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Abstract

The dependence structure between the main energy markets (such as crude oil, natural 
gas, and coal) and the main stock index plays a crucial role in the economy of a given 
country. As the dependence structure between these series is dramatically complex 
and it appears to change over time, time-varying dependence structure given by a class 
of dynamic copulas is taken into account.

To this end, each pair of time series returns with a dynamic t-Student copula is mod-
elled, which takes as input the time-varying correlation. The correlation evolves with 
the DCC(1,1) equation developed by Engle.

The model is tested through a simulation by employing empirical data issued from 
the Italian Stock Market and the main connected energy markets. The author consid-
ers empirical distributions for each marginal series returns in order to focus on the 
dependence structure. The model’s parameters are estimated by maximization of the 
log-likelihood. Also evidence is found that the proposed model fits correctly, for each 
pair of series, the left tail dependence coefficient and it is then compared with a static 
copula dependence structure which clearly underperforms the number of joint ex-
treme values at a given confidence level.
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INTRODUCTION

The dependence structure between the energy markets and the main 
stock index plays a fundamental role in the strategic development of 
the economy of a given country. Particularly, the link between the 
main energy markets and their influence on the financial market 
dynamics for a given country should be analyzed. A comprehensive 
survey of this feature has been carried out by Gatfaoui (2016). In this 
paper, the author investigates the links between the U.S. natural gas 
and U.S. crude oil markets, as well as their dependencies with the U.S. 
stock market (Standard and Poor’s 500 Index). 

At first, Gatfaoui performs a structural break test in order to detect even-
tual regime changes concerning the energy spot prices and stock market 
index over the given sample horizon. The second stage foresees to use 
copula functions, within each time segment, to fit the dependence struc-
ture involving the given energy commodities and the U.S. stock market.

Some authors such as Adams et al. (2017), Engle and Sheppard (2001) 
and Tse (2000) developed several tests to ascertain the variability of 
correlation. From these surveys, it appears that the correlations are 
generally time varying in the context of financial markets.
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The dynamic copulas framework allows to effectively handle a time-varying dependence structure. 
We apply then a DCC(1,1) model introduced by Engle (2002). An application concerning basket cli-
quet options has been developed by Masala (2013).

To our knowledge, the literature did not investigate yet the dependence structure among energy mar-
kets and stock price index from a dynamic framework. In this survey, we investigate the Italian market 
and the main energy markets (crude oil, natural gas, and coal) to test the proposed model. We can fur-
ther extend the same approach to any other markets.

The paper includes the following sections. The main goals of the survey are introduced in the current 
section. In section 1, we describe the theoretical backgrounds about the copula dependence structure 
in the static and dynamic case. Section 2 illustrates the characteristics and the main statistics about the 
databases used. We perform a numerical application in section 3 in order to apply the proposed models. 
Finally, last section concludes.

1. THE DEPENDENCE 

STRUCTURE

1.1. Copula functions

Copula functions allow to represent multivariate dis-
tributions through complex and non-linear depen-
dence structures between its marginal distributions. 
Indeed, the copula splits a joint distribution into its 
marginals and the dependence amongst them. A 
great variety of copulas is available in the literature.

Abe Sklar (1959) introduced copula functions. 
Since 1986, the number of research papers about 
copula functions increased, starting from the 
seminal paper of Genest and MacKay (1986).

We also list actuarial applications by Frees and 
Valdez (1998) and financial applications by 
Embrechts et al. (2002).

Definition 1. A function C  is a two-dimensional 
copula if it matches:

i. domain [0,1] [0,1];×

ii. (0, ) ( ,0) 0;  ( ,1) (1, )C u C u C u C u u= = = =  
for every [0,1];u∈

iii. C  is 2-increasing:

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , , ,C v v C u u C v u C u v+ ≥ +  
for every ( )1 2, [0,1] [0,1],u u ∈ ×  

( )1 2, [0,1] [0,1]v v ∈ ×  with 1 10 1u v≤ ≤ ≤   
and 2 20 1.u v≤ ≤ ≤

The main result is the so-called fundamental theo-
rem due to Sklar (1959).

