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Abstract

The paper examines the bias introduced by metaorder limit prices when measuring 
quality of execution services on financial market. While evaluating the quality of ex-
ecution services, observed execution costs should be adjusted for metaorder participa-
tion rate, size and duration to ensure that they are comparable across execution service 
providers. One of the exogenous factors which may bias measured execution costs are 
the different metaorder limit prices in the sample. Currently, there are no proposed 
methods to normalize for this bias. In the research, the difference in execution costs 
for metaorders with different limit prices was examined by implementing a limit order 
book simulation model. It was discovered that the difference in metaorder limit prices 
is a source of significant heterogeneity in the execution cost distribution. However, we 
were able to prove that when market agents trade with constant intensities, the dif-
ference in execution costs for metaorders with different limit prices is fully explained 
by their realized participation rate. As a result, financial institution may assess qual-
ity of execution services for metaorders without any reservations about differences in 
metaorders limit prices as long as execution costs are adjusted for different participa-
tion rates. 
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INTRODUCTION

In the modern equity market, financial institutions frequently need to 
dramatically change the size of their holding of a given stock. However, 
doing so in one large instantaneous trade may often be too costly or 
even impossible due to limited supply of market liquidity for an as-
set. In these cases, market participants resort to slicing large trading 
orders into smaller pieces and executing them one by one during an 
extended period of time – hours or days. 

These large orders are known in academic literature as metaorders 
(Farmer et al., 2013). They are executed by a trader – a set of dedi-
cated trading professionals or a system of rules coded up in electron-
ic algorithms. Although these orders are traded during a significant 
timespan, they still result in changes to supply/demand equilibrium 
and cause adverse price movement during the execution. This effect is 
known as market impact (Torre, 1997). 

Market impact causes the average execution price for the metaorder 
to be worse than initially observed on the market. This difference in 
prices is a markup the financial institution pays for access to liquidity. 
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According to Collins and Fabozzi’s (1991) classification, this markup represents an execution cost por-
tion of variable transaction cost. 

Financial institution usually specifies on how a metaorder is to be executed – including limit price and 
relative speed of trading. Based on these input parameters, the trader decides on the best way to slice a 
metaorder into pieces and the best time to trade each single slice. Therefore, the market impact and the 
average execution price that the institution gets for trading the metaorder is subject to the quality of the 
trader’s decisions. This means that the institution should closely monitor the quality of trading services 
to ensure that it does not pay more than necessary in execution costs.

Still, assessing the performance of traders is plagued by costly, small samples of metaorders and signifi-
cant noise in the data. Therefore, the following becomes extremely important:

• use of the appropriate metrics for estimating execution costs while using trader services;
• ensuring that the sample size is utilized to its full extent.

The arrival cost metric (also known as ‘return proxy’) is the measure primarily used in academia and the 
industry for measuring market impact and variable trading costs (Grinold & Kahn, 1999; Almgren et al., 
2005; Bershova & Rakhlin, 2013; Said et al., 2018). It computes the execution price of the order relative 
to the observed mid-price at the start of the order. 

Collins and Fabozzi (1991) claim that the correct measure of transaction costs should satisfy the follow-
ing criteria:

• it should clearly define an appropriate benchmark for the “fair price” of the transaction;

• the measure of transaction costs should be independent from other factors, which affect execution 
prices, such as market conditions or order types.

Even though the arrival costs metric is commonly used, it has a drawback with respect to aforemen-
tioned requirements: it is affected by a range of market variables and order characteristics.

In order to adjust for these factors, researchers investigated what the ‘fair’ market impact should be for a 
given trade. This resulted in a set of well-established formulas to compute expected market impact and 
expected execution costs (Almgren et al., 2005; Alfonsi et al., 2010; Donier et al., 2015). These formulae 
use speed of trading, liquidity and volatility of the stock as inputs. Therefore, to adjust for these varia-
bles, one could simply normalize observed arrival cost by expected market impact. 

For example, when analyzing a trader’s metaorder execution, one could reformulate the problem 
from absolute values [ ] E arrival costs  (how much arrival cost this execution had) to relative values 

[ ]  E arrival costs expected costs  (how much extra arrival cost this trader caused versus expected).

