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Abstract

The term “big data” characterizes the massive amounts of data generation by the ad-
vanced technologies in different domains using 4Vs – volume, velocity, variety, and 
veracity - to indicate the amount of data that can only be processed via computation-
ally intensive analysis, the speed of their creation, the different types of data, and their 
accuracy. High-dimensional financial data, such as time-series and space-time data, 
contain a large number of features (variables) while having a small number of samples, 
which are used to measure various real-time business situations for financial organiza-
tions. Such datasets are normally noisy, and complex correlations may exist between 
their features, and many domains, including financial, lack the al analytic tools to mine 
the data for knowledge discovery because of the high-dimensionality. Feature selection 
is an optimization problem to find a minimal subset of relevant features that maximizes 
the classification accuracy and reduces the computations. Traditional statistical-based 
feature selection approaches are not adequate to deal with the curse of dimensionality 
associated with big data. Cooperative co-evolution, a meta-heuristic algorithm and a 
divide-and-conquer approach, decomposes high-dimensional problems into smaller 
sub-problems. Further, MapReduce, a programming model, offers a ready-to-use dis-
tributed, scalable, and fault-tolerant infrastructure for parallelizing the developed algo-
rithm. This article presents a knowledge management overview of evolutionary feature 
selection approaches, state-of-the-art cooperative co-evolution and MapReduce-based 
feature selection techniques, and future research directions.
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INTRODUCTION

Modern technologies produce tons of new data about individuals, in-
dustries, finance, economics, health sciences, and so on; the volume 
of new data nearly doubles every two years (IBM, 2018). IBM has re-
ported that 90% of the world’s data was created in the previous two 
years, with more than 2.5 exabytes of data produced daily. Financial 
time-series and space-time are examples of high-dimensional data 
used to mine and measure the real-time business conditions for fi-
nancial organizations or for data mining (Gao & Tsay, 2019; Wu, Liu, 
& Yang, 2018) in supply chain (Habib & Hasan, 2019; Tseng, Wu, Lim, 
& Wong, 2019; Voyer, Dean, Pickles, & Robar, 2018). In health science 
(Tursunbayeva, Bunduchi, Franco, & Pagliari, 2016), high-throughput 
technologies, such as microarrays, generate DNA microarray datasets 
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having more than 500,000 genes in gene arrays or mass spectrometry creates high-dimensional datasets 
regarding living cells having a range of 300,000 m/z values (Aliferis, Statnikov, & Tsamardinos, 2006). 
These high-throughput data are known as “big data” and can be defined in terms of 4Vs: volume (size 
of the data), velocity (speed of data generation), variety (diverse types of data – structured, semi-struc-
tured, or unstructured), and veracity (uncertain or imprecise data) (Laney, 2001; Zhou, Chawla, Jin, & 
Williams, 2014).

The availability of large-scale data provides new opportunities for the research community to find new 
insights. Knowledge management (Ali, Rattanawiboonsom, Hassan, & Nedelea, 2019; Bakanauskienė, 
Bendaravičienė, & Juodelytė, 2018; Chalikias, Kyriakopoulos, Skordoulis, & Koniordos, 2014; Grytten 
& Minde, 2019; Gupta, 2016; Illiashenko et al., 2018; Yee, Tan, & Ramayah, 2017) or knowledge discov-
ery (Ketcha, Johannesson, & Bocij, 2015) from these large-scale data is a challenging task because the 
massive volume and high-dimensionality lead to computational difficulties (Bolon-Canedo et al., 2018). 
High-dimensional data suffer from both the curse of dimensionality (an enormous number of features 
(also called “variables” or “attributes”) in the dataset (Clarke et al., 2008)) and the curse of dataset spar-
sity (tiny samples in the dataset (Somorjai, Dolenko, & Baumgartner, 2003)). For example, a microarray 
dataset consists of 3,816 features for each sample, with a sample size of only 158 (Stoeckel & Fung, 2005). 
Identification of biomarkers from high-dimensional biological datasets can assist in improving the di-
agnostic process and treatment of diseases. Similary, an organization can decide to purchase the options 
on the future exchange rates to reduce the effect of currency exchange fluctuations rates on corporate 
finance (Fan & Li, 2006). However, it requires a systematic search technique for finding the relevant 
biomarkers or deciding to purchase the options from a large set of features. Due to these challenges, 
existing high-dimensional data analysis techniques experience the problems like overfitting, erroneous 
classification, and high computational cost. Hence, most of the available techniques, including con-
ventional statistical methods and machine learning strategies are not suitable for these type of datasets 
(Yamada et al., 2018). Therefore, advanced knowledge and information processing systems are required 
to overcome these challenges (Deepak, Mahesh, & Medi, 2019). 

Dimensionality reduction is one way to deal with the curse of dimensionality by representing the data 
using a reduced set of features. Dimensionality reduction is of two types: feature extraction and feature 
selection (Xue, Zhang, Browne, & Yao, 2016). Feature extraction normally creates new features from the 
original feature set, while feature selection (FS) finds a subset of the original features. G. Kim, Y. Kim, 
Lim, and H. Kim (2010) define the FS problem as finding a set of minimum number of relevant features 
that describes the dataset. In high-dimensional datasets, features have complex interactions between 
them, extracting features is generally not suitable. FS is the alternative approach for these datasets. One 
objective of the FS process is to improve the classification’s (Mura, Daňová, Vavrek, & Dubravska, 2017) 
accuracy with respect to the sensitivity (possibility of the prediction to be positive) and specificity (pos-
sibility of the prediction to be negative) (Dash & Liu, 1997, 2003). 

