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Abstract

This study delves into the herding and bubble detection in the volatility domain of 
a capital market underlying. Furthermore, it focuses on creating heuristics, so that 
common investors find it relatively easy to understand the state of the market volatility. 
Hence, it can be termed that this study is focused on the specific financial innovation 
regarding bubble and herding detection coupled with investor awareness. The traces of 
possible volatility bubble emerge when it is positioned against its own lags (both lag1 
and lag2). The volatility trigger indicated clear traces of herding and an embedded pa-
rabola function. Continuous and repetitive parabola function hinted at a subtle pres-
ence of “fractals”. Firstly, the detrended fluctuation analysis has been used with its mul-
tifractal variant. Secondly, the regularized form of Hurst calculation and analysis have 
been used. Both tests reveal the traces of nascent bubble formation owing to prominent 
herding in CNX Nifty HFT environment. They also indicate a clear link with Hausdorff 
topological patterns. These patterns would help to create heuristics, enabling investors 
to be aware of possible bubble and herd situations.
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INTRODUCTION

It has been noticed quite often that one domain finds its answer in 
the realm of entirely different domain with little or no direct connec-
tion. Volatility bubble and therefore herding behavior underneath 
such bubble are the genesis of an unstable capital market from time 
to time. The stability of the capital markets is essential for investor 
safety and security. Therefore, it becomes essential to create mathe-
matics-based heuristics as a tool of financial innovation, so that the 
stability conditions are clearly spelt out. Classical financial models 
based on Gaussian distribution would find it rather difficult to explain 
precipitous events and the turbulence caused therefore. Multifractal 
patterns aren’t just useful for finding coastlines of an isolated island, 
but also in the price changes of stocks. They may not be able to predict 
future with 100% accuracy, but at least could represent a realistic look 
of various risks in the market. 

This humble attempt starts with two novel ideas. Namely the multi-
fractal and the volatility proxy for capital markets. The concept of the 

“financial Reynolds number (ReHFT)” as an econophysical proxy for 
stock market volatility has been established through specific study. 
The idea germinated from a bud nestled inside fluid mechanics for 
more than a century. Similar analogy was found and reconstructed 
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from the cradle of physics to the helm of quantitative financial domain. It generated the proxy for stock 
market volatility (read as “the financial Reynolds number”) through an econophysical investigation. 
ReHFT was found to be range bound mostly for the CNX Nifty except infrequent large explosions. 
Moreover, those explosions were also found to have a power law connection. Even the traces of herd 
mentality were witnessed in a monofractal investigation. However, monofractal have their own limita-
tions, which is why the need for this completely new quest to identify herding traces and plausible na-
scent bubble formation in CNX Nifty high frequency domain (ReHFT) came to the fore. “Fractals” are a 
tiny representation of a system mostly found to be coupled together with the concept of “scaling”. They 
have been used from the calculation of the British coastline to the possible cotton price bubble.

1. LITERATURE REVIEW

Fractal theory was introduced by Mandelbrot in 
1977 (Mandelbrot, 1977), although he coined the 
very term sometime in mid-1960s (Mandelbrot, 
1963). The term “fractals” comes from the Latin 
word “fractus”, meaning broken shreds of an ob-
ject. Fractals are geometrical, complex bodies, with 
a unique feature of scaling inbuilt in them. They 
can be used to figure out the coastline of Britain, 
for any linguistic clarity and more interestingly 
to identify the financial crashes. The unique di-
mension of fractals could be defined in two dia-
metrically different methods. The first one being 
perfectly suitable to regular fractals as ‘similari-
ty dimension’, and the second one appears more 
general in nature, since it’s an adaptation from the 
‘Hausdorff-Besicovitch dimension’, which is appli-
cable to not so regular fractals (Mandelbrot, 1977; 
Stefański, 1985). In 1997, Mandelbrot along with 
two other scientists have (Mandelbrot et al., 1997) 
created an uniquely faceted ‘multifractal model of 
asset returns’ or MMAR in order to explain and de-
liberate the queer variation of most financial asset 
closing prices (Safari et al., 2009). They furthered 
by pointing out that continuous multifractal anal-
ysis could well be generated for highly volatile and 
almost improbable transactions. This could surely 
resurface much information about the predicted 
values and market trends. ‘MMAR’ was project-
ed as an alternative method to famed ARCH (au-
toregressive conditional heteroscedasticity) fami-
ly of models to prove many stylized facts (i.e. the 
statistical traits of financial time series (Jiang et 
al., 2018), such as returns, volatility, trading vol-
umes, recurrences intervals, etc.) as possible, such 
as fat tails, volatility clustering, long-term memo-
ry characteristics, self-similarity, etc. (Mandelbrot 
et al., 1997). It estimates the variation of daily re-
turns in a truly complex process involving varied 