In the second formulation, arrival costs become adjusted for speed of trading, as the latter is one of the 
parameters in the expected arrival cost formula:

( )   ,   ,   , expected cost f speed of trading stock liquidity stock volatility  (1)

Higher arrival cost does not necessarily mean that the trader’s execution services are poor – he may have 
received harder orders to trade than those of his peers (for example, for less liquid stock), which should 
have a higher execution cost regardless of trader skill. On the other hand, higher adjusted arrival cost is 
a better indication that the provided services are subpar, as this metric is corrected for order complexity.
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However, none of the formulae for expected costs take order type into account. As a result, even 
when accounting for expected market impact, the adjusted arrival cost metric will be systematically 
biased if applied to metaorder with different order types (market and limit) and limit prices. A large 
number of researchers acknowledged this as one of the obvious shortcomings (Cohen et al., 1981; 
Nevmyvaka et al., 2005). 

As a result, when measuring the performance of traders, the institution has to filter out observations of 
different order types or limit prices and resort to studying only the subsample of executed metaorders. 
Due to a decreased sample, the financial institution needs to use the services of a potentially underper-
forming trader longer before being able to determine with statistical confidence that the quality of these 
services is subpar.

Thus, the aim of this paper is to study how arrival cost should be adjusted so that it can be effectively 
used when comparing costs of execution for a sample of metaorders with different limit prices.

We attempt to do so by designing a model, which simulates the execution of a large metaorder by a trad-
er. By varying the limit prices of simulated metaorders, we studied the difference in the execution costs 
caused by this factor and designed a proper normalization procedure. 

Our research is structured as follows. In the first section, we review previous research dedicated to 
metaorders trading and their execution costs. In the second section, we present a set of processes, which 
attempt to model the execution of a large metaorder by a trader. We examine the differences in the 
execution costs caused by variability in limit prices and participation rates in the third section. In the 
fourth section, we provide guidelines on normalization procedure for execution costs of metaorders 
with different limit prices. We also discuss the limitations of the model and potential areas of future 
research. Finally, we summarize the findings in the concluding section of the paper. 

1. LITERATURE REVIEW

There is an extensive body of scientific research in 
the differences in execution costs between mar-
ket and limit orders. For instance, Handa and 
Shwartz (1991) studied limit order trading and its 
effect on imbalances and market infrastructure. 
They found that for traders who trade with low-
er speeds, the submission of limit orders is pref-
erable to trading using market orders. Biais et al. 
(1995) have conducted the empirical studies on a 
set of limit orders sent to the Paris Bourse stock 
exchange. They observed that large market order 
trades, which consume outsized liquidity in the 
limit order book, provide an informational sig-
nal to market participants and form expectations 
on future price movement. Finally, Harris and 
Hasbrouck (1996) directly compared performance 
of limit and market orders sent to NYSE. They dis-
covered that on average limit orders perform bet-
ter than market orders, even though the former 
are subject to adverse selection risk and higher 
variability in costs.

However, in these researches, analysis of the exe-
cution costs was conducted from the perspective of 
orders sent directly to the exchange. From metaor-
der perspective, these exchange orders do not pro-
vide the whole picture of metaorder execution cost. 
In general, a trader is free to slice a metaorder in-
to market or limit exchange orders, as he sees fit as 
long as the execution price of each slice is within 
the price discretion provided by the metaorder.

Thus, there is also a set of notable papers dedi-
cated to metaorder market impact. For instance, 
Almgren et al. (2005) studied functional form of 
market impact considering metaorder character-
istics. His research was continued in the works of 
Alfonsi et al. (2010), Bershova and Rakhlin (2013), 
Donier et al. (2015). These studies provide a closed 
form formula for order expected market impact 
and for execution cost based on a number of in-
puts – order characteristics. By normalizing the 
arrival cost metric by formula-computed expect-
ed execution cost, one could account for the differ-
ences in these characteristics. 
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However, none of the formulae of expected costs 
account for the difference in limit prices. So, one 
must filter the metaorders with different limit pric-
es from the data set to ensure a homogenous sam-
ple when comparing realized arrival costs to the 
benchmark. For instance, Almgren et al. (2005) 
pointed out the limit order type bias, but stated 
that ‘analysis of our data set suggests that this ef-
fect is not significant’ (Almgren et al., 2005, p. 58). 
This conclusion was made relative to the set of the 
metaorders being investigated and is unlikely to 
be extendible to a general case scenario.