Several methods are available in the literature based on different metrics, such as entropy, probability 
distribution, information theory, or the accuracy of a predictive model. However, users of these tech-
niques need to understand their technical details to apply them correctly (Liu & Yu, 2005). Approaches 
to FS are two-fold: individual evaluation (individual features (Bakanauskienė, Bendaravičienė, & 
Barkauskė, 2017) are ranked based on their relevancy) and subset evaluation (depends on a particular 
search technique to produce a subset of features). FS methods are also classified into three categories: 
filter methods, wrapper methods, and embedded methods (Xue et al., 2016). 

The cooperative co-evolutionary algorithm (CCEA), a meta-heuristic algorithm, handles the multiple 
populations, evaluates the fitness function in terms of the subjective fitness landscape, collaborates 
the individuals from different populations, and divides a large problem into smaller sub-problems to 
evolve and execute independently (Derrac, Garcia, & Herrera, 2010; Potter & de Jong, 2000). Further, 
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the MapReduce programming model (a open-source platform) is a parallel programming model that 
communicates with Hadoop Distributed File System (HDFS) and executes the computations. It was 
originally introduced by Google research for building the search indices, distributed computing, and 
large-scale data (Dean & Ghemawat, 2008, 2010). MapReduce can to handle the large-scale data in a 
distributed environment using map and reduce features with available resources in parallel. Moreover, 
MapReduce provides fault tolerance, data locality, scalability, ease of programming, and flexibility 
(Hashem, Anuar, Gani, Yaqoob, Xia, & Khan, 2016). 

A survey on evolutionary computation (EC) approaches for FS indicates that genetic algorithm (GA) 
and genetic programming (GP) are the most commonly used EC techniques applied to FS problems 
(Xue et al., 2016). Similarly, Bhattacharya, Islam, and Abawajy (2016), Stanovov, Brester, Kolehmainen, 
and Semenkina (2017) have argued for the need to use EC in big data. Further, a survey on CCEAs 
includes the prospects of CCEA in big data optimization (Ma, Li, Zhang, Tang, Liang, Xie, & Zhu, 
2018). From the existing literature, studies involving the combination of CCEA (Khan & Kakabadse, 
2014) and the MapReduce model are an emerging area of research, and the existing works are limited 
(Ding, Lin, Chen, Zhang, & Hu, 2018; Ding, Jie. Wang, & Jia. Wang, 2016). This paper presents a knowl-
edge management overview of evolutionary FS approaches and FS approaches based on CCEA and the 
MapReduce model with future research directions for FS problems.

The rest of the paper is organized as follows. Section  1 describes FS fundamentals and classification of 
evolutionary FS approaches. Section  2 includes CCEA. Section  3 illustrates the MapReduce technique. 
Section  4 discusses the state-of-the-art FS approaches based on different techniques. Finally, a summary 
of the paper is presented in the conclusion section.

1. LITERATURE REVIEW

1.1. Fundamentals of feature 
selection

Many real-world problems consist of a large num-
ber of features. However, some of these features 
may be irrelevant or redundant and may degrade 
the performance of data mining and machine 
learning algorithms. FS is an approach to choose 
the relevant features and reduce the dimensional-
ity of the data for improving the learning process 
and algorithmic performance. FS techniques have 
been used to identify the biomarkers (i.e., impor-
tant genes) from high-dimensional biological data-
sets (Ahmed, Zhang, & Peng, 2013), searching for 
words or phrases in text mining (Aghdam, Ghasem-
Aghaee, & Basiri, 2009), or selecting the important 
visual subjects (e.g., color, shape, pixel, texture, etc.) 
in image analysis (A. Ghosh, Datta, & S. Ghosh, 
2013). Figure 1 shows a general FS process consist-
ing of four main steps (Dash & Liu, 1997). 

The first step of a FS process is using a search tech-
nique (e.g., GA, greedy search, or best first search) 
to find the subsets of features. Next, various subset 

evaluation measures, such as distance measures, 
dependency measures, or classification accuracy 
are applied to evaluate the goodness of the subsets 
of features. A stopping criterion (e.g., number of 
generations) is used to terminate the FS process. 
Lastly, a validation (Grandon, Ramirez-Correa, & 
Luna, 2019) procedure is be used to test the validi-
ty of the selected subset.

FS is challenging in terms of computation owing 
to the increased number of features, advanced 
techniques of data collection, and complexities of 
problems. Given a dataset consists of k features, 
there can be 2k possible solutions, which ultimate-
ly makes the FS a difficult and computationally in-
tensive task (Guyon & Elisseeff, 2003). With a large 
enough k, an exhaustive search for FS becomes 
infeasible from such a dataset. Several search 
techniques, for example, greedy search, complete 
search, random search, and heuristic search can 
be applied to FS procedures (Liu, Tang, & Zeng, 
2015). However, many of the FS approaches are 
limited by high computational cost or stagnation 
in local optima (Liu, Wang, Chen, Dong, Zhu, & 
Wang, 2011). FS is also difficult because of com-
plex feature interactions, which can exist among 
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features in a variety of ways. A weak feature in 
terms of its target can become redundant when 
used independently, while the exact same feature 
may improve the classification performance when 
used together with a few complementary features. 
A balanced selection or removal of this kind of fea-
tures is an important task. Hence, FS techniques 
evaluating the subsets of features together rather 
than evaluating the features independently are 
more suited for feature interactions. FS aims to 
maximize the classification accuracy while min-

imizing the number of selected features. Factors, 
such as evaluation criteria and search techniques, 
are important in FS for exploring the search space 
efficiently and for evaluating the quality of the se-
lected features (Xue et al., 2016).

1.2. Classification of evolutionary 
feature selection methods

From literature, several FS approaches incorpo-
rate the different techniques, such as fuzzy set 

Source: Developed by the authors based on Xue, 

Zhang, Browne, and Yao (2016).

Figure 1. General feature selection process 
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theory, rough set theory, neural networks, and 
metaheuristics, resulting in many different ways 
to classify the FS methods. Figure 2 presents an 
overall classification of evolutionary FS methods 
based on three criteria: evaluation criteria, search 
techniques, and objectives. 

