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Cluster analysis for regime identification and forecasting  

with application to the enhanced index tracking problem 

Abstract 

This paper deals with the asset allocation problem in the presence of regime switching in asset returns. Considering a 

financial market subject to changes in regime, it is assumed that the expected value and covariance matrix of the 

returns of the assets can change according to a Markov chain taking values in a finite set. Generally, to apply a 

portfolio selection model in a switching regime approach it is necessary to estimate the market parameters and 

determine the number of regimes. In this paper it is proposed a non-parametric procedure to determine the number of 

regimes and define in which regime the market belongs to along the time, based on analyzing the historical stock return 

patterns using cluster analysis tools. The proposed methodology is applied to a portfolio optimization problem with 

enhanced index tracking and switching regime. The results show a satisfactory performance of the model with regime 

switches when compared to the case without regime switches. 

Keywords: switching regime, cluster analysis, enhanced index tracking, Markov process. 

JEL Classification: G11, C10, C61. 
 

Introduction  

The portfolio optimization problem is widely studied 

in the finance literature, under different market models 

assumptions, utility functions, restrictions and time-

horizons. The classical and well known mean-variance 

single-period model, originally proposed by 

Markowitz (1959), aims at maximizing the expected 

return of a portfolio under the restriction of a maximal 

given level of variance (risk) or, equivalently, 

minimizing the portfolio variance under the 

restriction of a minimum given expected return. In 

Li and Ng (2000) a solution to the multi-period 

mean-variance problem is presented (see other 

studies about this theme in Leippold et al. (2004) 

and Zhou and Li (2000), for instance). 

Another portfolio optimization problem related to 

the classical mean-variance problem consists of 

establishing an optimal allocation so that the 

portfolio’s return replicates the return of a reference 

index (benchmark). This problem is the so-called 

index tracking problem and, in this case, the utility 

tracking error function of the investor is based on 

the difference between the portfolio’s return and the 

benchmark’s return. Problems of this nature are 

addressed in Roll (1992), Rudolf et al. (1999), 

Jorion (2003), Stoyanov et al. (2008), Bajeux-

Besnainou et al. (2011) and Chen and Kwon (2012). 

Within the same spirit, the problem known as 

enhanced index tracking aims at obtaining returns 

above the reference index (excess return), while 

minimizing the deviation of the tracking error, that 

is, the deviation of the difference between the 

portfolio’s return and the benchmark’s return. This 

kind of problem is studied in Wu et al. (2007), 

Canakgoz and Beasley (2008), Li et al. (2011) and 

Guastaroba and Speranza (2012). 

                                                      
 Wanderlei Lima de Paulo, Oswaldo Luiz do Valle Costa, 2014. 

In particular the portfolio selection problem in the 

presence of regime switching in asset returns is an 

important topic in finance. Usually, a market whose 

parameters are subject to switching regime is 

characterized by a Markov switching regime 

framework (see for instance Zhou and Yin, 2003; 

Yin and Zhou, 2004; Guidolin and Timmermann, 

2007; and Bae et al., 2014). In this paper a financial 

market model under a multivariate Markov regime 

switching, where the expected value and covariance 

matrix of the returns can change according to a 

Markov chain taking values in a finite set is 

considered. 

In order to work in a Markov switching regime 

approach it is necessary to estimate the market 

parameters, determine the number of regimes and 

define in which regime the market belongs to along 

the time. In this case an appropriate method is to use 

a Markov switching model, but it can become 

technically complex and computationally intensive 

depending of the number of regimes and variables. 

Based on the historical stock return patterns using 

cluster analysis tools it is proposed a simple 

procedure to determine the number of regimes and 

classify the market regimes at each instant of time. 

The proposed methodology was applied to a 

portfolio optimization problem with enhanced index 

tracking and switching regime (as presented in 

Costa and Paulo, 2007). The results show a 

satisfactory performance of the model with regime 

switches when compared to the case without regime 

switches. 

The remainder of this paper is organized as follows. 

Section 1 presents the market model with switching 

regime. In Section 2 is presented the procedure to 

identify and determine the number of regimes and 

estimates the parameters of the market model, based 

on cluster analysis tools. Section 3 presents an 
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empirical application of the proposed methodology 

to a portfolio optimization problem with enhanced 

index tracking and switching regime. The final 

section presents some final remarks. 

1. Market model with switching regime 

The proposed work consideres a financial market with 

n assets which prices are represented by the random 

vector S(t), where the components of S(t) are described 

by Sl(t), with l = 1, …, n, such that S(t) =  

= (Sl(t)…Sn(t))’. The price of an asset at the instant  

t + 1, Sl(t + 1), is defined by the relation Sl(t + 1) =  

(1 + Rl(t))Sl(t), in which the vector of returns R(t) = 

(Rl(t)…Rn(t))’ is decomposed as: 

1 2

( ) ( )( ) ( ),/

t t
R t w t

 
   

  
(1) 

where the variable (t) characterizes the market 

regime at the instant t and defines how the asset 

returns are expected to vary from time t to time t + 1 

(examples of this approach applied in asset 

allocation problem can be found in Billio and 

Pelizzon (2000), Taamouti (2012) and Saunders et 

al. (2013)). 