Up to this date, the only research conducted in-
to the effect of limits on metaorder market im-
pact was the one of Said et al. (2018). While this 
research has confirmed some theoretical concepts 
about market impact for metaorders with different 
limit prices, it has not identified how to quantify 
or adjust for this difference. 

Our research aims to cross the gap between ex-
tensive analysis of the difference in performance 
between market and limit exchange slices and 
studies of metaorder market impact. We want to 
make sure that when computing costs of trading, 
we could use both limit and market metaorders in 
the same sample.

Most of the previous studies on market impact 
were focused on using empirical and historical 
data. While extremely useful in analyzing costs of 
individual orders, it is hard to answer the ques-
tion of what the arrival cost metric would’ve been 
if the institution had traded a market instead of 
limit order. To model these “what-if” scenarios, 
we need to introduce a set of additional assump-
tions and directly simulate the underlying order 
book dynamics. 

In doing so, we would model order book dynam-
ics on exchanges, covered in the works of Cont et 
al. (2010), Farmer et al. (2013), Donier et al. (2015), 
Abergel et al. (2016). While the most recent models 
are more closely aligned with the documented em-
pirical facts of metaorder trading, their complex 
formulaic forms significantly limit flexibility in 
altering suggested metaorder trading process. We 
believe that extending the simpler model proposed 
by Cont et al. (2010) could lead us to understand-
ing the source of the bias in arrival cost metric for 

limit orders. The latter, in turn, should provide a 
direction of how the institution could correct for 
this bias when evaluating trader performance.

2. MODEL

Our model is built based on two interconnected 
processes.

The first process simulates a limit order book dy-
namic of a particular asset when demand for li-
quidity matches the supply. It happens when none 
of the market participants possesses any convic-
tions about the fair price of the asset. Therefore, 
price is only influenced by uninformed market 
trading and resembles random walk.

The second process will model the execution of a 
buy metaorder following a VWAP/TWAP strate-
gy. It places orders on stock exchange according to 
the prevailing price and pre-determined strategy 
schedule. It will cause an increase in demand for 
liquidity and create an upward pressure on price.

Combining these two processes together, we could 
directly model effect of buy metaorder execution 
on liquidity and prices. Note that the side of the 
metaorder was fixed only for illustrative purposes: 
the process could easily be extended to a sell case 
with minor adjustment to equation signs and pro-
cess interactions.

2.1. Limit order book process

Following the work of Cont et al. (2010), we as-
sumed that at each given moment in time, the 
stock exchange may be represented as a vector of 
buy and sell limit exchange orders:

( )
1

, , , , , ,
k N

buy buy buy buy

p p px x x x=     (2)

( )
1

, , , , , ,
k N

sell sell sell sell

p p px x x x=     (3)

where 
1

buy

px  is the number of limit orders to buy 
security at price 

1
,p  

1

sell

px  is the number of limit 
orders to sell security at price 

1
.p  

Due to the nature of the limit orders, :kp∀  
0 0

k k

buy sell

p px x> => =  (and vice versa), if there are 
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simultaneous buy and sell orders at the given price, 
they are crossed and result in a trade.

Limit order books can therefore be expressed 
more concisely as:

( )
1
, , , , ,

k N

sell buy

p p px x x x x x= − =    (4)

where 0
kp

x <  represents 
kp

x  orders to buy and 

0
kp

x >  represents 
kp

x  orders to sell. The cur-
rent bid price is defined as a maximum price Bp  at 
which 

Bp
x  is negative: { }max : 0 ,

kB k pp p x= <  
and the current ask price – minimum price Ap  at 
which 

Ap
x  is positive: { }min : 0 .

kA k pp p x= >

The evolution in time of the limit order book fol-
lows a continuous-time Markov process with the 
following set of transitions:

1) arrival of new limit orders with intensity :λ

( )
1
, , 1,

k Np p px x x x→ +   

with rate ( )k Bp pλ −  for ,k Bp p>  (5)