versions of fractal Brownian motion (Safari et al., 
2009). The model has the presence of long mem-
ory and the traits of fractional Brownian motion 
(FBM). Moreover, this model exhibits long memo-
ry in the absolute value of price variations. 

Mandelbrot’s proposition of extending fractals from 
measuring coastlines to elucidating the movement 
of stocks germinated this piece of work (Mandelbrot, 
1999). He argued that these techniques may not be 
able to predict the stock price with 100% accura-
cy for the following day, however, they provide es-
timates of precise probability so that investors can 
be well aware before any ‘Black Swan’ events. These 
kinds of financial innovation become essential in a 
brittle world of nano-second interconnectivity. Too 
much information flow too quickly is making the fi-
nancial system unstable. Such innovations pave the 
way for predicting and restoring stability. 

One eminent statistician from Rice University 
(Riedi, 1999) had published his technical report 

“Introduction to Multifractals”, in which he stated 
that multifractals analysis is focused on describ-
ing local unitary movement of measures or specif-
ic functions in a queer geometrical way. A specific 
method of multifractal analysis, multifractal de-
trended fluctuation analysis (MFDFA) is proposed 
by an eminent scientist (Kantelhardt, 2008), and 
it could illustrate various embedded statistical 
traits of a stochastic series on varied time scales. 
MFDFA is one of the most efficient ways to scruti-
nise whether an apparent non-stationary series is 
cardinally multifractal in nature or not. It usually 
considers changing ‘average volatility’ of any sto-
chastic series through all of its intervals. Moreover, 
it generates the unique volatility function and 
thus investigates the generalized Hurst exponents 
(Hurst, 1951) based on the power law driven vola-
tility attributes. 



184

Investment Management and Financial Innovations, Volume 16, Issue 3, 2019

http://dx.doi.org/10.21511/imfi.16(3).2019.17

Inspired by its compelling metaphor with fluid 
turmoil, multifractal detrended analysis of finan-
cial markets blossomed, composing one of the 
fundamental pillars of econophysics (Jiang et al., 
2018). Spanish research group consisting of the 
likes of Suárez-García and Gómez-Ullate’s maid-
en endeavor of testing the multifractality exhibit-
ed by the famed high-frequency returns of IBEX35 
(Suárez-Garcíaa & Gómez-Ullate, 2014), spanning 
over a crucial two-year period starting from 2009 
till 2010. As far as MFDFA is concerned, it has 
been observed that the scaling exponents and its 
individual spectrum both indicated that the un-
derlying stochastic time series exhibits a clear 
trace of multifractality. It’s a known fact that wide 
‘singularity spectrum’ often indicates presence of 
long memory in the time series. High frequency 
of arrival of information in a given state of market 
often causes ‘singularity spectrum’ depicting and 
establishing a clear ‘long memory’. Information 
reaches the market on a daily basis. These infor-
mation gets superimposed at a higher frequency. 
Further that generates bubble and herding, which 
is evident from the multifractality test. If informa-
tion gaps are far too long and they seem to be hav-
ing relatively less impact then the multifractality 
test doesn’t show a clear ‘singularity spectrum’. A 
group of Chinese researchers (Wang et al., 2014) 
have found that due to the complex nature of the 
markets and their increasing high connectivity in 
today’s well-connected world, it’s quite difficult to 
find a clear pattern despite the so called ‘efficient 
market theory. Since, the assumptions sometimes 
seem way too theoretical. Thus, the call of the day 
is to find a clear pattern for prediction and control 
connected networks of global markets. Even sta-
bility calculation becomes way too important as 
well. The same Chinese group of researchers ana-
lyzed daily returns of NASDAQ Composite Index. 
They’ve considered a time period that starts im-
mediately after the world credit fiasco. Soon they 
came to a conclusion that in no way the returns 
fit Gaussian distribution. In fact the fat tails were 
quite evident in this case making the prediction 
way too difficult. They found profound trace of 
multifractality. Furthermore, they found that the 
long memory trait is the cardinal reason behind 
the embedded multifractality in NASDAQ. They 
furthered by confirming that the entire journey of 
NASDAQ returns may not be entirely stochastic, 
but it’s purely stochastic in certain periods. Some 