Based on the evaluation criteria, there are three 
types of FS methods: filter methods, wrapper meth-
ods, and embedded methods. Filter methods are 
independent of a classifier or learning algorithm. 
Initially, each feature is scored based on some 
measures and then features are ranked using such 
techniques as T-test or P-test. Finally, based on a 
threshold value, a subset of features from the top-
ranked features is selected (Levner, 2005). Unlike 
filter methods, wrapper methods involve a specific 
classification algorithm for evaluating the good-
ness of the selected subset of features. The classifi-
cation algorithm is considered as a “black box” in 
wrapper methods (Xue et al., 2016). The difference 
between wrapper methods and filter methods lies 
in using a classification algorithm. Since wrapper 
methods evaluate each subset of features in terms 
of classification performance, this often results in 
a better performance. However, wrapper methods 
are computationally more expensive than filter 

methods (Dash & Liu, 1997). The third FS method 
is the embedded method that combines the filter 
and wrapper methods, i.e., FS and classification 
model formation are performed in a single process 
(Boroujeni, Stantic, & Wang, 2017). EC techniques, 
such as GP and learning classifier systems (LCSs), 
can carry out the embedded approaches of FS (Lin, 
Ke, Chien, & Yang, 2008). 

2. COOPERATIVE  

CO-EVOLUTIONARY 
ALGORITHMS

The cooperative co-evolutionary approach was 
originally introduced by Potter and de Jong (1994) 
to solve the large-scale complex optimization 
problems (Rentsen, Zhou, & Teo, 2016) through a 
divide-and-conquer strategy and by evolving the 
interacting co-adapted sub-problems. The coop-
erative co-evolution achieves the promising per-
formance in optimizing many real-world prob-
lems, such as function optimization (Potter & de 
Jong, 1994), designing artificial neural networks 
(Potter & de Jong, 1995), occurrence of Red Queen 
dynamics (Pagie & Hogeweg, 2000), and machine 

Source: Developed by the authors based on Shi and Gao (2017).

Figure 3. A general architecture of cooperative co-evolutionary algorithm
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learning applications (Juillé & Pollack, 1996). A 
general architecture and an outline of cooperative 
co-evolutionary algorithm (CCEA) are shown in 
Figure 3 and Figure 4. The CCEA consists of three 
main steps (Shi & Gao, 2017).

2.1. Problem decomposition

A decomposition strategy is used to decompose a 
complex problem into several sub-problems based 
on the structure of the problem (i.e., separable or 
non-separable problem) with appropriate granu-
larity (Shi & Gao, 2017). The decomposition strat-
egies are classified as static (decomposes a problem 
before the evolutionary process starts and decom-
posed sub-problems are fixed (Bucci & Pollack, 
2005)) or dynamic (decomposes a problem at the 
beginning, but sub-problems have the ability to 
self-adaptively tune to proper collaboration levels 
at the time of evolutionary process (Omidvar, Li, 
Mei, & Yao, 2014)). Differential grouping (Omidvar, 
Li, Mei, & Yao, 2014) and random grouping (Yang, 

Tang, & Yao, 2008a) strategies have been used ex-
tensively for solving the complex optimization 
problems (both separable and non-separable prob-
lems). Improvements of both of the grouping meth-
ods are extended differential grouping (XDG) (Sun, 
Kirley, & Halgamuge, 2015), DG2 (Omidvar, Yang, 
Mei, Li, & Yao, 2017), recursive differential group-
ing (RDG) (Sun, Kirley, & Halgamuge, 2018), im-
provement of RDG inspired by DG2 (Sun, Omidvar, 
Kirley, & Li, 2018), multilevel CC framework 
(MLCC) (Yang, Tang, & Yao, 2008b), and random 
based dynamic grouping (RDG) (Song, Yang, Chen, 
& Zhang, 2016) to overcome the problems, for ex-
ample, indirect and dynamic identification of vari-
able interactions, nonlinearity detection of variable 
interactions, self-adaptive group size, and tackling 
large-scale MOPs, etc.

2.2. Sub-problems evolution

Once the decomposition is performed, each 
sub-problem is assigned to a population and an 

Source: Developed by the authors.

Figure 4. An outline of cooperative co-evolutionary algorithm 

Algorithm 1 Cooperative Co-Evolutionary Algorithm (CCEA) 

Require: n: number of variables, N: the population size, CR: crossover rate, MR:
mutation rate, G: number of generations. 
1. Start of CCEA algorithm. 

2. RPRESENT the problem domain. 

3. Decompose the problem into a fixed or dynamic number of sub-problems and assign 

to subpopulations. 

4. For each sub-problems s Do 
    4.1 Randomly INITIALIZE subpopulation pop (s) of N individuals. 
5. End of For 

6. For each sub-problems s Do 
    6.1 EVALUATE individuals in one subpopulation collaborating with other 

individuals from other subpopulations and assign fitness values to the 

individuals being evaluated. 

7. End of For 

8. Set 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← Ͳ. 
9. While termination condition (until G) is not met Do 

    9.1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ൅ ͳ. 
    9.2 For each sub-problem s Do 

9.2.1 SELECT parents from the population. 

9.2.2 Apply GENETIC OPERATORS (if GA is used to evolve) on the selected

parents to get offspring population. 

 9.2.2.1 RECOMBINE (CROSSOVER) parents to generate new individuals

subject to CR. 
9.2.2.2 MUTATE the individuals after crossover subject to MR. 

 9.2.3 EVALUATE new individuals and assign fitness values. 

9.2.4 UPDATE CONTEXT VECTOR with the best individuals from each of the

subpopulation. 

