarding the ex-
pected returns. Various studies, including Abidin 
and Jaffar (2017), Azizah et al. (2018), and Reddy 
and Clinton (2016), have demonstrated the impor-
tance of the Wiener process regarding producing 
stock price forecasts. Reliable forecasts pose the 
fundament for an investment decision, and supe-
rior simulation results lead to better investment 
decisions and enhanced portfolio performance. 
Fumi et al. (2013) and Grzesica and Wiecek (2016), 
among others, have shown that spectral analysis 
provided superior forecasts and hence, might pose 
a viable alternative to the traditional Wiener pro-
cess. If the results achieved within this case study 
are satisfactory, spectral time series analysis might 
be implemented by investors as a tool used in or-
der to reduce the risk of an investment.

If spectral analysis delivers satisfactory results re-
garding the forecasted prices within this study, the 
current economic condition of copper commerce 
can be derived. The data used in the study were 
secondary; all daily closing prices have been re-
trieved from Bloomberg. For the Aurubis stock 
price analysis, the calibration dataset includes 
the daily closing prices from 25 August 2014 to 10 
September 2018 (1,024 observations). The valida-
tion dataset was chosen to comprise the daily clos-
ing prices from 11 September 2018 to 28 March 
2019 (137 observations). Even though non-prob-
ability sampling was applied in the paper, the 
longitudinal study design allows elaborating the 
forecast quality during several points in time. The 
forecast quality is assessed using end-of-day prices.

In order to be able to model and forecast a time 
series, a general step by step approach was intro-
duced by Brockwell and Davis (2016) and applied 
in the paper:

As a first step the given time series was plotted in 
order to judge whether they show severe changes 
in behavior or outliers. 

To obtain a stationary series, the trend and other 
recurring components need to be removed using 
the techniques like differencing and averaging. 

After the stationarity requirement was met, a 
model needs to be chosen which fits the residu-
als whereby the quality of the fit is determined 
using sample statistics (parametric approach) or 
model-free approaches (non-parametric approach 
such as time series analysis as proposed by Birr et 
al. (2016).

Consequently, the residuals can be inverted in or-
der to obtain a forecast of the original time series. 
According to Grzesica and Wiecek (2016), spec-
tral time series analysis is performed as afore-
mentioned, whereby the main goal of performing 
spectral decomposition is to draw attention to the 
cyclical process. The decomposition is possible by 
splitting the stationary residuals of a given dataset 
into trigonometric functions like the sine and co-
sine. In the context of spectral time series analysis, 
those functions are often denoted as harmonics. 

To be able to apply (spectral) time series analy-
sis on a given dataset, the stationarity requisition 
should be fulfilled to set up statistically significant 
models (Warner, 1998). A time series can be con-
sidered stationary if it meets the following require-
ments (Sun et al., 2018):

Constant mean, given by: ( ) ( )x tt E Xµ =  where 
( )x tµ  is not dependent on t  (Brockwell & Davis, 

2016).

Autocorrelation does not depend on itself, but on-
ly on the relative position within the time series, 
given by: 

( ) ( )
( )( ) ( )

, cov ,

,

x r s

r x s x

r s X X

E X r X s

γ

µ µ

= =

 = − − − 

 (1)

where { }tX  denotes a time series ( )2

tE X < ∞  
and ( ),x t h tγ +  is not dependent on t  for each 
h  (Brockwell & Davis, 2016).

If both criteria are fulfilled, the time series can be 
considered weakly stationary. If stationarity is not 
given for a specific dataset, the condition can be 
fulfilled by deducting the trend and seasonal com-
ponent from the original time series. To deter-
mine whether a time series fulfills the stationarity 
requirement, which enables further modeling, a 
common practice in econometrics is to perform 
an augmented Dickey-Fuller (or ADF) test. The 
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ADF is a unit-root test performed by running the 
following regression:

1

1

1

,
k

t t j t j t

j

x t x x uµ γ α β
−

− −
=

∆ = + + + ∆ +∑  (2)

where tx  denotes a time series, ∆  denotes the 
difference operator and tu  denote the residuals 
(Chung & Kon, 1995).

