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Abstract

In this paper, the authors deal with a mean-variance enhanced index tracking (EIT) 
problem with weights constraints. Using a shrinkage approach, they show that con-
structing the constrained EIT portfolio is equivalent to constructing the unconstrained 
EIT portfolio. This equivalence allows to study the effect of weights constraints on 
the covariance matrix and on the EIT portfolio. In general, the effects of weights con-
straints on the EIT portfolio are different from those observed in the case of global 
minimum variance portfolio. Finally, the authors present a numerical asset allocation 
example, where the S&P 500 index is used as the market index to be tracked using a 
portfolio composed of ten stocks, in which the constrained EIT portfolio shows a sat-
isfactory performance when compared to the unconstrained case.
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INTRODUCTION

In general, an index tracking problem aims at establishing an opti-
mal allocation so that the return of the portfolio replicates the return 
of a market index (passive management strategy), without purchasing 
all of the assets that compose the market index. On the other hand, 
the so-called enhanced index tracking (EIT) problem consists of con-
structing a portfolio that replicates and outperforms the market in-
dex by generating excess return. The literature presents different ap-
proaches and methods to construct an indexed portfolio, considering 
transaction cost, cardinality and weights constraints (see, for exam-
ple, Canakgoz & Beasley, 2008; Filippi et al., 2016; Paulo et al., 2016; 
Sant’Anna et al., 2017; Goel et al., 2018; Benidis et al., 2018).

Usually, the studies on tracking problem use the historical look-back 
approach, in which the tracking portfolio is constructed considering a 
sample of past observations. The classical uni-period mean-variance ap-
proach is considered in Roll (1992), Alexander and Baptista (2010) and 
Paulo et al. (2016), for example. Specifically, Paulo et al. (2016) studied 
an unconstrained EIT problem (e.g., allow short-selling), for which the 
authors derive an analytical solution. Differently from the cardinality 
constraint approach, they consider an approach in which the EIT port-
folio is composed of a previously selected subset of assets belonging to 
the market index portfolio. Following the same approach, in this paper, 
we deal with a mean-variance EIT problem with weights constraints. In 
this case, it is not possible to obtain an analytic solution, but the prob-
lem can be easily solved using a quadratic programming algorithm.
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Particularly, the weights constraints play an important rule in the asset allocation problem, since it al-
lows to control the level of short and long positions, as well as to avoid the concentration risk (when a 
portfolio has a large exposure to an asset or few assets), for example. In the work of Jagannathan and 
Ma (2003), the authors studied the effects of weights constraints on the global mean-variance portfolio 
using a shrinkage approach. Considering the same framework, we have shown that constructing a con-
strained mean-variance EIT portfolio is equivalent to constructing an unconstrained EIT portfolio (as 
studied in Paulo et al., 2016). This equivalence allows us to study the effect of weights constraints on the 
covariance matrix and on the EIT portfolio.

The remainder of the paper is organized as follows. Section 1 includes the formulation of the EIT prob-
lem with weights constraints and its optimality conditions. In section 2, it is shown that constructing 
the constrained EIT portfolio is equivalent to constructing the unconstrained EIT portfolio using a 
shrinkage covariance matrix. A numerical example for an EIT portfolio using the S&P 500 index as 
market index is presented in section 3. Final section presents some remarks.

1. PROBLEM FORMULATION 

AND OPTIMALITY 

CONDITIONS

We recall that an EIT problem aims at construct-
ing a portfolio that replicates a market index and 
at the same time obtaining positive excess return 
(on average). In this case, this problem can be seen 
as a dual-objective optimization problem, a trade-
off between maximizing the mean excess return 
and minimizing a tracking error measure (mea-
sure of how closely a portfolio outperforms the 
index).