9.2.5 Decide SURVIVAL individuals for each subpopulation for new generation. 

9.2.6 Display best individual from each subpopulation for each generation. 

    9.3 End of For 

10. End of While 

11. Return the best individual from each of the subpopulation over all generations. 

12. End of CCEA algorithm. 
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evolutionary optimizer (the same or different) is 
used to evolve them. Evolutionary processes (in-
itialization, fitness evaluation, selection, recombi-
nation, mutation, and survivor selection) are per-
formed by populations independently (Shi & Gao, 
2017). Sub-problems are evolved sequentially (only 
one population performs the evolutionary process 
per generation, while other populations are frozen 
(Potter, 1997)) or in parallel (all populations per-
form the evolutionary processes per generation 
concurrently (Wiegand, 2004). Evolutionary op-
timizers, such as GAs, are widely used to evolve 
the different subcomponents of CCEA after the 
decomposition of a problem into sub-problems. 
However, the most effective optimizer to CCEA 
in the literature found is the differential evolution 
(DE) (Storn & Price, 1997), which is a parallel di-
rect search method and an EA technique. To im-
prove the performance of DE, different variants 
of DE, such as self-adapting control parameters 
for DE (jDE) (Brest, Greiner, Boskovic, Mernik, & 
Zumer, 2006), neighborhood search differential 
evolution (NSDE) (Yang et al., 2008), self-adap-
tively NSDE (SaNSDE) (Yang, Yao, & He, 2008), 
self-adaptive strategy and control parameters for 
DE (SSCPDE) (Fan & Yan, 2015), and self-adaptive 
DE with zoning evolution of control parameters 
and adaptive mutation strategies (ZEPDE) (Fan & 
Yan, 2016), have been proposed in the literature.

2.3. Collaboration and evaluation

The fitness of an individual is evaluated by a col-
laborative mechanism that selects a collaborator 
from each of the populations. The performance 
of the collaboration is the fitness value to the in-
dividual. At the collaboration step, a population 
of the complete solution is formed by combining 
the collaborators to each individual of the current 
population and at the end of a CCEA process, the 
final solution to the problem is built by combining 
the individuals with the best collaboration (Shi & 
Gao, 2017). A number of collaboration strategies 
have been studied in the literature, including less 

greedy strategy (Potter, 1997), 1+1 collaboration 
model (Potter & de Jong, 2000), blended popula-
tion algorithm (Sofge, De Jong, & Schultz, 2002), 
1+N collaboration model (Bucci & Pollack, 2005), 
archive-based collaboration (Panait, Luke, & 
Harrison, 2006), N+N collaboration (Hoverstad, 
2007), and Reference Sharing (RS) (Shi & Gao, 
2017), all of which are significant collaboration 
models.

3. THE MAPREDUCE 

PROGRAMMING MODEL

Hadoop frameworks are built with a distribut-
ed storage location, the Hadoop distributed file 
system (HDFS) (Hadoop Apache, 2018), and 
the MapReduce programming model (Dean & 
Ghemawat, 2008, 2010). HDFS is a Java-based dis-
tributed file system that offers reliable, scalable, 
and fault-tolerant storage and computation pro-
cesses for big data with faster access. The input da-
ta are divided into blocks in HDFS that can be pro-
cessed in parallel without any need for communi-
cation between the data blocks. MapReduce has 
two main functions: map and reduce. Map and re-
duce functions are combined in a divide-and-con-
quer approach in which the map function works in 
parallel with the data blocks, whereas the reduce 
function collects and combines the intermediate 
result into a final output (Ferrucci, Salza, & Sarro, 
2017). The MapReduce model is based on the da-
ta flow of (key, value) pairs. In general, a master 
node divides the initial input into several blocks 
identified as (key, value) pairs. The input, usually 
stored in HDFS, is split into (key, value) pairs and 
distributed through the map function to several 
slave nodes for working in parallel and executing 
the same task on a different block of input inde-
pendently from each other. The mapper generates 
an intermediate list of (key, value) pairs, which is 
shuffled using a shuffling process. The MapReduce 
library groups these pairs together by the same 
key and passes to reducers. Finally, the reducer 

{ }( ) { }( ) { }( ) { }( ) { }( ) { }( ) { }( )1 1 1 1 2 2 2 2 2 2 2 2 3 3
, ,... , ,... , ,... , ,... ,... ,... , ,...

  

input k v map k v k v shuffle k v k v reduce k v k v output

spl intermediate list shiffle shuffledit map list reduce aggregate

→ → → → → → → →

↑ ↑ ↑ ↑ ↑ ↑ ↑

Source: Developed by the authors.

Figure 5. A typical MapReduce workflow shuffled list
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aggregates the different groups and produces new 
(key, value) pairs as final output to store in HDFS 
(Peralta et al., 2015; Sinha & Jana, 2018). The tran-
sition of (key, value) pair in MapReduce is depicted 
in Figure 5 and Figure 6 presents the basic flow-
chart of a MapReduce model.

MapReduce offers a parallel, fault-tolerant, and 
scalable framework for processing a large volume 
of distributed datasets. However, it increases over-
heads in terms of time during the execution of mul-
tiple and useless operations and iterative program 
execution because in each iteration, the data are 
written back to the HDFS (Sinha & Jana, 2018). One 
possible solution to this problem is to reduce the 
data store operations, for example, using an island 
model (Pierreval & Paris, 2000) for the MapReduce 
implementation, where the island model limits 
the data store only in the island migration phase 
(Ferrucci, Salza, & Sarro, 2017). Another solution to 
the overhead problem can be the use of MapReduce 
on Spark (Zaharia, Chowdhury, Franklin, Shenker, 
& Stoica, 2010) that helps to improve the perfor-
mance of the iterative execution. Spark uses resil-
ient distributed datasets (RDDs) that are read-on-

ly collections of objects distributed into different 
nodes. RDDs can be rebuilt if lost and it can ulti-
mately be cached into memory, thereby providing 
a faster execution. However, Spark needs a lot of 
memory. There are numerous fields of applications 
of the MapReduce model, for example, big data 
analysis (Shim, 2012), bioinformatics (Taylor, 2010), 
and text mining (Balkir, Foster, & Rzhetsky, 2011). 
The MapReduce model provides the framework for 
implementing the map and reduce functions for ap-
plications to be executed in parallel. However, these 
two functions are problem-specific and need to be 
designed on a case-by-case basis.