As proposed by Brockwell and Davis (2016), the time 
series can be represented as the sum of a season-
al component, a trend component, and the residu-
als. To obtain a stationary time series, various tech-
niques can be applied. A moving average filter is an 
optimal tool to reduce the random noise for a given 
dataset, determining the trend component (Azami et 
al., 2012). Moving average filters are also known as 
smoothers and was described by Chan (2011): 

( )
8

.t r t r

r q

Sm X a X +
=−

= ∑  (3)

The seasonal component will be determined by 
averaging for each unit of time across all periods 
(Moncrieff et al., 2004). The error time is the re-
mainder after the seasonal, and the trend compo-
nent was deducted from the original dataset. After 
achieving stationarity by representing the data of a 
trend, seasonal and residual component, the time 
series can be further processed. The first spectral 
representation theorem states that the connection 
between the covariance function of a stationary 
process and the spectral distribution function is 
given by a Fourier transform (Chan, 2011). The 
spectral representation of the autocovariance 
function of a stationary process 

{ }tY  is given if ( ) ( ),ikk e dF

π
λ

π

γ λ
−

= ∫  (4)

where F  has the properties [ ],π π−  with 
[ ] 0.F π− =

The second spectral theorem links the stationary 
process { }tY  to another stationary process with 
independent increments ( ){ }Z λ  via the spectral 
domain. In other words: 

( ).it

tY e dZ

π
λ

π

λ
−

= ∫  (5)

According to the third theorem, the spectral den-
sity function is connected to the autocovariance 

function. The ACF of a stationary process 
tY  is 

given by ( )γ ⋅  if it is even, and the function is giv-
en as follows (Chan, 2011):

( ) ( )1
0.

2

ik

k

f k e λλ γ
π

∞
−

=−∞

= ≥∑  (6)

The first spectral representation theorem 
(Brockwell & Davis, 2016) showed that the expres-
sion of a time series using Fourier coefficients is 
extremely important in the field of signal process-
ing and structural design. Fourier components 
represent sinusoidal waves of different frequencies. 
Using the frequency domain approach, according 
to Montgomery, Jennings, and Kuhlahci (2015), 
the Fourier representation is denoted as: 

1 1

sin 2 cos 2 ,
n n

t k k

k k

k k
y a t b t

n n
π π

= =

   = +   
   

∑ ∑  (7)

where a  and b  are considered Fourier coefficients 
and expressed as:  

1

2
cos 2 ,

n

t

k

k
a t

n n
π

=

 =  
 

∑  (8)

and 

1

2
sin 2 .

n

t

k

k
b t

n n
π

=

 =  
 

∑  (9)

The spectral density function is given by the 
Fourier transform of the autocorrelation function. 
For some cases, the spectral density provides a 
simpler interpretation compared to the autocor-
relation function. This is because spectrum esti-
mates at neighboring sample autocorrelations are 
widely independent, while the autocorrelation 
function reveals dependencies (Montgomery et al., 
2015). In order to obtain the spectral density, the 
Fourier coefficients are a and b in the form of

( )2 2

2
k k

k n
P a b
n

  = + 
 

 (10)

and smoothed consequently. Further, the Fourier 
coefficients reveal the following relationship using 
the identity

cos sin .ie iθ θ θ= +  (11)

By exploiting the relationship mentioned above, 
the magnitude (C) is given by 2 2 .a b+  The an-
gle (also referred to as phase or φ ) is rewritten as 
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( )1tan / .b a−  The period λ  (i.e., the time it takes 
a wave to go through a whole cycle) is connected 
with the frequency ω  by 2 / .λ π ω=  Generally, 
the frequency ω  denotes the angular speed meas-
ures in radians per unit of time. φ  represents the 
angular amount by which the sine wave is shift-
ed. The time shift is, therefore, given by /φ ω  
(Cochrane, 1997).