Let us consider a portfolio composed of n  assets 
(usually belonging to the market index). We de-
note by 1( )nω ω ω ′=   the vector with the weights 
of the assets in the portfolio, by 1( )nR R R ′=   
the random vector with the returns of the as-
sets and by ( )( )( ) 0E R r R r ′Σ = − − >  the 
covariance matrix of ,R  such that ( ).r E R=  
Let 

eP  be the error between the return obtained 
from the portfolio and the return obtained 
from the market index, so that ,e MP R Rω′= −  
where 

MR  is the return of the market in-
dex with ( ).M ME Rµ =  Then, the mean ex-
cess return and the tracking error (variance 
of the error 

eP ) are defined as 
e Mrµ ω µ′= −  

and 2 2 22 ,e M Mσ ω ω σ ω β σ′ ′= Σ − +  where 

( )1 nβ β β ′=   is the vector of asset betas and 
2

Mσ  is the variance of the market index. Based 
on the work of Paulo et al. (2016), we consider 
the following mean-variance EIT problem with 
weights constraints:

minimize 

( ) ( )2 22 ,
2

M M Mr
ϕ ω ω σ ω β σ ω µ′ ′ ′Σ − + − −  (1)

subject to

1,eω′ =  (2)

,  1, , ,i iw i nω −≥ =   (3)

,  1, , ,i iw i nω +≤ =   (4)

where e  represents a vector of ones of suitable 
dimension, 

iw
−  and 

iw
+  are the minimum and 

maximum proportion that must be held of asset 
,i  respectively, so that 0iw

− ≥  represents the con-
dition in which the short-selling is not allowed (for 

0iw
− <  short positions are allowed), and 0ϕ >  is 

a trade-off parameter.

From constraints (3)-(4), it is possible to control 
the long and short positions in the portfolio. Other 
approaches have been proposed in the literature to 
consider short-selling constraints (see, for exam-
ple, Kim et al., 2016; Fan et al., 2012; DeMiguel et 
al., 2009). Moreover, we recall that the objective of 
the problem (1)-(4) is to find an investment strate-
gy ω  that minimizes the tracking error ( )2

eσ  and 
maximizes the mean excess return ( )eµ  simulta-
neously, where the trade-off between 2

eσ  and 
eµ  

is balanced by the parameter .ϕ  In general, by an 
appropriate choice of this parameter, a manager 
could define one of the three investment strategies 
(as in Paulo et al., 2016): i) achieve an ave rage re0-
turn rate higher than a market index (active man-
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agement strategy), ii) replicate the return rate of a 
market index (index tracking strategy) or iii) track 
a market index with a positive excess return rate 
(EIT strategy).

In the following, we present the optimality condi-
tions for the constrained problem (1)-(4) and show 
that its solution solves the unconstrained prob-
lem (e.g., nω∈ℜ ) using a shrinkage covariance 
matrix proposed by Jagannathan and Ma (2003). 
Studies related to the shrinkage covariance matrix 
estimators can be seen in Ledoit and Wolf (2004), 
DeMiguel et al. (2009) and Pantaleo et al. (2011), 
for example.

Setting ( )1 nw w w− − − ′=   and ( )1 ,nw w w+ + + ′=   
the Lagrange of the problem (1)-(4) is given by

( ) ( )
( ) ( ) ( )
( )

2 2

0

, , 2
2

1

,

M M

M

L

r e w

w

ϕω λ δ ω ω σ ω β σ

ω µ λ ω λ ω

δ ω

−

+

′ ′= Σ − + −

′ ′ ′− − − − − − −

′− −



where ( )1 nλ λ λ ′=   are the Lagrange multipli-
ers for the constraints (3), ( )1 nδ δ δ ′=   are the 
Lagrange multipliers for the constraints (4) and 

0λ  is the multiplier for the constraint (2), with 
0iλ ≥  and 0.iδ ≥  In this case, the optimality 

conditions are given by:

( )2

0 0,M r eϕ ω σ β λ λ δΣ − − − − + =  (5)

1 0,eω′ − =  (6)

0 if ,  i i iwλ ω −= >  (7)

0 if .i i iwδ ω += <  (8)

As the problems (1)-(4) are strictly convex qua-
dratic optimization problem, the system (5)-(8) 
establishes the necessary and sufficient conditions 
for the existence of an optimal solution, so that if 
ω  is a solution of the system, then it is a solution 
of the problems (1)-(4) and vice versa. In this case, 
it is not possible to obtain an analytic solution, but 
the solution can be obtained efficiently using qua-
dratic programming solvers. On the other hand, 
Paulo et al. (2016) derive an analytical solution for 
the unconstrained problem ( ) ,nω∈ℜ  whose op-
timality conditions are given by

( )2

0 0,M r eϕ ω σ β λΣ − − − =  (9)