eminent American studies such as Los and Lipka 
(2003) found that most European stock markets 
follow anti-persistent way (indicating entirely 
stochastic and almost no traces of herd behavior) 
while empirically testing the degree of persistence 
of daily index returns of eight European bourses. 

This paper is based upon econophysical volatility 
proxy rather than daily returns or log normal re-
turns of indices. MFDFA has been used to study 
the scaling behavior of non-stationary multifrac-
tal time series in this case. Non-stationary time 
series often suffer from trend due to the shift of 
the dynamic mean value. Thus, detrending is 
required to understand the absolute movement 
and identification of any cycle (whether hidden 
or not). The main idea underlying this proce-
dure consists of taking into account deviations of 
qth-order moments from polynomial fits. In fact, 
notice that for q = 2, classical DFA remains as a 
particular case of MFDFA. Recollection factor 
over different orders shows the consistency of 
the long memory process, i.e. “mostly it has been 
observed that the autocorrelation function or 
ACF generated from the absolute returns of any 
stochastic series decompose quite slowly; while 
being the function of the time lag, following a 
specific power law” (Safari et al., 2009), as well. 
One latest study in the said context shows evi-
dences of short-long dependence and light-heavy 
tail (fat tails) fluctuations for financial time se-
ries (especially for certain specific stocks in the 
US). Moreover, they’ve verified the accuracy 
across various version of Weiner Process (mod-
ified Brownian motion) and more appropriate 
fractional Brownian motion to find that MFDFA 
results to be consistent enough to rely upon 
(Thompson & Wilson, 2016). 

2. METHODOLOGY

Taking previous research into consideration, two 
embedded assumptions paved the way for this 
entire work. Though monofractal were put into 
use effectively and predictability (in form of pro-
found herding) was confirmed yet, it was never 
full proof. Monofractal precisely depict an in-
complete narrative. Moreover, monofractal fail 
to track for any time series that has the under-
lying of asset prices due to multiple dimensions 
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and their ever-changing nature. Hence, ReHFT 
cannot be tracked using monofractal alone. 
Secondly, these stochastic series are self-simi-
lar in some way, thus ignoring a Markov chain, 
random walk, and generalized Brownian mo-
tion (GBM) basic assumptions. Though techni-
cally ReHFT is not a time series based on stock 
market closing, all its ingredients are traced 
back to the CNX Nifty HFT domain. Certain 
trailblazing literature found links of power law 
relationship of asset prices and their far-fetched 
implications to stochastic nature along with the 
embedded persistent pattern (indicating pres-
ence of herd). Mandelbrot (Mandelbrot et al., 
1997) found that patterns in the price follow 
power law relationship and asset prices were far 
from normal. He also found that the Lévy stable 
condition or α range from 0 to 2, where α = 2 
satisfies the condition for embedded Gaussian 
distribution. Mandelbrot further developed an-
other path-breaking invention when he con-
structed “Rescaled Range Analysis” (R/S). The 
Hurst exponent follows H = 1/α; thus, when 
α = 2, the Hurst exponent becomes completely 
stochastic or in other words follows Brownian 
motion completely. In other expression, H = 0.5 
should ideally follow a Gaussian distribution 
curve. 