Theorem 1. Given a two-dimensional distribution 
F  with marginals 1F  and 2 ,F  we can find a two-
dimensional copula C  with

( ) ( ) ( )( )1 2 1 1 2 2, ,  .F x x C F x F x=  (1)

The continuity of 1F  and 2F  ensures the unicity 
of the copula .C  This definition can be extended 
with higher dimensions.

1.2. Conditional copulas

Time series often contain random vectors with 
conditioning variables (represented as time func-
tions tΩ ). To face this situation, we introduce the 
so-called conditional copula (see Patton, 2006).

Definition 2. Conditional copulas in two dimensions.

A conditional copula ( , ) ,tx y Ω  with 1 ttx F−Ω ∼  
and 1 ,tt Gy −Ω ∼  is represented by the bidi-
mensional conditional distribution function of 

( )1t t tU F x −Ω∼  and ( )1t t tV G y −Ω∼  given 1.t−Ω

The Sklar theorem can be adapted as follows (see 
Patton, 2006).

Theorem 2. We denote ,tF  tG  and tH  the condi-
tional distributions of ,x  y  and ( , )x y  respec-
tively under 1t−Ω  with tF  and tG  continuous 
in x  and .y  We can prove the uniqueness of the 
copula tC  satisfying:
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( )
( ) ( )( )

1

1 1 1

,

,  .

t t

t t t t t t

H x y

C F x G y

−

− − −

Ω =

= Ω Ω Ω
 (2)

Note that the converse is true.

We assume the same variable 1t−Ω  for the margin-
als and the copula in order to ensure the validity 
of this result.

Some applications of dynamic copulas are giv-
en by Ausin and Lopes (2010), Fantazzini (2008), 
Masala (2013), and Manner and Reznikova (2011).

1.3. Marginal modeling

Remember that the joint density function writes as:

( ) ( )
( ) ( )

1 1

1 1

, ;  ;  

;  , ;  ,

t h t t f

t t g t t c

h x y f x

g y c u v

ϑ ϑ

ϑ ϑ

− −

− −

Ω = Ω ⋅

⋅ Ω ⋅ Ω
 (3)

where ( )1 ;  ,t t fu F x ϑ−≡ Ω  ( )1 ;  ,t t gv G y ϑ−≡ Ω  

fϑ  and 
gϑ  represent the vectors of marginal pa-

rameters and cϑ  is the vector of copula parame-
ters, with ' ' ', , .h f g cϑ ϑ ϑ ϑ =  

By taking logs in equation (1), we obtain the log-
likelihood function:

( ) ( ) ( ) ( ), ,xy h x f y g c f g cL L L Lϑ ϑ ϑ ϑ ϑ ϑ= + +  (4)

with:

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

1

1

1

log , ;

log ;

log ;

, , log , ;

xy h t t h

x f t t f

y g t t g

c f g c t t c

L h x y

L f x

L g y

L c u v

ϑ ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ ϑ

−

−

−

−

 = Ω

 = Ω


= Ω


= Ω

 (5)

We estimate the parameters with the Inference 
Functions for Margins (IFM) procedure, as listed 
below.

1. At first, determine the parameters 
fϑ  and 

gϑ  
of the marginals tF  and tG  by maximizing 
the log-likelihood:

( ) ( )
1

ˆ arg max arg max log ;
T

f f t t f

t

L f xϑ ϑ ϑ
=

= = ∑  (6)

( ) ( )
1

ˆ arg max arg max log ;
T

g g t t g

t

L g yϑ ϑ ϑ
=

= = ∑  (7)

If the parameters are not ‘variation free’, we set:

{ } ( ) ( )

( ) ( )
1

ˆ ˆ, arg max

arg max log ; log ; .

f g f g

T

t t f t t g

t

L L

f x g y

ϑ ϑ ϑ ϑ

ϑ ϑ
=

 = + = 

 = + ∑

 
(8)

2. Then use the estimations of the previous step 
to determine the copula’s parameters :cϑ

( )

( ) ( )( )
1

ˆ arg max

ˆ ˆarg max log ; , ; ; .

c c

T

t t t f t t g c

t

L

c F x G y

ϑ ϑ

ϑ ϑ ϑ
=

= =

 =   ∑
 (9)

Note that the marginal distributions are fitted 
with the more suitable distributions. Nevertheless, 
in order to focus on the dependence structure, 
we can use an empirical distribution such as in 
Gatfaoui (2016).