1 0,eω′ − =  (10)

where 
0λ  is the Lagrange multiplier for the con-

straint 1,eω′ =  so that the optimal solution can 
be written as 

1 2 ,M

r
eω σ β

ϕ α
∗ −  Γ
= Σ + + 

 
 (11)

where 2 1 11 ( ) /Me e rσ β ϕ− −′ ′Γ = − Σ − Σ  and 
1 .e eα −′= Σ

2. SOME THEORETICAL 

RESULTS

In the work of Jagannathan and Ma (2003), the au-
thors have shown that constructing a constrained 
global minimum variance portfolio is equivalent 
to constructing an unconstrained minimum vari-
ance portfolio after modifying the covariance ma-
trix in a particular way (shrinkage approach). In 
this section, following the same analysis and pro-
cedure as in Roncalli (2011) and Jagannathan and 
Ma (2003), we show the same equivalence for the 
mean-variance EIT problem (subsection 2.1) and 
we analyze the effects of weights constraints on 
the EIT portfolio (subsection 2.2).

2.1. Shrinkage covariance matrix 

approach

In the following proposition, we show that the so-
lution of the constrained problem (1)-(4) solves 
the unconstrained problem (e.g., nω∈ℜ ) using 
a shrinkage covariance matrix as proposed by 
Jagannathan and Ma (2003).

Proposition 1. Let us consider the shrinkage cova-
riance matrix

( ) ( )
,

e eδ λ δ λ
ϕ ϕ

′′− −
Σ = Σ + +

 (12)

where λ  and δ  are the Lagrange multipliers for 
the problem (1)-(4), with 0.ϕ >  Assuming 0,Σ >  
then the solution of the constrained problem (1)-
(4), called here ,ω  is a solution of the uncon-
strained problem (e.g., nω∈ℜ ) with .Σ = Σ
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Proof: Since we assume 0,Σ >  it is sufficient to 
show that ω  satisfies the optimality condition (9) 
with Σ = Σ  and .ω ω=   From condition (6), we 
have 1,eω′ =  so that by the transformation (12), 
it follows that

( ) ( ) .eϕ ω ϕ ω δ λ δ λ ω′Σ = Σ + − + −     (13)

From conditions (7) and (8), we have 

( ) 0i i iwδ ω+ − =  and ( ) 0,i i iwλ ω −− =  which 
implies wδ ω δ +′ ′=  and .wλ ω λ −′ ′=  Then, by 
(13) we have

( ) .e w e wϕ ω ϕ ω δ λ δ λ+ −′ ′Σ = Σ + − + −    (14)

Now, from condition (5) and by (14), it follows that

( )2

0 ' ' .M r w w eϕ ω ϕσ β λ δ λ+ −Σ = + + + −   (15)

Finally, by (15) and condition (9), taking Σ = Σ  
and ,ω ω=   we have

0 0 ,w wλ λ δ λ+ −′ ′= + −  (16)

showing that solution ω  solves the unconstrained 
problem with ,Σ = Σ  completing the proof.

From Proposition 1, we have that constructing the 
constrained problem from Σ  is equivalent to con-

structing the unconstrained problem from (12). 
The elements of the matrix Σ  can be written as 

, , ,i j i j i jΣ = Σ + ∆  (as in Roncalli, 2011), where the 
perturbation 

,i j∆  is specified in Table 1, consid-
ering the conditions (7) and (8). Notice that 

,i j∆  
is negative (positive) when one optimized weight 

iω  reaches its lower (upper) bound, whereas the 
second weight 

jω  does not reach its upper (low-
er) bound. On the other hand, it is null when the 
optimized weights do not reach the lower and up-
per bounds. Moreover, notice that lower (upper) 
bounds have a negative (positive) impact on the 
volatility, that is 

2

, .i i i jσ σ= + ∆  Notice that im-
posing weights constraints is equivalent to chang-
ing the original covariance matrix .Σ

In the following, we illustrate the impact of port-
folio weights constraints through a numerical ex-
ample, considering an EIT portfolio composed of 
five assets (the parameters are presented in Table 
2). The column ω∗  shows the optimal solution for 
the unconstrained problem ( )5 ,ω∈ℜ  calculat-
ed by (11), with 0.75%,Mµ =  2 2.5%Mσ =  and 

1.0.ϕ =  This portfolio has one short position (on 
the third asset) and four long positions. Now, if we 
impose that the weights are between 10%jw