2.1. Multifractal detrended 

fluctuation analysis (MFDFA)

Mandelbrot’s trailblazing ‘fractals’ were furthered 
by a group of eminent researchers (Kantelhardt 
et al., 2002) who gave a clear shape to the entire 
process of identification of impact of multifractal-
ity in a noisy time series. From bio-medical series 
to stochastic financial series, multifractal is used 
everywhere. Initially pure noisy time series have 
to be amended enough to have an appearance of 
a ‘random walk’ type series. Consistent noises 
could be translated to pure ‘random walk’ series 
by subtracting the mean value first followed by 
integration of the same (Ihlen, 2012). Calculation 
for the ‘RMS’ or the root mean square variation of 
the same series holds the key in this entire process. 
Locally these RMS values are calculated (especially 
in the areas that are having clear trends) and then 
summarized as an entire RMS. However, this cal-
culation is partially overshadowed with substan-
tially large oscillations for tiny samples and vice 

versa. Overall RMS and the various samples will 
ideally show their ‘power law’ connection explicit-
ly here. This is the famous “monofractal detrend-
ed fluctuation analysis” or DFA. The coefficient for 
this specific relation is none other than the ‘Hurst 
exponent’ (Hurst, 1951; Watkins & Franzke, 2017). 
This same method once extended to the qth order 
becomes ‘multifractal detrended fluctuation anal-
ysis” or MFDFA (Ihlen, 2012). Fractal properties 
and their coefficient values do change from mono 
to multi, the latter being more accurate in nature. 

2.2. Generalized Hurst exponent 

(GHE)

While British hydrologist was working on the 
River Nile project in 1951, he found the long-
range correlations in a time series (Hurst, 1951). 
Although this trailblazing tool was born in the 
cradle of water storage problem, yet it found apt 
usage in various fields such as chaos theory, spec-
tral analysis, fractals, and long memory processes. 
It confirms both correlation and persistence. This 
makes the Hurst exponent an excellent index for 
studying complex financial time series.

The robustness of such mathematical construct 
is largely based on the qth-order moments for the 
distribution of incremental value. That incremen-
tal value has been modeled through a stochastic 
process. This method provides information about 
evolution of any financial time series. The scaling 
pattern leads this entire calculation to the well-
known generalized Hurst exponent (GHE). It has 
been further noted that all the scaling traits of se-
ries under consideration are usually embedded in 
H(q), that can be termed as ‘scaling index’. Anyways, 
this in turn consolidate the fundamental premise 
stating the confirmatory power of GHE over its 
peers. It has been found that such stochastic series 
will have a unique scaling property represented by 

“H”, which in turn matches perfectly with the self-
affine exponent (or self-similar exponent) for that 
same time series. However, the quantitative meas-
ure of self-similarity (Hurst coefficient or expo-
nent) is found to be constant for each qth order mo-
ment. Researchers have found GHE to be precise-
ly closer to the actual Hurst exponent (depicting 
both herding and bubble) for q = 1. Since a higher 
degree of “q” has been considered, thus both GHE 
and MFDFA output are considered. In fact, for a 
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higher “q” order MFDFA becomes more accurate 
to determine self-affinity (not only self-similarity; 
defined later in detail).

Zones of the Hurst exponent are defined in Table 1.