See also Guégan and Zhang (2008), Hafner and 
Reznikova (2010), and Palaro and Hotta (2006) for 
a similar approach. 

Remember that the correlation tρ  follows the 
same equation as the (1,1)DCC  structure estab-
lished by Engle (2002): 

( ) 1 1 11 't t t tQρ λ γ λ ε ε γ ρ− − −= − − ⋅ + ⋅ ⋅ + ⋅  (10)

Here, Q  denotes the sample correlation and 1tε −  
are the transformed standardized residuals and 
the parameters must satisfy the condition:

1 , (0,1).λ γ λ γ+ < ∈  (11)

This model was also applied by Patton (2006), 
Jondeau and Rockinger (2006) and Dias and 
Embrechts (2010). The copulas estimations were 
performed with a Matlab toolbox, described in 
Vogiatzoglou (2010).

Finally, we simulate trajectories for each pair of 
variables through a Monte Carlo procedure.

We list hereafter the steps of the algorithm (see 
Fantazzini, 2008):
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• set the starting correlation value, next 
values will then satisfy the relation 

( ) 1 11 ;t t tQρ λ γ λ γ ρ− −= − − ⋅ + ⋅Ψ + ⋅

• denote tA  the Cholesky decomposition of the 
correlation matrix ;tΣ

• generate two independent values ( )1 2,z z=z  
from the (0,1)N  distribution;

• generate a value s  from 2

υχ  distribution (in-
dependent from z );

• estimate the vector ;t t ⋅y = A z

• set ;t t
s

υ
=x y

• get the components ( ),( )i i tR t t xυ=  
with 1, 2.i =  The final vector is then 

( ) 2

1 2 ,( ), ( ) .
t

T
R t R t Cυ Σ∼

2. THE DATABASE 

DESCRIPTION

Historical time series for oil (Europe Brent Spot 
Price FOB – dollars per barrel) and gas (Henry Hub 
Natural Gas Spot Price – dollars per million Btu) 
prices are available on the U.S. Energy Information 
Administration page http://www.eia.gov. Specifically, 
the sources for these data are respectively:

• http://www.eia.gov/dnav/pet/hist/
LeafHandler.ashx?n=PET&s=RBRTE&f=D 
(available from May 20, 1987);

• http://www.eia.gov/dnav/ng/hist/rngwhhdd.
htm (available from January 7, 1997).

Regards the coal market, we consider the Dow 
Jones Coal Index (DJUSCL). The series is available 
at the following link (from May 28, 2002):

• https://www.advfn.com/stock-market/DOWI/
DJUSCL/historical/more-historical-data

The FTSE MIB (FTMIB) index is available at the 
following link (from June 3, 2003):

• https://it.investing.com/indices/
it-mib-40-historical-data

These data are released on a daily basis for opening 
market days.

We exhibit in Table 1 the descriptive statistics of 
these data and their returns for the period April 2, 
2008–December 29, 2017.

We then exhibit in Figure 1 the scatter plots of the 
historical returns between each pair of variables.

We have already noted that correlation is generally 
time-varying. To verify this assumption, we plot 
in Figure 2 the correlation for each pair of vari-
ables’ returns for each year in the period 2004–
2017 (note that year 2008 is not full).

From these figures, it is clear that correlations be-
tween each pair of returns variables are fluctuat-
ing over time, therefore a time-varying correlation 
model, like the employed copula – DCC model is 
a suitable choice.

The correlation matrix between the return series 
(for the whole database) is given in Table 2.