Following the simulation approach as proposed by 
Fumi et al. (2013), to obtain interpretable results, 
all 

/2Nf  Fourier coefficients except for 0f  need to 
be sorted in decreasing order regarding amplitude 
and consequently, the inverse Fourier transform 
needs to be applied / 2N  times progressively. 
The component’s amplitudes tn  can then be cal-
culated as the absolute value of the complex num-
ber ,n n nA a b= +  where a is the real part and b 
is the imaginary part. According to Fumi et al. 
(2013), the forecasts can then be obtained using 
the formula

( )
( )

0 1

cos 2 .

y t amplitude amplitude

frequency t phaseπ

= + ×

× ⋅ ⋅ −
 (12)

The Wiener process can be considered one of the 
most important stochastic processes in theory 
and application, and it poses a particular type 
of Markov process with a mean change of 0 and 
a variance rate of 1, with its main properties be-
ing given by 0 0,W =  the trajectories are contin-
uous functions of [ ]0, ,t∈ ∞  the expectation 

0,tEW =  the correlation function is given by 

( )
( )( ) 1

,  

min , ,  for any ,

t s

n

E WW t s

a b a b t t

= ∧

∧ =
 (13)

the random vector 
1

,t t

n

W W
 
 
 

 is Gaussian. For any 
,s  t  it holds that

2  as well astEw t=  (14)

[ ] 0 andt sE W W− =  (15)

[ ]2
.t sE W W t s− = −  (16)

Increments of the Wiener process on non-over-
lapping intervals are independent, i.e., for 
( ) ( )1 1 2 2, ,S T S T φ=  the random variables 

2 2 ,Wt Ws−  1 1Wt Ws−  are independent, with the 

paths of a Wiener process not being differentia-
ble functions and the martingale property (Hull, 
2009).

{ }0 ,0 ,s

uW W u s= ≤ ≤  (17)

0

,t
ss

W
E W
W

 
= 

 
 (18)

( ){ }2

0 .s

t sE W W W t s− = −  (19)

A variable z  is said to follow the Brownian mo-
tion if it satisfies the following conditions (Hull, 
2009). The change z∆  during a small period t∆  is

,z t∆ =∈ ∆  (20)

where ∈  follows a standard normal distribution 
( )0,1 .φ  Additionally, for every 2 different short 

intervals of time t∆  have independent values of 
z∆  and it peruses from the first condition 1 that 
z∆  has a normal distribution itself, with mean 

of 0,z∆ =  standard deviation of z t∆ = ∆  and 
variance of .z t∆ = ∆

Considering a long period of time T  the changes 
of the value of z  can be indicated as ( ) ( )0z T z−  
and it can be esteemed as the sum of changes in 
z  in N  small time intervals of length t∆  where: 

/N T t= ∆  and ( ) ( )
1

0 ,
N

ii
z T z t

=
− = ∈ ∆∑  

where ( )1, 2,i i N∈ =   are distributed ( )0.1 ,φ  
knowing from condition 2 that i∈  are inde-
pendent of each other. From the last equation 
of ( ) ( )

1
0 ,

N

ii
z T z t

=
− = ∈ ∆∑  it has to hold 

that ( ) ( )0 0,z T z− =  and the variance of 
( ) ( )0z T z N t T− = ∆ =  and the standard devi-

ation is given by ( ) ( )0 .z T z T− =

Finally, to determine the quality of the forecast re-
sults derived by both the Wiener process and the 
spectral time series analysis, Khair et al. (2017) 
proposed using the mean absolute percentage er-
ror to evaluate the accuracy of a prediction. The 
MAPE is given by the following formula:

1

1 100.

z zt

z
MAPE

n

′−

= ⋅
∑

 (21)
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4. RESULTS

To set up a precise model that allows meaningful 
forecasts, the stationarity requirement needs to 
be met. To test for stationarity, the ADF test has 
been performed. When performing the ADF test 
on the raw, unprocessed dataset of the Aurubis 
stock price, the test statistic revealed a value of 
0.843. Since the Z-scores of all three confidence 
intervals (99%, 95%, and 90%) were smaller than 
the test statistic’s value, it can be concluded that 
the raw dataset has a unit root. A unit root implies 
that the process is non-stationary and needs fur-
ther adjustment for modeling. By having a closer 
look at the Aurubis stock price plot, it is visible 
that the price oscillates around a persistent mean 
for long periods. This observation implies that 
the time series can be decomposed using the ad-
ditive model approach (Brockwell & Davis, 2016). 
Representing the time series as trend, seasonal 
and residual components draw the following pic-
ture (see Figure 1).