− =  
and 30%jw

+ =  (e.g., 0.10 0.30iω≤ ≤ ), we ob-
tain the results presented in Table 3. The column 
ω  shows the weights for the constrained EIT 

Table 1. Elements of the perturbation matrix, 
, ,i j∆  related to the optimized weights 

iω  and 
jω

j jwω −= j j jw wω− +< < j jwω +=

i iwω −= ( )i jλ λ ϕ− + iλ ϕ− ( )i jλ δ ϕ− +

i i iw wω− +< < jλ ϕ− 0 jδ ϕ

i iwω += ( )i jδ λ ϕ− iδ ϕ ( )i jδ δ ϕ+

Table 2. Market parameters and optimal solution for the unconstrained EIT problem ( )ω∗

Assets ( )%r β ( )%ω∗ Covariance matrix ( )%Σ

1 3.29 1.36 59.93 4.81 0.58 0.64 0.31 0.81

2 1.88 0.91 7.66 0.58 2.42 0.48 0.18 0.39

3 1.83 0.88 –3.04 0.64 0.48 1.35 0.21 0.43

4 2.50 0.53 1.07 0.31 0.18 0.21 3.50 0.27

5 2.10 1.12 34.39 0.81 0.39 0.43 0.27 2.60
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problem (1)-(4) calculated using MATLAB func-
tion fmincon. It is easy to see that the solution ω  
can be obtained from (11) with .Σ = Σ  Moreover, 
notice that the first and fifth assets reached the up-
per bounds, whereas the fourth asset reached its 
lower bound (the second and third assets did not 
reach the lower and upper bounds). Finally, notice 
that the implied volatility of the first and fifth as-
sets increased ( )1 1 5 5 and ,σ σ σ σ> >   whereas 
the implied volatility of the fourth asset decreased 

( )4 4 ,σ σ<  as established in Table 1.

2.2. The effect of the weights 

constraints

As presented in Jagannathan and Ma (2003), for 
the case of an unconstrained global minimum 
variance portfolio, an asset tends to receive low 
portfolio weight at the optimum if it has higher 
covariances with other assets. Likewise, an asset 
with low covariances with other assets tends to re-
ceive high weights. On the other hand, when we 
impose 0,ω >  the variance of an asset i  and its 
covariances with other assets are reduced, so that 
the asset i  tends to receive high weight even if it 
has higher variance and higher covariances with 
other assets. Similarly, imposing ,i iwω +≤  the 
variance of the asset i  and its covariances with 
other assets are increased, so that the asset i  tends 
to receive low portfolio weight even if it has lower 
variance and lower covariances with other assets.

In the following, we show that the previous find-
ings do apply to a special case of the EIT problem 
(1)-(4), in which 

0ir r=  and 
0iβ β=  (or, equiva-

lently, 2

i M ir cϕσ β+ = ). In this case, from (9), we 
have the following condition

( ) 0 ,  1, , ,
i
c i nϕ ωΣ = =   (17)

where 2

0 0 0 0.Mr cϕσ β λ+ + =  Let us consider that 
asset i  tends to have higher covariances with oth-
er assets, so that the -thi  row of Σ  tends to have 
larger elements than other rows. Therefore, from 
condition (17), to achieve optimality, it is neces-
sary to reduce asset i ’s portfolio weight ( ) ,iω  so 
that the asset i  may even have negative weight if 
its covariances with other assets are sufficiently 
high. Thus, an asset tends to receive low weight at 
the optimum if it has higher covariances with oth-
er assets. Likewise, if an asset has low covariances 
with other assets, it tends to receive high portfo-
lio weights. Now, let us consider that we impose 
the lower bonds ( ).w−