Table 1. Descriptive statistics: MIB, oil, gas, coal and associated returns

Indicator
Prices Returns

MIB Oil Gas Coal MIB Oil Gas Coal

Mean 19,869.12 81.30 3.90 187.39 –0.0164% –0.0162% –0.0408% –0.0730%

Standard dev. 3,702.09 28.51 1.83 147.47 0.0177 0.0225 0.0396 0.0383

Skewness 1.03 –0.01 2.68 1.05 –0.23 0.27 1.00 –0.25

Kurtosis 2.44 –1.44 8.76 0.62 4.44 6.40 16.19 4.85

Maximum 34,547.00 143.95 13.31 741.46 10.8742% 19.8190% 39.0069% 21.8774%

Minimum 12,362.51 26.01 1.49 12.33 –13.3314% –16.8320% –27.8437% –23.8218%

Count 2,424 2,424 2,424 2,424 2,423 2,423 2,423 2,423
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Table 2. Correlation matrix between MIB, oil, gas 
and coal returns, %

Series MIB Oil Gas Coal

MIB 100 36.77 0.89 38.06

Oil 36.77 100 10.75 34.26

Gas 0.89 10.75 100 5.82

Coal 38.06 34.26 5.82 100

Another key point concerns the presence of tail 
dependence between each pair of variables X  
and Y . For example, left tail dependence is a fun-
damental concern for risk theory. For this pur-
pose, we should estimate the following condition-
al probabilities:

{ }* *| ,P X X Y Y< <  (12)

where *X  and *Y  are fixed values for each pair 
of variables. We select these thresholds as corre-
sponding to a fixed quantile of the variables and 
compare the subsequent conditional probability 
with the independence or other conditions on the 
tails.

Let us examine the procedure established by van 
Oordt and Zhou (2012). The tail parameter for two 
variates X  and Y  is:

{ }
|

0

Pr ( ) ( )
lim ,

Y X

Y X
p

Y Q p X Q p

p
τ

→

< ∧ <
=  (13)

where ( )YQ p  denotes the quantile of the distribu-
tion of Y  at probability level .p

Figure 1. Scatter plot for each pair of returns

Figure 2. Linear correlation coefficients between each pair of returns variables:  
MIB (1), oil (2), gas (3) and coal (4).
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The non-parametric estimator of the |Y Xτ  mea-
sure is the ratio between the number of observa-
tions in which both X  and Y  are extremes and 
those in which variable X  is extreme.

The non-parametric estimator of 
|Y Xτ  is given by:

,

1
|

,

1

ˆ ,

n

Y X t

t
Y X n

X t

t

I

I

τ
∧

=

=

=
∑

∑
 (14)

where ( ), ( / ) ( / ) ,Y X t t Y t XI Y Q k n X Q k n∧ = < ∧ <1  

( ), ( / )X t t XI X Q k n= <1  and n  is the number 
of observations. We denote ( )⋅1  the indicator 
function, and we estimate the quantile function 

( / ),Q k n  as usual, by the k -th lowest observation.

We deduce that the non-parametric estimator co-
incides with the OLS estimate of the slope coeffi-
cient as we perform a regression of the tail values 
of Y  against the indicator for tail values of X  
(with no the constant term). Namely, the OLS esti-
mate of β  in the indicator regression:

, , .Y t X t tI Iβ ε= ⋅ +  (15)

Note that the right tail is defined analogously. We 
just have to adapt the following quantities:

( ), ( / ) ( / )Y X t t Y t XI Y Q k n X Q k n∧ = > ∧ >1  (16)

and ( ), ( / ) .X t t XI X Q k n= >1  (17)

We exhibit in the next Table 3 the estimation 
|Ŷ Xτ  

at 95% level for each pair of variables. 

Table 3. Left tail parameter estimation for each 
pair of variables (number of cases between 
parentheses) at 95% level

Pair Empiric

MIB/oil 0.2562 (31)

MIB/gas 0.0496 (6)

MIB/coal 0.2975 (36)

Oil/gas 0.0909 (11)

Oil/coal 0.2975 (36)

Gas/coal 0.0331 (4)

Note that in absence of dependence on the left 
tail, we should expect to get about six joint cases 
at 95% level (indeed, 0.05 0.05 2,423 6⋅ ⋅  ). It is 
then evident that the pairs MIB/oil, MIB/coal and 
oil/coal exhibit a strong left tail dependence.