( )
1
, , 1,

k Np p px x x x→ −   

with rate ( )A kp pλ −  for ;k Ap p<  (6)

2) arrival of new market orders with intensity 
:µ  

( )
1
, , 1,

B Np p px x x x→ +  with rate ,µ  (7)

( )
1
, , 1,

A Np p px x x x→ −  with rate ;µ  (8)

3) cancellation of orders with intensity depend-
ent on the number of limit orders at the given 
price:

( )
1
, , 1,

k Np p px x x x→ −   

with rate ( )
kk B pp p xθ −  for ,k Bp p>  (9)

( )
1
, , 1,

k Np p px x x x→ −   

with rate ( )
kA k pp p xθ −  for .k Ap p<  (10)

In the article, Cont et al. (2010) evaluated the fol-
lowing arrival rates of ,λ  µ  and θ  for the Sky 
Perfect Communication stock as a function of i  

– the distance from the opposite quote price:

0.94,µ =  (11)

,i

k

iα
λ =  where 1.92,k =  0.52,α =  (12)

( ) { }0.71,0.81,0.68,0.56,0.47iθ =   

for 5i ≤  and ( ) ( )5iθ θ=  for 5.i >  (13)

We use the same model and the same parameters 
to simulate the dynamics of the order book. 

Note that, strictly speaking, the process requires 
maintaining the current book at each single dis-
crete price point on the ( ]0,∞  interval. However, 
orders which come outside of the range of possi-
ble values for Bp  and Ap  on the given time ho-
rizon have no effect on the evolution of the pro-
cess. Additionally, the absolute value of the pric-
es (provided they are higher than zero) have no 
impact on how many price units the stock has 
moved. Therefore, for simplicity, we modified the 
price values suggested in the article and assumed 
a different initial state of order book (depicted in 
Figure 1).

According to this order book (Figure 1), the 
quote sizes have an exponentially decaying 
structure; this is often observed in practice 
(Abergel et al., 2016). We took special care to en-
sure that the values of the process never reached 
beyond the ( ]0,200  interval in the subsequent 
simulations. Considering that the model is con-
tinuous in its nature, for simulation purposes 
we discretized the time into transition units 
of 0.01.dt =  Since expected number of in-
coming market orders on one side is equal to 

[ ]#  E market orders Tµ=  (from properties of 
Poisson process) and #T transitions dt= ⋅  (due 
to discretization of time), one market order on 
average would come in every 1 106.38dtµ =  
transitions. This fact allowed us to limit the 
number of values for which we had to maintain 
the current list of limit orders and to reduce 
computational complexity. 

Armed with this model description and parameter 
values, we were able to model the dynamics of the 
bid and ask prices (Figure 2).
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2.2. Metaorder execution process

Having set up an appropriate model for the limit 
order books dynamics, we were able to direct-
ly model metaorder execution effect on pre-
vailing price. In order to cause market impact, 

metaorder trading has to represent a short-term 
shock to the available liquidity and fall outside 
of what is deemed to be usual trading activity. 
Therefore, a separate process has to be defined 
for metaorder execution on top of limit order 
book transitions. 

Figure 1. Initial shape of order book
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Similar to the previous subsection, we introduced:

( )
1
, , , , ,

k N

buy

p p py y y y y= =    (14)

where 
kp

y  – number of buy slices sent by a trader 
at price .

kp
y

We assumed that the trader attempts to buy stock 
by trading metaorder with a limit price limitp  and 
following time-weighted-average-price (TWAP) 
strategy. Since the model does not have any con-
cept of time of day, this strategy behavior should 
be almost identical to POV or VWAP strategies 
up to some temporal disturbances caused by the 
stochastic nature of the process. According to 
Almgren and Chriss (2001) and Konishi (2002), 
VWAP execution strategy is the optimal strategy 
for a risk-neutral trader.

Suppose the trading algorithm wants to buy a slice 
(one lot) every time window of X  time units. For 
ease of interpretation, we set that time unit = 100 
transitions. At the start of that window, our algo-
rithm placed a passive order at the highest passive 
price determined by the current bid price and lim-
it price of the metaorder: 

( )
1
, , 1, , ,

passive Np p py y y y→ +   (15)

where { }min ,passive B limitp p p=  at the moment 
when passive slice is placed.