4. STATE-OF-THE-ART 
FEATURE SELECTION 
TECHNIQUES

4.1. Evaluation criteria-based feature 
selection approaches

Based on the feature evaluation criteria, common 
classification algorithms, for instance, support vec-

Source: Developed by the authors based on Peralta et al. (2015)

Figure 6. The basic flowchart of a MapReduce model 

Input 
Data

Split-0

Split-1

Split-2

Part-1

Part-0

Part-2

Output

Map Shuffle Reduce



348

Problems and Perspectives in Management, Volume 17, Issue 4, 2019

http://dx.doi.org/10.21511/ppm.17(4).2019.28

tor machines (SVMs), K-nearest neighbor (KNN), 
Naïve Bayes (NB), decision trees (DT), etc. are used 
to evaluate the features in wrapper-based methods 
(Liu, Motoda, Setiono, & Zhao, 2010). Further, cor-
relation measures, distance measures, information 
theory-based measures, or consistency measures are 
used for filter-based methods (Dash & Liu, 1997); 
one example is Relief (Kira & Rendell, 1992), which 
evaluates the feature relevance by distance measures. 
A distance measure-based feature evaluation (Wang, 
Pedrycz, Q. Zhu, & W. Zhu, 2015) and a minimum 
redundancy maximum relevance (mRMR) (Peng et 
al., 2005), based on mutual information incorporat-
ing the evolutionary computation (EC) techniques, 
are the examples that fall into the category of fea-
ture subset evaluation (i.e., wrapper methods). A FS 
method (Mao & Tsang, 2013) uses the optimization 
of multivariate performance measures, but it creates 
a huge search space involving the high-dimension-
al data. Traditional statistical approaches, such as 
logistic regression, cart classification (CART), re-
gression tree, T-test, or hierarchical clustering, per-
form comparatively better and are simple, but are 
not suitable to high-dimensional data (Tan, Fisher, 
Rosenblatt, & Garner, 2009). Recently, sparse ap-
proaches have become popular to deal with FS in-
volving the datasets with millions of features. An 
example of this approach is a sparse logistic regres-
sion method, where automatic weight is assigned to 
each relevant feature and low weights close to zero 
are assigned to irrelevant features (Tan, Tsang, & 
Wang, 2013). Sparse techniques, in terms of perfor-
mance, have high efficiency and these techniques 
tend to learn simple models because of the bias to 
features with high weights. Further, these statistical 
sparse techniques typically make the assumptions 
about the probability distribution of the data. 

4.2. Evolutionary computation-based 
feature selection approaches

Based on the search technique, very few existing 
works on FS are based on exhaustive search be-
cause these methods are computationally more 
expensive (Liu, Motoda, Setiono, & Zhao, 2010). 
A variety of heuristic search techniques, such as 
greedy search algorithms, sequential forward se-
lection (SFS) (Whitney, 1971), and sequential 
backward selection (SBS) (Marill & Green, 1963) 
have been applied in the FS process as an alter-
native to the exhaustive search. However, SFS and 

SBS methods are limited by the nesting effect, i.e., 
selection or removal of a feature cannot be per-
formed in a reverse way in the subsequent steps. 
An attempt to solve this problem, the “plus-l-take-
away-r” approach (Strearns, 1976) was proposed by 
applying SFS l times and SBS r times. Nevertheless, 
the estimation of approximate values of l and r in 
practice is difficult. Approaches such as sequential 
forward floating selection (SFFS) and sequential 
backward floating selection (SBFS) methods claim 
that they perform better than static sequential 
methods (Pudil, Novovicova, & Kittler, 1994). 

FS is a typical combinatorial optimization prob-
lem. EC or evolutionary algorithms (EAs) have 
been used effectively for FS problems. A GA-based 
FS technique, which adopts the domain knowl-
edge of financial distress prediction, divides the 
features into groups and each group uses a GA for 
finding the subsets of features (Lian, Liang, Yeh, & 
Huang, 2014). A GP-based hyper-heuristics wrap-
per FS (Hunt, Neshatian, & Zhang, 2012) finds the 
subset of features from UCI Machine Learning 
Repository datasets. A FS approach uses particle 
swarm intelligence (PSO) (Lane, Xue, Liu, & Zhang, 
2013) to integrate the statistical feature clustering 
information during the PSO search to select the 
subset of features on benchmark datasets. An im-
proved ant colony optimization (ACO)-based FS 
method (Zhao, Li, Yang, Ma, Zhu, & Chen, 2014) 
was used for online detection of foreign fiber in 
cotton. A self-adaptive differential evolution (DE) 
approach (A. Ghosh, Datta, & S. Ghosh, 2013) for 
FS involves the hyperspectral remotely sensed im-
age datasets, where subsets of features are evaluat-
ed using a wrapper method with a fuzzy k-nearest 
neighbor classifier. A correlation-based memetic 
algorithm (MA) (GA plus a local search) FS tech-
nique uses the symmetrical uncertainty for large-
scale gene expression datasets (Kannan & Ramaraj, 
2010). To optimize FS and consolidation in music 
classification, evolutionary strategies (ESs) are 
applied (Vatolkin, Theimer, & Rudolph, 2009). A 
multi-objective artificial bee colony (ABC) filter 
method of FS based on a fuzzy mutual informa-
tion fitness evaluation criteria has been proposed 
and tested on six benchmark datasets from UCI 
machine learning repository (Hancer, Xue, Zhang, 
Karaboga, & Akay, 2015). An improved artificial 
immune system (AIS) based on the opposite sign 
test and nearest neighbor classifier for FS method 
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(Wang, Chen, & Angelia, 2014) evaluates the da-
tasets from UCI, KEEL repository, and microar-
ray datasets. A hybrid estimation of distribution 
algorithm (EDA)-based filter-wrapper FS method 
(Shelke, Jayaraman, Ghosh, & Valadi, 2013) finds 
the subsets of features to build a robust quan-
titative structure-activity relationship (QSAR). 
Finally, a hybrid approach of FS using PSO and ta-
bu search (TS) (Shen et al., 2008) selects the genes 
for tumor classification using the gene expression 
data.