3. THE NUMERICAL 

APPLICATION

We aim to replicate, in this section, each pair of 
returns series. The general framework foresees the 
following steps:

• estimation for the two marginals;
• parameters’ estimation of the dynamic copula 

function;
• simulation of the bivariate series.

3.1. Marginal distributions

As stated before, we adopt a non-parametric 
model for the marginals. To this end, we con-
sider the empirical distribution function. More 
precisely, we approximate it with a smoothing 

Table 4. T-copula and DCC parameters for each pair of returns series

Test statistics

Parameters
MIB/oil MIB/gas MIB/coal Oil/gas Oil/coal Gas/coal

λ 7.2214 31.2342 5.9513 16.1369 4.6686 26.3003

γ 0.0053 0.0105 0.0060 0.0016 0.0009 0.0022

ν 0.9940 0.9124 0.9924 0.9979 0.9990 0.8344

AIC –392.5107 0.3383 –429.5558 –40.8499 –364.9263 –12.2049

BIC –375.1324 17.7166 –412.1775 –23.4716 –347.5480 5.1733

LogL 199.2553 2.8308 217.7779 23.4249 185.4631 9.1025
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kernel function (performed with ‘ksdensity’ 
function, Matlab R2017a).

3.2. Copula parameters

The next step is to determine the dynamic de-
pendence structure for each pair of variables. 
For this purpose, we consider a t-Student copu-
la with parameter tρ  following the DCC model 

( ) 1 11t t tQρ λ γ λ γ ρ− −= − − ⋅ + ⋅Ψ + ⋅  and fixed 
degree of freedom .ν

We reveal in Table 4 the parameters estimation 
and the test statistics for each pair of returns series.

Then, we plot in Figure 3 the dynamic correla-
tion following the DCC equation for each pair of 
variables.

3.3. Monte Carlo simulation

The final step is to simulate bivariate values for 
each pair of returns with a Monte Carlo simulation. 

We apply so the algorithm described in section 2.3.

We then estimate the left tail coefficient for the 
three pairs that present high tail dependence 
(namely MIB/oil, MIB/coal and oil/coal). The re-
sults (average values obtained from Monte Carlo 
simulation) are unveiled in Table 5. We have add-
ed to this table the correlation coefficient.

Table 5. Left tail parameter estimation and 
correlation for some pairs of simulated variables 
(number of cases between parentheses)

Pair Left tail Correlation

MIB/oil 0.2278 (27.6) 34.16%

MIB/coal 0.3125 (37.8) 34.58%

oil/coal 0.2436 (29.5) 31.89%

These results, compared with Table 3, highlight 
that extreme joint values on the left tail of the bi-
variate distribution are suitably represented by the 
simulated values. Besides, the correlation coeffi-
cients are very similar with the real correlations 
given in Table 2.

CONCLUSION

In this survey, we developed a procedure able to determine the complex and dynamic dependence struc-
ture between a stock market index (MIB index for the Italian market) and the main energy markets 
(namely crude oil, natural gas and coal). A statistical inspection of the data emphasized that the cor-
relations between each pair of series are far from being constant and they may assume sizeable values.

Figure 3. Dynamic correlation between each pair of variables (following DCC equation)
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The scheme proposed in our survey assumes that a general class of dynamic copulas represent the de-
pendence structure between each pair of variables to face the empirical nature of time-varying depen-
dence structure. Besides, we simulate bivariate trajectories for the selected pair with Monte Carlo proce-
dure. The marginal variables have been modeled through empirical distributions in order to focus only 
on the dependence structure.

The main issue is then to prove that the dynamic copula allows modelling faithfully the time-varying 
dependence structure. Besides, we have implemented the algorithms involved in order to replicate ran-
dom bivariate series trough Monte Carlo simulation. We have shown, for this purpose, that the left tail 
coefficients and the correlation are rather accurate for the simulated bivariate series.
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