Then, the algorithm waited till the end of the 
X  time unit horizon. If the order was traded, 
the algorithm just remained dormant till the 
end of the period. If the order didn’t result in 
execution by the end of the period (

passivepy  was 
still positive), the algorithm canceled the pas-
sive order:

( )
1
, , 1, ,

passive Np p py y y y→ −   (16)

and crossed the spread by aggressively taking li-
quidity at the ask price (conditional on the ask price 
being within the limit price) – in essence, sending 
a market exchange order at price :aggressivep

( )1
, , , , ,

≤
→ − 

aggressive aggressive p N
limit

p p p px x x x1  (17)

where 
aggressive ap p=  at the moment when passive 

slice is placed.

Taken together, these actions led to exactly 1 slice 
being traded every X  time units, as long as the 
prevailing prices are within the metaorder limit.

2.3.	Combined process

We could express combined process of price limit 
order dynamics as:

1 1
,

..., , , ,

= − = −

− −




k k N N

p p

p p p p

z x y x y

x y x y

 (18)

where 
kp

x  – difference between number of sell 
and buy exchange orders at a price kp  not related 
to execution of metaorder, and 

kp
y  – number of 

buy slices sent by a metaorder trader at price .
kp

y

Dynamics of 
kp

x  will match the process de-
scribed in the previous subsection. The defini-
tion of Ap  and Bp  will slightly change to re-
flect the fact that a trader’s slices influence mar-
ket bid and ask prices: { }max : 0 ,

kB k pp p z= <  

{ }min : 0 .
kA k pp p z= >

One may note that the limit exchange orders (pro-
cess z) are no longer homogenuous: a price level 
may potentially contain both slices of the metaor-
der under investigation (process y) and exchange 
orders sent by other market participants (process 
x). So, if there is an incoming market order to sell, 
it is no longer appropriate to match it against any 
order at the bid price. There has to be a rule to 
identify to which process the contra order belongs. 

We overcome this limitation of the model by in-
troducing limit book queues: for each price level, 
we had a queue of orders with IDs sorted accord-
ing to their arrival times. Arrival time is defined 
as the time when an order was placed in the limit 
book.

Then, we could postulate that: 

1) a new limit order is always added to the end of 
the orders queue of the given price;

2) a new market order is always executed against 
the oldest order in the queue;

3) in case of cancellation, a random order in the 
queue is canceled.
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These rules represent a plain principle of price-
time priority used by most of the exchanges. 

The complete set of transitions is presented in 
Table 1. Figure 3 presents several buy order ex-

amples of simulated trading with duration of 100 
time units (10,000 market transitions) for an algo-
rithm trading every X = 10 time units (every 1,000 
transitions).

Table 1. Description of combined process transitions

Description Transition Time component

Process

( )
1 1

, , , ,
k k N Np p p p p pz x y x y x y= − − − 

{ }max : 0
kB k pp p z= <

{ }min : 0
kA k pp p z= >

–

Every market transition

Arrival of new limit order

( )
1
, , 1,

k Np p px x x x→ −  with rate ( )A kp pλ −
for k Ap p<  

( )
1
, , 1,

k Np p px x x x→ −  with rate ( )A kp pλ −  

for k Ap p<  

A new order is added to the end  
of queue at price kp  

Arrival of new buy market 
order ( )

1
, , 1,

A Np p px x x x→ −  with rate µ  
Order is removed from the start of 
the queue at price Ap  

Arrival of new sell market order

With rate :µ

( )
1
, , 1,

B Np p py y y y→ −  if the first order in queue at 

price 
Bp  is metaorder slice;

( )
1
, , 1,→ +

B Np p px x x x  if the first order in queue 

at price  is not metaorder slice 

Order or metaorder slice is 
removed from the start of the 
queue at price Bp  based on which 
of the two has earlier arrival time

Cancellation of plain limit order

( )
1
, , 1,

k Np p px x x x→ −  with rate

 ( )
kk B pp p xθ −  for ,k Bp p>

( )
1
, , 1,

k Np p px x x x→ −  with rate 

( )
kA k pp p xθ −  for 

k Ap p<

Order cancelled at random 
position in queue at price kp

Every X time units

Send aggressive metaorder 
slice if the passive metaorder 
slice was not executed in 
previous X time unit period and 
metaorder limit price is not 
restrictive