 From Proposition 1, we 
have that constructing this constrained problem 
from Σ  is equivalent to constructing the uncon-
strained problem from ( )' ,e eλ λ ϕ′Σ = Σ − +  
so that, for asset ,i  its covariances with other as-
sets are reduced by ( )i jλ λ ϕ+  and its variance 
by 2 .iλ  Similarly, when upper bonds ( )w+

 are 
considered, we have from Proposition 1 that con-
structing the upper-bound constrained problem 
from Σ  is equivalent to constructing the uncon-
strained problem from ( ) ,e eδ δ ϕ′ ′Σ = Σ + +  
so that, for asset ,i  its covariances with other as-
sets are increased by ( )i jδ δ ϕ+  and its variance 
by 2 .iδ  Thus, as we saw before, the weight of the 
asset i  tends to increase when we impose 

i iwω −≥  
and tends to decrease when we impose .i iwω +≤

As we have shown before, if we consider 

( )2 ,i M ir cϕσ β+ =  then the effects of weights 
constraints on the EIT problem are the same 
as the effect on the global minimum variance 
portfolio problem (studied in Jagannathan & 
Ma, 2003). However, it is not true in general 
case. In fact, how we can see from (9), we have 

( ) ( )2

0 ,i M ii
rϕ ω λ ϕσ βΣ = + +  so that the effects 

of imposing lower ( )iw−
 and upper ( )iw+

 bounds 
on the weights of the EIT portfolio depend on the 

Table 3. Results for the constrained EIT problem, with weights constraints 0.10 0.30iω≤ ≤

Assets ( ) %ω λ δ Shrinkage covariance matrix ( )%Σ

1 30.00 0.000000 0.013772 7.56 1.96 2.02 1.51 2.50

2 14.91 0.000000 0.000000 1.96 2.42 0.48 0.00 0.70

3 15.09 0.000000 0.000000 2.02 0.48 1.35 0.03 0.74

4 10.00 0.001793 0.000000 1.51 0.00 0.03 3.23 0.40

5 30.00 0.000000 0.003142 2.50 0.70 0.74 0.40 3.23
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covariances , ,i jσ  expected return 
ir  and beta .iβ  

Considering the example presented in subsection 
2.1, Table 4 shows the solutions for the uncon-
strained problem, ,ω∗  for the constrained prob-
lem with 0.1 0.3,iω≤ ≤  ,ω  and for the uncon-
strained problem with 0.02ir =  and 1.0,iβ =  

.ω  Notice that the weights 
iω  have the same be-

havior when compared to global minimum vari-
ance portfolio (an asset tends to receive low (high) 
weight at the optimum if it has higher (lower) 
variances with other assets), since minimizing the 
function (1) is equivalent to minimizing only the 
term ( )2 .ϕ ω ω′Σ  On the other hand, the un-
constrained portfolio ω∗  does not follow this be-
havior, since the weights will depend on the term 

( )2

i M ir ϕσ β+  and the covariances between the 
assets (notice now that the problem aims at min-
imizing the tracking error and at the same time 
maximizing the excess return).

3. ASSET ALLOCATION 

EXAMPLE

Following a similar analysis and procedure as 
in Paulo et al. (2016), in this section, we study 
the performance of the constrained and uncon-
strained EIT portfolios. We consider the S&P 500 
index as the benchmark target to be tracked us-
ing a portfolio composed of the following ten 
stocks ( )10 :n =  APA, CAT, APC, HPQ, ABT, 
CHK, ALB, AAP, KR and AJG. First, we use an 
in-sample analysis to investigate the performance 
of the models. Considering a historical series of 
monthly return rate in the period from July 2010 
to April 2016 (a sample with size T = 69), the vari-
ance of the S&P 500 index is 2 0.127%Mσ =  (with 

0.978%Mµ = ) and the parameters ,β  r  (in 
percentage points) and Σ  (in percentage points) 
are given by

Table 4. Solutions for the unconstrained EIT problem, ,ω∗  for the constrained EIT problem with
0.1 0.3,iω≤ ≤  ,ω  and for the unconstrained EIT problem with 0.02ir =  and 1.0,iβ =  ω

Assets ( )%r β ( )%ω∗ ( )%ω ( )%ω Covariance matrix ( )%Σ
1 3.29 1.36 59.93 30.00 4.59 4.81 0.58 0.64 0.31 0.81

2 1.88 0.91 7.66 14.91 19.37 0.58 2.42 0.48 0.18 0.39

3 1.83 0.88 –3.04 15.09 41.49 0.64 0.48 1.35 0.21 0.43

4 2.50 0.53 1.07 10.00 16.99 0.31 0.18 0.21 3.50 0.27

5 2.10 1.12 34.39 30.00 17.56 0.81 0.39 0.43 0.27 2.60

( )1.578 1.648 1.728 1.615 0.900 1.768 1.885 0.794 0.717 1.020 ,β ′=

( )0.353 0.480 0.540 0.280 0.860 0.428 1.053 1.803 1.939 0.977 ,r ′= − − −

0.917 0.527 0.701 0.374 0.098 0.907 0.540 0.054 0.039 0.196

0.527 0.663 0.518 0.402 0.121 0.504 0.583 0.188 0.032 0.218

0.701 0.518 0.886 0.401 0.142 0.979 0.507 0.159 0.072 0.252

0.374 0.402 0.401 0.967 0.168 0.394 0.495 0.140 0.122 0.