Table 1. Zone of the Hurst exponent 

Hurst exponent Interpretation

HE < 0.5
Antipersistent, no shape, no herd behavior, 
fractal quotient is lesser

HE = 0.5
Follows theoretical random walk, entirely 
stochastic in nature

HE > 0.5
Evidently persistent, clear shape, trace of 
herd behavior, fractal quotient is higher

3. RESULTS AND DISCUSSION

Figure 1 shows a pure theoretical white noise and 
can be termed as a pure stochastic array of obser-
vations forming a random walk pathway (the low-
er panel in Figure 1), a uni-fractal random walk 
pathway has been depicted with one fractal di-
mension (the middle panel in Figure 1), and a mul-
ti-fractal random walk pathway (the upper panel 
in Figure 1). Fractal properties (roughness in other 
words) and volatility of the embedded time series 
(in this case its ‘financial Reynolds number’ for 
CNX Nifty HFT domain) were calculated from 
February 2012 to December 2016. A zoom in im-
age opens up the true roughness of a multifractal 
analysis. The rationale is pretty clear as well. The 
number of direct, indirect, and even latent vari-
ables responsible for the volatility (the ‘financial 

Reynolds number’ as an econophysics proxy) is far 
too many to consider at any instance; hence, the 
roughness is found to be on the higher side.

Local detrending of the time series (volatility 
proxy) is depicted very clearly in Figure 2. Three 
distinctly different polynomial trends are visible 
here. They seem linear when m = 1, looks like a 
quadratic when m = 2, and transforming to cubic 
when m = 3. 

DFA cardinally establishes the monofractal nature 
of any stochastic series. It is often represented by 
a unique power law connection between various 
error calculations (read as RMS) across various 
scales. Furthermore, it has been observed that this 
unique relationship is depicted by the slope (H) of 
the regular regression line (see Figure 3). 

Figure 4 demonstrates the slope, H, of the regu-
lar regression line famously described as the Hurst 
coefficient or exponent (Hurst, 1951). It identifies 
the embedded monofractal nature by examining 
the pace of RMS, F of local variations advance 
against the expanding sample size or, in oth-
er words, “scale”. It has been depicted that RMS 
is advancing ahead quicker with the sample size 
for the time series with varied fractal dimension 
when in comparison with white noise time series. 

The overall q-order RMS is able to differentiate 
between the micro-structure of tiny and relatively 
substantial oscillations. Further its able to differ-
entiate between varied fractal time series under 

Figure 1. Multifractal, monofractal, and white noise like time series
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consideration (Ihlen, 2012). The multifractal time 
series have been found to be having local oscilla-
tions with extremely tiny and relatively large mag-
nitudes, which is absent in the monofractal time 
series. Hence, the monofractal time series is found 
to have normal distribution. The multifractal time 
series is not normally distributed and all qth-order 
statistical moments should be considered. The pe-
riods with large variations are virtually blank for 
monofractal, but not so for multifractal analysis. 

The qth-order Hurst exponent has been expressed 

as ‘Hq’, for the time-series under consideration 
has been found to have various different traces; 
the multifractal one (blue trace), monofractal one 
(red trace), and finally white noise (turquoise trace), 
(Ihlen, 2012) where the colored dots represent the 
slopes Hq for various order of the exponent such 
as q = –3, –1, 1, and 3. qth-order Hurst exponent for 
different time series is illustrated in Figure 6 (A-
C). It has been found that Hq (the qth-order Hurst 
exponent) comes down from 1 to 0.77, when scal-
ing is done on the upside for various order of the 
exponent such as q = 1, 2, 3, etc. Hence, the larger 

Figure 2. Cubic, quadratic, and linear detrending

Figure 3. Root mean square (RMS)
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the sample size, the less the persistence. However, 
persistence denoted by Hq or the Hurst exponent 
gets stabilized around 0.6, which is still inside the 
persistence zone (see Figure 6).