Traditional GAs require high computational time 
to find the satisfactory solutions when they are ap-
plied to complex problems and they suffer from 
the risk of premature convergence to local optima. 
To make it scalable, parallel genetic algorithms 
(PGAs) have been proposed (Luque & Alba, 2011). 
PGA divides the whole population into multiple 
sub-populations and evolves them using the mul-
tiple processors concurrently. A PGA consists of 
several of GAs, which perform the execution on 
a part of population or independent sub-popula-
tion with or without requiring any communica-
tion between them. PGAs can increase the pop-
ulation diversity that may lead to performance 
improvements plus reduced computational time 
(Chen, Lin, Tang, & Xia, 2016). Implementation 
of PGAs is based on global parallelization (mas-
ter-slave), coarse-grained (island or distributed), 
or fine-grained (grid or cellular) types (Luque & 

Alba, 2011). Applications of PGAs to FS problems 
include a PGA of FS method to analyze complex 
systems (Mokshin, Saifudinov, Sharnin, Trusfus, 
& Tutubalin, 2018), a PGA-based attribute subset 
selection method using the rough set theory and 
MapReduce for intrusion detection in computer 
networks (El-Alfy & Alshammari, 2016), a coarse-
grained PGA method for FS involving the bench-
mark datasets (Chen, Lin, Tang, & Xia, 2016), a 
web-based PGA tool for wrapper FS for biomedi-
cal datasets (Soufan, Kleftogiannis, Kalnis, & Bajic, 
2015), and a PGA FS to predict geometric mean 
diameter of soil (Besalatpour, Ayoubi, Hajabbasi, 
Jazi, & Gharipour, 2014).

4.3. Cooperative co-evolutionary 
algorithms based feature 
selection approaches

Existing FS research based on CCEA is limited. 
The first one is a FS method for a pedestrian detec-
tion system (Guo, Cao, Xu, & Hong, 2007), where 
for each feature type, a sub-population is allocated 
individually. Based on the population size (small 
or large), this approach suffers from premature 
convergence and high computations. To avoid this, 
they proposed a sub-population size adjustment 
strategy to manage the proportion of features. The 
method has been compared with GA, random 
selection, and greedy approaches (AdaBoost al-
gorithm) and has obtained a better subset of fea-

Table 1. Feature selection techniques based on cooperative co-evolution

Source: Developed by the authors.

References Methodology used Purpose Data size

Guo, Cao, Xu, and Hong 

(2007);

Cao, Xu, Wei, and Guo 

(2011)

One sub-population for each 
feature group, sub-population size 
adjustment strategy

Determine whether a candidate 

region contains a pedestrian

Minimum 1,000 to maximum 5,000 

samples and 400 features each

Derrac, Garcia, and 

Herrera (2009)

3-population, CHC algorithm, 1-NN 
as multi-classifier, majority voting

Attribute reduction using instance 
and FS in a single process

Minimum 101 to maximum 1,728 

samples, and minimum 4 to 

maximum 60 features

Derrac, Garcia, and 

Herrera (2010)

3-population, CHC algorithm, k-NN 
classification, majority voting

Attribute reduction using instance 
and FS in a single process

Maximum 6,435 to minimum 

360 samples, and minimum 36 to 

maximum 90 features

Tian, Li, and Chen 

(2010)

Dual population, ranked-based 
selection, Pareto optimality, 
decaying radius selection 
clustering (DRSC)

Simultaneous network 

identification and prominent 
features by compact RBFNN 
model

20,000 samples and 180 features

Ebrahimpour, 

Nezamabadi-Pour, and 
Eftekhari (2018)

Random vertical decomposition, 
BGSA, information gain weights 
and Pearson correlation 
coefficients

Dealing with the small sample size 
and an enormously huge number 

of features (e.g., microarray 

datasets)

21 samples and 22,283 features 

(microarray datasets)
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tures (from 400 features) with higher detection 
rate. This same work has been reproduced (Cao, 
Xu, Wei, & Guo, 2011) involving a different exper-
imental environment and a higher number of neg-
ative samples, and obtained similar results. Table 
1 presents a summary of the state-of-the-art FS 
techniques based on CCEAs. 

A GA-based CCEA (CoCHC) for instance selec-
tion (IS) and FS (Derrac, Garcia, & Herrera, 2009) 
used three populations: one for IS, one for FS, and 
for IS and FS together. This method is computa-
tionally less expensive owing to FS and IS tasks be-
ing performed in a single process; however, it re-
quires further verification for datasets with large 
number of features and noisy instances togeth-
er with irrelevant features. Derrac, Garcia, and 
Herrera (2010) proposed another CCE technique 
(IFS-CoCo) based on three populations concept 
and k-NN classification for feature and instance 
selection. They performed the experiments over a 
wide range of datasets and obtained the improved 
results over other evolutionary feature and in-
stance selection algorithms. Datasets they used for 
experiments range from having a sample size of 
6,435 with 36 features to a dataset containing 360 
samples with only 90 features. Hence, this meth-
od requires further validation in terms of high-di-
mensional datasets.