If 0
passivepy >  and :aggressive limitp p≤

,=aggressive ap p  

( )
1
, , 1, ,

aggressive Np p px x x x→ − 

Metaorder slice is executed 
against order at the start of the 
queue at the price aggressivep  

Cancel the passive metaorder 
slice if it was not yet executed 
in previous X time unit periods

If 0 :
passivepy >

 ( )
1
, , 1, ,

passive Np p py y y y→ − 
Metaorder slice cancelled from 
queue at price 

passivep  

Send a new passive order

{ }min ,passive B limitp p p=
 

( )
1
, , 1, ,

passive Np p py y y y→ + 

A new metaorder slice is added 
to the end of the queue at price 

passivep
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3. RESULTS

After we had defined the process, which incorpo-
rates market price dynamics and metaorder exe-
cution, we were able to investigate how this model 
behaves under different input parameters.

The two natural variables of interest are the limit or-
der price and speed of trading, expressed as partic-
ipation rate (Almgren et al., 2005; Toth et al., 2011): 

 ,
Q

Participation rate
V

=  (19)

where Q  – metaorder size and V  – volume trad-
ed on the exchange during the execution time of 
metaorder. 

By studying the effect the participation rate has 
on the cost of execution, we were able to examine 
whether the model is consistent with a set of em-
pirically observed facts regarding market impact. 
The latter was used to judge on the quality of mod-
el assumptions.

Metaorders trading simulations provided insights 
into how market impact varies for metaorders 

with different limit prices. This was used to design 
an appropriate adjustment to the cost model to ac-
count for heterogeneity in metaorder limit prices.

3.1.	Speed of trading effect  

on the model

By changing the frequency with which each slice 
was traded (selecting various time intervals X), we 
can directly control the trader liquidity demand 
and participation rate. Theoretically, the larger the 
participation, the more impact metaorder trading 
should have on the price movement and conse-
quent arrival costs. 

In order to verify that this holds for the model, 
we simulated 1,000 orders trading for 100 time 
units with different frequency of slice trading 
(every 10, 5, and 2 time periods) and comput-
ed arrival costs (or ‘return proxy’ as defined 
in Bershova and Rakhlin (2013) and Said et al. 
(2018)):

 

 
 1 ,

 

=

 
= ⋅ − 

 

Arrival cost

Average price
Side sign

Arrival price

 (20)

Figure 3. Examples of simulated price dynamics with metaorder traded every 10 time units

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

100

110

100

110

Time units

P
ri

ce

Metaorder slice fills: passive aggressive Quote prices: pB pA



364

Investment Management and Financial Innovations, Volume 16, Issue 2, 2019

http://dx.doi.org/10.21511/imfi.16(2).2019.30

where  average price  – average (shares-weight-
ed) price of the execution,  arrival price  – price 
at the arrival (the moment client decided to trade), 

 side sign  – adjustment for the direction of the 
order (+1 for buy and –1 for the sell orders).

We observe that arrival costs increased with in-
creasing frequency of slice trading (Figure 4, 
Table 2).

Additionally, we investigated the interval re-
turn (which is also known as ‘market impact’ in 
Bershova and Rakhlin (2013), Donier et al. (2015) 
and others):

 

 
 1 ,

 

=

 
= ⋅ − 

 

Interval return

Departure price
Side sign

Arrival price
 (21)

where  Departure price  – midpoint of price at 
the end of executing client order.

A linear relationship between participation rate 
and interval return (Figure 5) is observed. In real 
trading, however, there is evidence that this rela-
tionship is better described by the declining mar-
ginal effect of participation rate on market impact 

and concave curve (Toth et al., 2011; Bershova & 
Rakhlin, 2013; Taranto et al., 2018). This discrep-
ancy highlights an important limitation of the 
model: it does not take into account that market 
participants adjust their trading based on the cur-
rent market activity. 