After the decomposition of the raw dataset of the 
Aurubis stock price into trend, seasonal and ran-
dom components, the residuals can only be used 
for further calculations if they fulfill the station-

arity requirement. Since no meaningful statistical 
models can be obtained using a non-stationary 
time series (Warner, 1998), another Augmented 
Dickey-Fuller test is inalienable. On applying the 
ADF test on the residuals, the value of the test-sta-
tistic has improved significantly to around –6.0. 
This implies that there is no unit root, and hence 
the time series can be considered stationary, and 
no further modeling regarding the stationarity 
of the time series is needed. To obtain the spec-
tral density, the Fourier coefficients a and b in the 
form of 

( )2 2

2
k k

k n
P a b
n

  = + 
 

 (22)

are determined and smoothed. The unsmoothed 
periodogram reveals the picture presented in 
Figure 2.

When applying the Fast Fourier transform, com-
plex numbers are returned. From those, the ap-
proach mentioned above helps extract the infor-
mation required to produce forecasts. It is possible 
to derive the amplitude, frequency, and phase that 
form the stock price pattern by transforming the 
complex numbers. Estimating the Fourier coeffi-
cients using the frequency domain approach as 

Figure 1. Decomposition of Aurubis stock price
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proposed by Montgomery et al. (2015) and trans-
forming the following would be achieved for the 
first three Fourier components (see Table 1).

Table 1. Fourier components

Component Amplitude Frequency Phase

0f  
0.63816 – –

2f 4.28328 0.00170 –2.44645

5f 1.7028 0.00086 1.01149

According to Fumi et al. (2013), the forecast can be 
obtained using the formula

( )
( )

0 1

cos 2 .

y t amplitude amplitude

freguency t phaseπ

= + ×

× ⋅ ⋅ −

Applied on the Aurubis stock data set, this would 
mean the following:

( )
( )

( )

0.63816 4.28328

cos 2 0.0017 2.44645

1.7028 cos 2 0.00086 1.01149 .

y t

t

t

π

π

= + ×

× ⋅ ⋅ + +

+ ⋅ ⋅ ⋅ −  

Since the forecast was only performed on the sta-
tionary residuals, the re-application of trend and 
seasonal component is required. Using 20 har-
monics, the forecast would draw the following 
picture for the first 5 forecasts (starting from 11 
September 2018).

Summing up the results, the mean absolute per-
centage error looking at a time window of 137 
trading days (from 11 September 2018 to 28 March 
2019) would be roughly 5.0129% when using the 
spectral time series analysis. This result was 
achieved using 20 harmonics. When simulating 
the stock price returns under the Wiener process, 

Figure 2. Periodogram

Table 2. Aurubis stock forecasts

Date Residual forecast Trend component Seasonal component Sum

11 September 2018 –0.36165 59.72654 1.41122 60.77612

12 September 2018 –0.49306 59,63038 2.07489 61.21221

13 September 2018 –0.61332 59,53126 2.25107 61.16900

14 September 2018 –0.72159 59,43728 2.83664 61.55232

17 September 2018 –0.81746 59,33934 2.96759 61.48946
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a mean absolute percentage error of about 6.2103% 
was achieved. 

When plotting the obtained forecast results 
against the observed variables, the forecast would 
be pictured, which is presented in Figure 3.

5. DISCUSSION

Fumi et al. (2013) showed that Fourier transform 
leads to an improvement of around 30% regard-
ing forecasting quality compared to exponential 
smoothing and moving average. Nonetheless, the 
MAPE remains at around 74% and 43% for both 
forecasted and tested categories. The study con-
cluded that spectral analysis using the Fourier 
transform provides advantages over tradition-
al ways of forecasting stock prices. These advan-
tages include its little implementation effort and 
the entirely non-parametric approach. Further, 
the achieved results were considered satisfacto-
ry. Grzesica and Wiecek (2016) indicated that 
spectral analysis provides better estimates than 
the Brown model and the classical ARMA mod-
el. Further, they proved that using spectral time 
series analysis to analyze a time series in the fre-
quency domain leads to the most accurate results 
based on the average forecast error results. The 