−

Σ =

245

0.098 0.121 0.142 0.168 0.254 0.102 0.130 0.082 0.123 0.133

0.907 0.504 0.979 0.394 0.102 2.473 0.400 0.138 0.092 0.271

0.540 0.583 0.507 0.495 0.130 0.400 0.909 0.161 0.107 0.241

0.054 0.188 0.159 0.140 0.082 0.138 0.161 0.474 0.101 0

−
.

.150

0.039 0.032 0.072 0.122 0.123 0.092 0.107 0.101 0.353 0.079

0.196 0.218 0.252 0.245 0.133 0.271 0.241 0.150 0.079 0.229

 
 
 
 
 
 
 
 
 
 
 
 
 − − 
 
 
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Let ω  be the solution of the constrained prob-
lem (1)-(4), obtained by MATLAB function 
fmincon, and ω∗  be the solution of the uncon-
strained problem ( )10 ,ω∈ℜ  obtained from (11). 
Considering an EIT strategy with 15,ϕ =  and 
taking 0.03iw

− =  and 0.15iw
+ =  (e.g., the short 

positions are not allowed), it follows that (in per-
centage points)

( )3.01 12.17 3.84 3.01 14.99 3.00 14.98 15.00 15.00 15.00 ,ω ′=

( )3.07 4.45 2.95 11.42 12.22 1.47 17.09 15.22 34.56 26.53 .ω∗ ′= − −

Now we compare the performance of the con-
strained and unconstrained EIT portfolios over 
the time period [ ]0;69 .  Let ( )V t  and ( )V t∗  be 
the values of the EIT portfolios related to the solu-
tions ω  and ,ω∗  respectively, written as

( ) ( )( ) ( )1 1 ,V t R t V tω′+ = + 

( ) ( )( ) ( )1 1 ,V t R t V tω∗ ∗ ∗′+ = +

where ( ) ( ) ( )( )1 ,nR t R t R t ′=   with 
0, , 1t T= −  and ( ) ( ) 00 0 .V V V∗= =  

Similarly, let ( )bV t  be the position value of the po-
sition associated with the S&P 500 index, given by

( ) ( )( ) ( )1 1 ,b b

MV t R t V t+ = +

where ( )MR t  is the return of the S&P 500 index 
with ( ) 00 .b bV V=  Taking 

0 0 100,bV V= =  we 
present in Figure 1 the cumulative monthly port-
folio values over the time period [ ]0;69 .

Since we want to track the S&P 500 index with posi-
tive mean excess return (e.g., EIT strategy), we can ob-
serve from Figure 1 that (on average) the constrained 
EIT portfolio ( )ω  performs better than the uncon-
strained EIT portfolio ( ).ω∗

 Specifically, the port-
folio ω  has a positive excess return rate ( )PER  of 

85.51%PERω =  and the portfolio ω∗  has a posi-
tive excess return rate of 

* 97.10%,PERω =  over 
the period [ ]0;69 ,  while their root mean square 
is given by 7.00RMSω =  and 49.25,RMS

ω∗ =  
respectively. Using the ratio IR PER RMS=  
as a performance measure, we can notice that 

12.21 1.97,IR IRω ω∗= > =  showing that the port-
folio ω  performs better than the portfolio ω∗  when 
we consider an in-sample analysis. 