The plot of hq versus Dq is referred to as the “mul-
tifractal spectrum” (Ihlen, 2012; Vardhini et al., 
2018). The multifractal spectrum is not found to 
be skewed (Proto, 2012). Moreover, Dq goes up 

with hq 0 upto hq>=1 (Figure 7), this confirms the 
assumption that stock markets are multifractal, 
not monofractal. This in turn indicates similarity 
with the embedded volatility pattern, which inci-
dentally resembles an inverted parabola. 

A multifractal spectrum could well be viewed 
as an ensemble of independent monofractal for 
the same time series. When that Hurst exponent 

Figure 4. Hurst exponent

Figure 5. qth-order RMS for different time series
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stays close to 1, it confirms long memory process. 
ReHFT is found to have long memory, as well as it 
has been found to have a Hurst exponent of around 
0.77. Interestingly it has been observed that persis-
tence is consistent, which makes volatility predict-
ability possible in a continuous basis. The symme-
try, which has been observed in the multifractal 
spectrum, proves the self-affine nature of ReHFT. 
This means that ReHFT depends on many param-
eters or dimensions, but it follows its own past pat-
terns as well. However, the degree of following or 
the impact of dimensions does change in this long 
memory stochastic process. Hence, it is difficult to 

anticipate which dimension will play the key role 
in future. It is a kind of a distorted self-similar 
process. 

Figure 8 depicts a picture of estimation of the 
Hurst coefficient or exponent in the sample vicin-
ity. Both the local minimum and local maximum 
Hurst coefficient or exponent respectively emerge 
out as the slope of the respective upper and low-
er red lines (Ihlen, 2012). This converges from 
the local maximum and local minimum of RMS 
straight to the regular regression line. 

Figure 6. qth-order Hurst exponent for different time series

Figure 7. The multifractal spectrum of time series
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Self-similarity and self-affinity are different. A ti-
ny sample grows symmetrically in all possible di-
rections in case of self-similar substance or sam-
ple. However, in case of self-affinity, the growth is 
asymmetrical in nature; it exhibits non-uniform 
growth across the sample. GHE results are sum-
marized in Table 2.

Table 2. GHE output

Observation 
range

Hurst 
exponent

Fractal 
dimension

Change  
in volatility

1-105 0.59961 1.40039 –39%

106-305 0.88042 1.11958 1.27%

306-505 0.64146 1.35854 –66%

506-705 0.63717 1.36283 130%

706-905 0.61342 1.38658 215%

906-1056 0.81664 1.18336 –81%

The average Hurst exponent is 0.69812 and the 
correlation between the changes in volatility with 
the Hurst exponent is 0.657.

Whenever the change in volatility is found to be high-
er, it coincides with the zones where the Hurst expo-
nent is relatively lower (see Table 1). It is plausible as 
lower Hurst indicate lower herd behavior. Therefore, 
the secular direction will not be possible. Hence, vol-
atility will change at a higher pace. Volatility means 
random track changes in a time series with rapid fre-
quency and inconsistent amplitude. Higher Hurst 
exponent indicates secular movement with less fre-
quency, less change of track, and consistently higher 
amplitude (virtually indicating a clear pattern). 

Another interesting fractal discovery was ex-
plained during the course of this analysis. 
Fractal dimensions are linked with Hausdorff 
topology connection. This in turn is going de-
velop the ‘investor heuristics’, essential for 
the understanding about the current market 
condition. 

Table 3. Fractal geometry and topology 
connection

Fractal 
dimension 

Fractal geometry similarities  
(in shapes and patterns)

1.40 Douady rabbit, as per Hausdorff
1.38 Douady rabbit, as per Hausdorff

1.36
Five circles inversion fractal, as per 
Hausdorff

1.36
Five circles inversion fractal, as per 
Hausdorff

1.18 Dendrite Julia set, as per Hausdorff

1.12
Contour of the Gosper Island, as per 
Hausdorff

Interesting observations surface out following 
Hausdorff topology methods and linking them 
with Julia sets and Mandelbrot fractals (Hausdorff, 
1919). Hence, as herding increases, the shape 
changes from a Douady rabbit (see Figure 9) to 
a dendrite Julia set (see Figure 10). Thus bubble 
formation possibilities could be at the anvil when 
Douady rabbit formation slowly takes the shapes 
of Julia sets and is closely followed by the contour 
of the Gosper Island. On the contrary, predictabil-
ity (persistent patterns) would surely take a nose-
dive in these cases. 