MAPE using spectral analysis was around 0.39%. 
Using the singular spectrum analysis, Hassani 
(2007) predicted the number of accidental deaths 
in the USA. His work showed that a mean average 
percentage error of around 2% could be achieved 
using spectral analysis. Spectral analysis outper-
formed the other forecasting techniques, includ-
ing the Holt-Winter algorithm and the SARIMA 
approach introduced by Box and Jenkins in 1970. 
Marques et al. (2006) also forecasted a hydrologi-
cal univariate time series using spectral analysis. 
The SSA was applied  to find and extract the trend 
and oscillatory component from the series to pro-
duce high-quality predictions. The paper discov-
ered and supported as well that spectral analysis 
could forecast the extracted components accu-
rately. All the studies mentioned above consid-
ered their achievements reasonable, since spectral 
time series performed better than other forecast-
ing techniques. In contrast, the 0.39% MAPE of 
Grzesica and Wiecek (2016) and the 2% MAPE at-
tained by Hassani (2007) can be considered satis-
factory regarding stock price forecasting, the 74% 
and 43% MAPE achieved by Fumi et al. (2013) are 
dissatisfactory.

Summing up the results, within this study, a 
MAPE of about 5% was achieved when consider-
ing a trading window of 137 days under spectral 

Figure 3. Comparison of simulation results vs the realized stock price
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time series analysis. When employing a Wiener 
process under the same conditions, i.e., for the 
same calibration and validation dataset, a MAPE 
of about 6% is achieved. Hence, the spectral time 
series analysis delivered better results regarding 
the forecast of the Aurubis stock price.

The results support both the findings of Hassani 
(2007) and Grzesica and Wiecek (2016) that spec-
tral time series analysis poses a suitable tool for the 
analysis of financial data. While the Wiener pro-
cess has received great attention regarding fore-
casting stock price returns, spectral time series 
analysis was not employed to predict stock price 
movements. The low MAPE indicates that spectral 
time series analysis poses an adequate means for 
creating stock price return forecasts while deliv-
ering superior results when comparing against the 
widely used Wiener process.

Forecasting stock prices can be considered an im-
portant task in financial investing since it helps 
investors make superior investment decisions. In 

this regard, Aurubis has delivered strong financial 
ratios for 2018 achieving ROA of 5.91%, ROE of 
10.63%, and EPS of 4.6. Additionally, the company 
delivered a strong EBITDA margin of 4.41% and a 
dividend yield of 3.32% (Bloomberg, 2018), driven 
by superior management decisions. In this regard, 
Kim et al. (2016) have shown that overconfidence 
of the top management is negatively correlated 
with the stock price performance. This is because 
overconfident management overestimates future 
cash flows of investments. Ultimately, the over-
confidence poses a bigger threat for stock price 
crashes (Kim et al., 2016). The study of Fujianti 
(2018) has shown that top managers’ age is also 
influencing the company’s performance tremen-
dously. Older managers seem to lead to a better 
stock price performance due to enhanced experi-
ence. Additionally, Fujianti (2018) found that nei-
ther the educational background nor gender influ-
ences the company value significantly. Cooper et 
al. (2016) found that excess compensation on the 
management level negatively influences its stock 
price performance. 

CONCLUSION

This paper’s main objective was to evaluate whether spectral time series analysis poses an adequate tool 
for creating stock price forecasts. This can be considered indispensable for an investor’s risk manage-
ment as well-grounded investment performance forecasts lead to superior risk management and realis-
tic anticipation of the expected return. To judge its ability, the obtained results were compared against 
the results obtained under a Wiener process.

The paper used the Aurubis stock price as a proxy for evaluating spectral analysis as a forecasting model. 
Aurubis is the largest copper recycler in the EU, employing 50,000 people to attain economic impor-
tance. Additionally, its steady dividend policy and economic and financial soundness make it an attrac-
tive investment for investors who seek to increase their portfolio performance while diversifying their 
exposure among different industries. 

The deviation achieved within this study when comparing realized returns against observed returns 
was roughly 5.0129% under the usage of spectral time series analysis and 6.2103% when using a 
Wiener process. Achieving a low MAPE of around 5.0129% when comparing the forecasted Aurubis 
stock price against the observed stock price and the Wiener process, the results can be considered 
adequate. From this, it follows that spectral time series analysis poses an adequate means to produce 
stock price forecasts. 

Based on the results, which reveal superiority of the spectral time series analysis over the Wiener pro-
cess, it is concluded that spectral analysis using the Fourier transform provides advantages over tradi-
tional ways of forecasting stock prices. These advantages include its little implementation effort and the 
entirely non-parametric approach. Lastly, the low MAPE also supports the usage of spectral time series 
analysis as a forecasting tool. 
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