Figure 1. Cumulative monthly portfolio values, obtained by the constrained EIT portfolio ω  and by 
the unconstrained EIT portfolio ,ω∗  considering an in-sample analysis
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In the analysis presented above, we used the data 
from July 2010 to April 2016 to estimate the param-
eters of the model and to measure its performance 
based on an in-sample criterion (using the indica-
tor IR). In the following, we present a similar anal-
ysis considering an out-of-sample performance, 
where the period from April 2016 to October 2018 
was considered (a sample with size T = 30). Figure 
2 shows the cumulative monthly portfolio values 
over the time period [ ]0;30 ,  in which we can see 
that the constrained and unconstrained portfolios 
perform poorly in general (with 33%PERω =  
and 17%PER

ω∗ = ). This result occurs due to the 
significant changes in market parameter values 
during out-of-sample period (compared to the in-
sample period). In this situation, the performance 
of the portfolios can be improved if we rebalance 
them periodically. Figure 3 shows the cumulative 
monthly portfolio values in out-of-sample period, 
in which we rebalance the weights ω  and ω∗  
monthly. For this propose, we reestimate the pa-
rameters r  and 

Mµ  using a moving average cri-
teria (with sample size T = 30) and the parameters 
Σ  and 2

Mσ  using the EWMA method with de-
cay factor 0.75λ =  (for more details about these 
methods, see Alexander, 2008, Volume 2, Chapter 
3). As we can see from Figure 3, in general, the re-
balanced portfolios perform better than the origi-

nal portfolios (without rebalancing). Specifically, 
we have 73.33%PERω = , 

* 63.33%,PERω =  
2.89RMSω =  and 4.46,RMS

ω∗ =  such that 
25.37 14.18.IR IRω ω∗= > =  Then, as in-sample 

analysis, the constrained EIT portfolio ( )ω  also 
performs better than the unconstrained EIT port-
folio ( )ω∗

 in out-of-sample period when we con-
sider a rebalancing investment strategy.

Finally, we remark that the performance of the un-
constrained EIT portfolio ω∗  can be improved by 
choosing an appropriate trade-off parameter ,ϕ  
such that the previous results cannot be general-
ized (for both in-sample and out-of-sample cases). 
For example, considering the in-sample period, if 
we set 93.25ϕ =  only for the unconstrained EIT 
portfolio, we have (in percentage points) 

(

)

8.74 9.54 4.24 0.79 22.10

2.16 6.92 7.76 22.73 25.08 ,

ω∗ = − −

′

 

such that 84.06%PER
ω∗ =  and 7.00RMS

ω∗ =  
(equal to the RMSω ). Comparing to the con-
strained EIT portfolio ,ω  we have that 

12.01 12.21.IR IRωω∗ = ≈ =  Then, in this partic-
ular case, it was possible to reach a similar perfor-
mance level for both portfolios by choosing an ap-
propriate parameter .ϕ  Although we had achieved 

Figure 2. Cumulative monthly portfolio values, obtained by the constrained EIT portfolio ω  and by 
the unconstrained EIT portfolio ,ω∗  considering an out-of-sample analysis
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a good performance level by setting the parameter 
,ϕ  from the practical point of view, the con-

strained EIT problem is more appropriate to con-
struct a EIT portfolio than the unconstrained EIT 

problem, since the first one allows to control the 
level of short and long positions, as well as to avoid 
the concentration risk (when a portfolio has a 
large exposure to an asset or few assets).

FINAL REMARKS

In this paper, we consider an uni-period mean-variance enhanced index tracking (EIT) problem with 
weights constraints. As theoretical result, we show that constructing the constrained EIT portfolio is 
equivalent to constructing the unconstrained EIT portfolio (as studied in Paulo et al., 2016), when we 
modify the covariance matrix in a particular way (shrinkage covariance matrix). From this equivalence, 
we analyze the impact of weights constraints on the covariance matrix and on the EIT portfolio. In gen-
eral, the effects of weights constraints on the EIT portfolio are different from those observed in the case 
of global minimum variance portfolio (as studied in Jagannathan & Ma, 2003). We present a numeri-
cal example using the S&P 500 index as the market index to be tracked using a portfolio composed of 
ten stocks. We observe that the constrained EIT portfolio performs better than the unconstrained EIT 
portfolio. This particular result cannot be generalized, since the performance of the unconstrained EIT 
portfolio can be improved by choosing an appropriate parameter .ϕ  However, we highlight that a con-
strained problem is more appropriate to construct a portfolio than an unconstrained problem, since the 
first one allows to control the level of short and long positions and avoids the concentration risk.

Figure 3. Cumulative monthly portfolio values, obtained by rebalancing the weights ω  and ω∗
 

during the out-of-sample period
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