A dual-population-based CCEA (Tian, Li, & Chen, 
2010) trains a hybrid machine learning algorithm 
called the radial basis function neural network 
(RBFNN) for FS and network identification on 26 
real-world classification problems. The proposed 
method performed the simultaneous implementa-
tion of processing hidden layer structure and FS of 
the RBFNN using a divide-and-cooperative mech-
anism. Experiments performed on 26 datasets 
with a maximum of 20,000 samples, 180 features, 
and 26 different classes and it obtained better ac-
curacy and decreased the number of features to 
tackle multi-objective (Inotai et al., 2018) optimi-
zation (Goberna, Jeyakumar, Li, & Vicente-Pérez, 
2018) in comparison to other methods. The FS 
based on CCE (CCFS) techniques (Ebrahimpour, 
Nezamabadi-Pour, & Eftekhari, 2018) deals with 
small sample size and an enormously huge num-
ber of features (e.g., microarray datasets). They 
divided datasets vertically in a random man-
ner and used a binary gravitational search algo-

rithm (BGSA) in each of the subsolution spaces. 
Information gain weights and Pearson correlation 
coefficients were used to evaluate the fitness func-
tion. Experiments were performed on seven bina-
ry microarray datasets and were evaluated against 
nine state-of-the-art FS techniques. In terms of 
accuracy, sensitivity, specificity, and a several se-
lected features, CCFS has achieved the significant 
results compared to other methods.

Several FS studies are performed based on the co-
operative (Shi, Li, & Teo, 2015) concepts, but not 
using CCEA are a multiple population cooperative 
GA-based FS approach (Li, Zhang, & Zengl, 2009), 
a fuzzy model-based wrapper FS method on two 
cooperative ant colonies (Vieira, Sousa, & Runkler, 
2010), a cooperative particle swarm optimization 
(PSO) technique-based integrative feature and 
instance selection approach (FS-CPSO) (Ahmad 
& Pedrycz, 2011), a cooperative binary particle 
swarm optimization (CBPSO) approach of inte-
grative feature and instance selection (FISCBPSO) 
to deal with the problem of nearest neighbor (NN) 
classification for high dimensional data (Sakinah 
& Ahmad, 2014), a cooperative subset search and 
instance learning-based FS (Brahim & Limam, 
2016), and cooperative game-theory based FS ap-
proaches (Gore & Govindaraju, 2016; Mortazavi & 
Moattar, 2016).

4.4. MapReduce-based feature 
selection approaches

Several works on distributed FS are available in 
the literature, where different subsets of features 
were processed concurrently using the paral-
lel processing. The parallel processing might in-
crease the efficiency of search techniques for rel-
evant features, but it required the dataset to store 
in each of the computing units. Hence, these ap-
proaches are not efficient when the dataset size is 
increased (Guillen, Sorjamaa, Miche, Lendasse, & 
Rojas, 2009). To improve the efficiency of parallel 
processing, MapReduce-based scalable FS tech-
niques have been introduced where datasets are 
split into chunks. Singh et al. (2009) proposed a 
scalable embedded FS method based on the esti-
mate of logistic regression model’s performance 
on the subsets of the training dataset. Peralta et 
al. (2015) proposed a wrapper FS-based EA on 
MapReduce platform. Filter-based FS methods 
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using MapReduce (Ramírez-Gallego et al., 2018; 
Sun, 2014) have used different evaluation metrics, 
such as mutual information or preservation to ad-
dress the column subset selection problem (CSSP) 
and the distribution of data by features. Figure 7 
presents a summary of FS techniques based on 
MapReduce.

A Hadoop MapReduce-based FS method for tradi-
tional rough sets (He, Cheng, Zhuang, & Shi, 2014) 
uses a positive approximation as an accelerator. A 
CPU-based MapReduce parallel gene selection 
model (Islam, Jeong, Bari, Lim, & Jeon, 2015) us-
es the sampling techniques and between-groups 
to the within-groups sum of square (BW) ratio, 
where BW ratio specifies the variances among 
gene expression values. After the subset of fea-
tures is selected, MRkNN techniques are used to 
run multiple kNN in parallel in the MapReduce 
model. The effectiveness of this method has been 
tested using four real and three synthetic datasets, 
and in terms of accuracy and scalability, it per-
formed better. Kourid and Batouche (2015) pro-
posed a biomarker identification method based on 
a large-scale FS and MapReduce model by com-
bining K-means clustering and signal-to-noise 
ratio with a Binary Particle Swarm Optimization 
technique (BPSO). Such approach for analyzing 
microarray data requires high computation time. 
A similar method based on the MapReduce mod-
el (Kumar, Rath, Swain, & Rath, 2015) for FS and 
classification of microarray data (NCBI) uses the 
statistical test analysis of variance (ANOVA) for 

gene selection and kNN classification. Methods 
based on ANOVA require testing the assumptions 
of independence and normality that may not work 
for FS problems with complex interactions among 
features and these methods are computational-
ly expensive. Triguero, Peralta, Bacardit, García, 
and Herrera (2015) proposed an IS method based 
on distributed partitioning and an advanced IR 
technique (SSMA-SFLSDE) for nearest neighbor 
classification. 

The FS and decision-making method based 
on Hadoop MapReduce model (Bikku, Rao, & 
Akepogu, 2016) suffers from problems, such as 
high-latency to store intermediate results on disk 
and the overhead of map jobs common to the 
Hadoop MapReduce framework. To reduce the 
computation time, FS algorithms are executed 
in parallel using the ANN embedded method in 
Hadoop framework (Hodge, O’Keefe, & Austin, 
2016). A filter-based method (Reggiani, Le Borgne, 
& Bontempi, 2018) tackles the forward FS algo-
rithm minimal Redundancy Maximal Relevance 
(mRMR) using MapReduce on Apache Spark. 
Here, an alternative encoding system (represent-
ing features in row level) customizes the feature 
score function on MapReduce to improve the 
performance in comparison to conventional en-
coding. These methods need further verification 
with the state-of-the-art FS techniques because 
they did not compare their accuracy of the pro-
posed method with other conventional and alter-
native methods based on mRMR. Moreover, they 

Source: Developed by the authors.