There is an empirically observed fact that when 
heavy trading occurs at a dislocated price, mar-
ket participants will try to profit by providing 
additional liquidity at temporarily inflated price 
(Bonart & Gould, 2018). The higher the trader par-
ticipation rate, the more their execution should 
dislocate the price and incentivize increasing li-
quidity supply. This will result in a flatter relation-
ship of cost as a function of participation rate. It 
could be incorporated in our simulation model by 
setting market and limit order arrival intensities 
dependent on the current market activity and re-
cent price dislocation. However, it is difficult to de-
termine an appropriate functional form for these 
relations based on empirical data. We left this top-
ic for future research and focused on the low par-
ticipation rate range of trading, where this effect 
is less pronounced. Consequently, the majority of 
subsequent simulations were conducted using a 
speed of trading X = 5. 

Table 2. Descriptive statistics for various frequencies (participation rates) of metaorder execution

Time 
Arrival cost Participation rate IR

Mean Std. dev. SEM Median Mean Std. dev. Mean Std. dev. SEM

X = 10 2.22% 5.07% 0.16% 2.29% 5.3% 0.4% 5.30% 9.23% 0.29%

X = 5 3.95% 5.38% 0.17% 3.58% 10.4% 0.7% 8.83% 9.49% 0.30%

X = 2 10.56% 5.23% 0.17% 10.37% 22.9% 1.4% 21.62% 9.41% 0.30%

X = 1 19.54% 6.19% 0.20% 19.52% 36.7% 1.8% 38.94% 10.89% 0.34%

Figure 4. Arrival cost distribution for various frequencies of metaorder trading 
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3.2.	Limit price effect

Once we determined that the provided order book 
process is appropriate for modeling trading im-
pact (with some reservations), we investigated how 
metaorder limit price affects the distribution of 
arrival costs and speed of trading. Note that limit 
price is directly incorporated into the metaorder 
trading process. 

We set the metaorder limit prices to 20, 10, 5 and 
0 ticks higher than arrival bid (which translates to 
limit prices of 19.9%, 9.95%, 4.98% and 0% higher 

than arrival price, respectively), then recomputed 
the distribution of execution arrival costs in each 
of the cases. Plots of the cost distributions are pro-
vided in Figure 6. Limit prices caused the arrival 
cost distributions to be shifted to the left, result-
ing in statistically lower arrival costs on average 
(Table 3). The presence of the limit price cuts off 
the left tail of the distribution and essentially sets 
a cap on observed arrival costs.

We operated under the assumption that if a trader 
is unable to execute an order in the X unit win-
dow, he does not speed up his subsequent trading 

Figure 5. Market impact as a function of metaorder participation rate
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Figure 6. Arrival cost distribution for various limit prices
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and does not attempt to catch up on the missed 
volume. As a result, not all orders were fully filled 
for 20 lots across 100 time units. We observed a 
tradeoff between the chance of the metaorder to 
be fully filled and lower costs of execution (Figure 
7 and Table 3). 

Additionally, the trader exhibited lower participa-
tion rate than for no-limit case (Table 3) since he 
was not able to trade with the intended rate in cas-
es when price became unmarketable. Examination 
of participation rate versus interval return curve 
for different limit prices reveals close similarity 
with the curve derived by changing traders speed 
of trading (Figure 8). This illustrates that lower 

market impact is fully explained by lower average 
participation rate when trading is restricted by 
limit price.

We may therefore state that in the absence of sec-
ond order market effect (such as market partici-
pants adjusting their supply and demand of li-
quidity based on the trader activity), the impact 
of limit prices on costs is limited to their effect on 
the trader’s speed of trading and does not provide 
any additional benefits. Therefore, under these as-
sumptions, the trader should be able to achieve the 
same average costs of trading for market order as 
for limit order by simply changing his participa-
tion rate.

Table 3. Execution cost and trading stats for various metaorder limits

Limit price
Arrival cost Interval return Participation 

rate
% of orders fully 

filledMean Sem t-value Mean Sem

No limit 3.95% 0.17% 23.21 8.83% 0.30% 10.36% 100.0%

20 ticks 3.86% 0.15% 25.75 8.85% 0.28% 10.11% 86.4%

10 ticks 2.38% 0.11% 22.09 7.85% 0.26% 8.74% 48.0%

5 ticks 0.85% 0.07% 11.60 6.91% 0.23% 7.01% 20.7%

Arrival price limit –1.73% 0.05% –33.04 4.45% 0.23% 4.42% 3.0%

Figure 7. Arrival costs and probability of order to be fully filled
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4. DISCUSSION

According to the simulations, the effect of the lim-
it price is already incorporated in the metaorder 
effective participation rate. 