Figure 8. Estimation of the Hurst exponent
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Douady rabbit, having a fractal dimension of 
around 1.4, ensures lower degree of persistency 
of Hurst exponent. This in a way indicates that 
volatility is persistent with a lower degree. Hence 
herding possibilities are found to be less. Volatility 
driven bubble possibilities are found to be less as 
well. This financial innovation would surely give a 
clear-cut idea about the capital market condition 
to an average investor.

The dendrite Julia set confirm implicit persistent 
pattern along with profound herd behavior and 
possible nascent volatility bubble. Average inves-

tors can be aware of such a diagram since it sig-
nifies instability and excess volatility for them to 
venture.

Log returns from stock market were proven to be 
fractal long time ago (Redelico, 2012). It has been 
proved earlier that the financial crisis developed 
out of prominent bubble; more interestingly em-
pirical evidence of multifractal trace (or signature) 
has been quite profound (Redelico, 2012). Hence, 
multifractal traces and prominent bubbles are 
cobbled together more often than not, leading to 
a possible catastrophe at the anvil.

Figure 9. Douady rabbit 

Source: Created by the author with the help of MATLAB Code.

Figure 10. Dendrite Julia set 

Source: Created by the author with the help of MATLAB Code.
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CONCLUSION

This paper proves that even the volatility follows the same trail. Through the empirical research on the 
‘financial Reynolds number (ReHFT)’ derived out of CNX Nifty HFT domain using MFDFA, it has been 
revealed that ReHFT possesses strong traces of herding. The reason for this is yet to be explained. In fact, 
the relationship became stronger with multifractal calculation when compared to its monofractal coun-
terpart (the Hurst exponent became 0.77 from 0.72). Multifractals (read MFDFA) were found superior 
for obvious reasons over their peer (i.e. GHE), however both indicated similar outcome. 

The embedded fractal structure also provides a lot of information and extends evidence of an inher-
ent fractal nature inside the econophysical volatility proxy, which has so far remained undetected. 
Probability of a nascent bubble formation increases with unexpectedly rapid progress under a strong 
influence of secular movement (indicated by the Hurst exponent). A higher level of the Hurst exponent 
confirms persistent patterns within the realm of quantitative finance. The embedded herd behavior in-
side the econophysical volatility proxy, leading to possible bubble situation has been confirmed in this 
paper. This work has the genesis of developing heuristics for market volatility; profound topological 
heuristics pattern surfaces out during this study. The dendrite Julia set, or contour of Gosper Island 
share the same fractal dimension as that of a possible herding and nascent bubble formation. An ap-
parent topography indicating possible financial catastrophe remained a significant outcome. A regular 
retail investor too would get enough clue about the status of ‘bubble’ and ‘herd’, which is apparently hid-
den in the bourses. Market stability could get a new definition hence on. Log returns have been tested far 
often in the past, thus this brings a new perspective from the volatility standpoint. What that means is 
that fractals remained universal and their footprints were found everywhere from hydrodynamic fluid 
mechanics to bourse volatility. 

FUTURE RESEARCH POSSIBILITIES

Intrinsic trends are often hidden in both stationary and even non-stationary time series. It is both diffi-
cult to identify and decipher. Most researchers have used ‘feasible trend functions’ to identify the same. 
Fractional Brownian motion and Platt Scaling could well be used further to elaborate the study, where 
‘volatility bubble’ could be spotted. Novel approaches such as OMW-EEMD-MFDFA could well be ap-
plied on volatility proxy for advanced analysis. OMW stands for overlap moving window algorithm, 
which will segregate the time series in various moving OMWs. 
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