Figure 7. Feature selections techniques based on MapReduce

Sing et al. 

(2009)

Zhao et al. 

(2013)

Kumar et al. 

(2015)
He et al. (2014)

Bikku et al. 

(2016)

Sun (2014)

Reggiani et al. 

(2018)

Peralta et al. 

(2015)

Islam et al. 

(2015)

Kumar and 

Sing (2019)

Nagarajan et al. 

(2019)

Palma-Mendoza et al. 

(2018)

2009 20012-2014 2015-2016 2018-2019

Horde et al. 

(2016)

Triguero et al. 

(2015)

Kourid and 

Batauche (2015)

Bikku et al. 

(2019)

Ramirez-Gallegoi 

et al. (2018)

Zaghdoudi et al. 

(2019)



352

Problems and Perspectives in Management, Volume 17, Issue 4, 2019

http://dx.doi.org/10.21511/ppm.17(4).2019.28

have used the artificial datasets for the experi-
ments. Palma-Mendoza et al. (2018) proposed a 
distributed ReliefF-based FS method (DiReliefF) 
in Apache Spark. The assumptions about the es-
timation sample, for instance, tiny samples with 
few hundreds of instances to estimate the class 
separability problems in millions of samples, need 
further verification. 

4.5. Co-evolution and  
MapReduce-based feature 
selection approaches

To the best of our knowledge, works involving the 
combination of CEA and the MapReduce model 
are an emerging area of research and the existing 
works are limited. Table 2 presents a summary of 
the state-of-the-art FS techniques based on the 
combination of CCEA and MapReduce.

Ding, Jie. Wang, and Jia. Wang (2016) proposed 
a knowledge reduction method based on a hier-
archical co-evolutionary MapReduce (HCMPKR) 
with ensemble Pareto dominance. A layered 
niche neighborhood radius is used to split the 
whole population into N sub-populations and to 
self-adaptively divide into attribute approximate 
space with interacting attributes. Elitist leaders 
from the Pareto front use an ensemble approach 
of reduction Pareto equilibrium perform cooper-
ative game subsets in various niche conic subsets. 

MapReduce technique were used for knowledge 
reduction using the elitist leaders. Experiments 
performed on four real datasets and four synthet-
ic datasets having a maximum of 60 attributes, 
45 class variables, and 5 million samples where 
datasets were duplicated for generating big da-
ta from the UCI repository. The performance of 
this approach was compared with the state-of-
the-art techniques and resulted in better perfor-
mance. An attribute reduction method based on 
a multiagent-consensus MapReduce model for 
big data applications has been proposed using a 
co-evolutionary quantum PSO with self-adaptive 
memeplexes to group the particles into different 
memeplexes (Ding et al., 2018). A four-layer neigh-
borhood radius framework with a compensato-
ry scheme splits the attribute sets into subspace 
maintaining attributes interacting properties and 
maps to the MapReduce model. The attribute re-
duction is performed based on rough set theory, 
and the ensemble co-evolutionary MapReduce op-
timization is performed by five varieties of agents. 
Experiments were conducted on 16 benchmark 
datasets including three biomedical datasets, four 
public microarray datasets, four NIPS 2003 FS 
challenge datasets, and four large-scale synthetic 
datasets generated by WEKA. The proposed ap-
proach of attribute reduction achieves better re-
sults in most cases based on classification accura-
cy in comparison to algorithms, such as RACOFS, 
mRMR, and MRMS. 

CONCLUSION

Feature or variable selection in high-dimensional big data is a challenging task and it improves the clas-
sification accuracy. Despite of numerous feature selection algorithms, including traditional or statistical 
methods, they cannot meet the demands of optimizing large-scale high-dimensional datasets. Most 
feature selection algorithms emphasize the datasets containing a large number of samples, but only a 
few studies are available on high-dimensional data, such as financial big data. Big data optimization, 
such as feature selection requires a large number of computations, especially when the case is high-di-

Table 2. Feature selection techniques based on cooperative co-evolution and MapReduce

Source: Developed by the authors.

References Techniques used Purpose Data size

Ding, Jie. Wang, and 

Jia. Wang (2016)

Hierarchical co-evolution, ensemble Pareto 
dominance, layered niche neighborhood, 

MapReduce

Knowledge reduction 
for big data analysis

5 million samples and 60 

attributes

Ding, Lin, Chen, Zhang, 

and Hu (2018)

Multiagent-consensus MapReduce, co-
evolutionary quantum PSO with self-adaptive 
memeplexes, four-layer neighborhood radius 
framework, rough set theory

Attribute reduction for 
big data applications

Samples from 10,000 to 5,000,00 

and variable number of features 

with low to high dimensions
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mensional. Evolutionary optimization is therefore an obvious selection to tackle these types of problem. 
Moreover, evolutionary optimization on big data for feature selection works is limited. Cooperative 
co-evolution, a meta-heuristic evolutionary algorithm uses the divide-and-conquer strategy to decom-
pose a high-dimension problem into a number of lower-dimension sub-problems, which are optimized 
independently. Thus, it improves the optimization performance. Further, MapReduce, a parallel pro-
gramming model can help to reduce computations of the developed distributed cooperative co-evo-
lutionary algorithm parallelizing it. Hence, feature selection techniques involving co-evolutionary al-
gorithms and MapReduce is an emerging area of research and yet to be fully explored for knowledge 
management or knowledge discovery.
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