Since participation rate is used as a parameter in 
the market impact cost formulas (Grinold & Kahn, 
1999; Almgren et al., 2005), the calculation of ex-
pected market impact using the participation rate 
observed during the life of the order would cor-
rectly reflect the presence of the limit prices in 
metaorders. Therefore, none of the additional ad-
justments are necessary.

If one wishes to examine the quality of execution 
of a given algorithm or trader, he could directly 
compare the observed costs to the expected costs 
as calculated by models introduced in Grinold 
and Kahn (1999), Almgren et al. (2005). If the 
costs are significantly higher than expected costs 
(i.e. [ ]  1,E arrival cost expected cost  one 
may conclude that the trader provides execution 
services of low quality. 

There should be no additional reservations about 
metaorder limit prices if other market partici-
pants trade with approximately constant intensi-

ties. We believe that making such an assumption 
during model construction is reasonable, as long 
as there’s no unusual trading activity occurring 
for a given stock and the metaorder is traded with 
low participation rate.

However, we acknowledge that this assumption 
would not hold in a number of cases, for example:

1. If there’s significant information-driven trad-
ing activity, the assumption regarding con-
stant and symmetrical intensities of market 
order arrival becomes unrealistic.

2. If the order demands outsized liquidity and 
represents a significant fraction of market vol-
ume, it is unlikely that the market participants 
would not adjust their behaviour in response 
to this information.

All of the aforementioned statements could be test-
ed empirically by selecting a universe of metaor-
ders traded with a low speed by a uniform set of 
traders and then double-binning them by the limit 
price and realized participation rate. If observed 
realized costs vary only with respect to realized 
participation rate dimension and stay constant 
across the limit price dimension, one could verify 

Figure 8. Market impact for various speed of trading and limit prices
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the results of the model on the empirical dataset of 
metaorders. However, this procedure is extremely 
data-demanding and it involves a large number of 
considerations related to cleaning the dataset, se-
lecting the participation rate threshold and ensur-
ing that the selected universe of the metaorders is 
representative. Solving these problems provides a 
great area for future studies.

Additionally, in the future, one could attempt to 
relax the model assumptions by introducing addi-

tional processes, which would reflect market agent 
dynamic reaction to metaorder execution. 

There are attempts to design advanced mod-
els, which accounts for informational content of 
the exchange trades (Alfonsi et al., 2010; Farmer 
et al., 2013; Abergel et al., 2016, etc.), but due to 
their complex nature, introducing the process of 
limit metaorder execution to them is a non-trivial 
task. We believe it is a promising area for future 
research.

CONCLUSION

We extended the model presented by Cont et al. (2010) to allow for direct modelling of exogenous 
limit metaorder execution. Upon examining the model behavior, we were able to make the following 
conclusions.

First, we confirmed that the presence of metaorder limit prices changes the distribution of execution 
costs and resulting market impact. On average, cost metrics will be lower for metaorders with more re-
strictive limit prices even after controlling for other initial order characteristics. 

This reduction in observed execution costs comes with decreased chance that the order will be fully ex-
ecuted. Investors can build a tradeoff curve between the arrival cost and the chance of the order being 
fully filled, then decide on the optimal limit placement based on their goals or utility function.

Next, we observed that if market participants do not alter their trading patterns based on the metaor-
der slices executions, the difference in average arrival costs introduced by limit prices is fully explained 
by the lower average effective participation rate. Therefore, a trader could achieve the same costs for a 
market order as for a limit order with any limit price by simply trading slower. Metaorder limit prices 
do not provide any additional ‘optionality’ value and serve merely as a matter of convenience and risk 
bound for a trader. 

As a result, it may be possible to account for heterogeneity in execution cost distribution for metaorders 
with different limit prices by correcting for their effective participation rate. For metaorders traded with 
low participation rates, investor could simply compare realized execution costs versus expected costs 
(provided by any market impact model) to assess the quality of execution services without any addition-
al adjustments for the metaorders limit prices. 
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