It is assumed that the variable (t) follows a state 

Markov process taking values in a finite set {1, …, N} 

with transition probability matrix P given by: 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

,

N

N

N N N N

p p p

p p p
P

p p p
 

  

  

(2) 

where the value pi,j represents the probability of the 

market, when in regime i, moves to regime j at the 

next instant of time. Finally, in (1) i represents the 

covariance matrix of the returns, i the vector of 

expected returns when the market operation mode is 

(t) = i, with i = 1, …, N, and w(t) a vector of 

random variables with a null mean and covariance 

matrix equal to the identity matrix and independent 

of the variable (t), written as: 

,1,1 ,1,

1 2

, ,1 , ,

i i n

/

i

i n i n n

,  
,1

,

i

i

i n

.           (3) 

Note that to apply the market model considered here 

we need to determine the number of regimes, 

estimate the parameters i, i and pi,j, for each 

regime i = 1,…, N, and define in which regime i the 

market belongs to for each instant t. An appropriate 

parametric procedure to estimate these parameters is 

to use a multivariate Markov switching framework 

(Hamilton, 1989; Hamilton, 1990), from which it is 

possible to study unobserved common states 

(regimes) for several different asset returns (Guidolin 

and Timmermann, 2007; Taamouti, 2012; 

Guidolinand Hyde, 2007). Usually, an MMS model is 

constructed with a predefined number of regimes, so 

that the choice of the number of regimes is important 

to provide a sufficient detection rate and not generating 

a model of high complexity (Zhu et al., 2012; Spezia, 

2010; Awirothananon and Cheung, 2009; Psaradakis 

and Spagnolo, 2003). Finally, from a multivariate 

Markov switching model (MMS) we can define at 

each instant t in which regime i the system belongs to, 

making a probabilistic inference about the unobserved 

regime (t) given observations on R(t). 

However, depending on the number of variables and 
regimes considered, the application of an MMS 
model can become technically complex, 
cumbersome and computationally intensive. Then, 
using cluster analysis tools in the next section it is 
proposed a simple non-parametric procedure to 
determine the number of regimes and define in 
which regime the market belongs to for each instant 
of time, as well as estimate the market parameters. 

2. Cluster analysis framework 

This section presents a methodology to identify and 
determine the number of regimes and estimate the 

model’s parameters i, i and pi,j. Based on Chow et 
al. (1999) a multivariate distance measure to 
identify common regimes from past observations of 
a series of daily returns is applied. Applications of 
this measure to study turbulence in financial 
markets can be found in Kritzman et al. (2001), 
Bauer and Molenaar (2004), Kritzman et al. (2001) 
and Kritzman et al. (2011). 

Considering a market with n financial assets, set d(t) 

the multivariate distance at each instant t, with 

t = 1,…, T, given by: 

1( ) =[ ( ) ] [ ( ) ]',d t r t r r t r      (4) 

where r(t) is the vector of returns, r  is the vector of 

average returns and  is the covariance matrix, 

written as: 

1( )

( )

( )
n

r t

r t

r t

, 

1,1 1,

,1 ,

n

n n n

, 

1

n

r

r

r

, 

in which the estimates of r  and  can be obtained 
by using the past observations of the series of daily 
vector of returns {r(t); t = 1, …, T}. 

The number of regimes N is identified by analyzing 
the historical patterns of the multivariate distance 
series {d(t); t = 1,…, T}. The series {d(t); t = 1,…, T}. 
is segregated in k groups (clusters), written as follows: 
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1 2

1 1 2 2

1 1 2 1

1

{ ,…, }, { ,…, },...,

{ ,…, },
k

m m

k k

k m

G d d G d d

G d d
           (5) 

where mk is the number of elements of the series 

{d(t); t = 1,…, T} that were assigned to the group 

Gk (or cluster k), with m1 + … + mk = T. In this 

case Gi 
 

Gj = 0 whenever i  j and 

1 { ( ); 1,…, }k

i i
G d t t T . It is considered that each 

cluster corresponds to a market regime i , so that the 

number of regimes is equal to the number of groups 

established, i.e. N = k. Then, from (5) the historical 

series of the vector of asset returns {r(t); t = 1,…, T} 

can be divided into N groups, from which the vector 

of expected returns i and covariance matrices i 

may be estimated. Due to that, the number of 

elements in each group Gi should be large enough to 

allow a reasonable precision for the estimation of 

the expected returns i and covariance matrices i. 

Bearing this in mind a possible criterion for the 

choice of the number of regimes N would be to fix a 

minimal number of elements for the groups and 

consider only the cluster solutions that satisfy this 

restriction. 

After that equation (5) has been established, the 

elements of the expected returns vector i and 

covariance matrix i, associated to a group Gi, with i 

= 1,…, N, may be estimated by: 

,

1

1
( ) ( )

T

i l i l

ti

t r t
m

, with 1,…,l n ,                (6) 

, , , ,

1

1
( )( ( ) )( ( ) ),

1

with , 1,…, ,

T

i s v i s i s v i v

ti

t r t r t
m

s v n

   (7) 

in which the indicator function Ii(t) is such that 

1,  if ( )
( )

0,  otherwise 

i

i

d t G
t . 

Within the same spirit, the probabilities of transition 

among states, pi,j, can be calculated as the number of 

times that there is a switch from regime i to regime j 

divided by the number of times the system was in 

regime i, written as: 

,2
,

2

( )
, with 1,…, ,

( 1)

1,…, ,

T

i jt
i j T

it

t
p i N

t

j N

 

             

 (8) 

in which: 

,

1,  if ( )   and  ( 1)
( )

0,  otherwise 

j i

i j

d t G d t G
t . 

with t = 2,…, T. Then, applying (6), (7) and (8) it is 

possible to estimate the vectors of expected returns 

i, the covariance matrices i and the transition 

matrix P, related to each regime i = 1,..., N. 

There are two common methods to clustering a set 

of observation (or items), hierarchical and non-

hierarchical method (for more details see Johnson 

and Wichern, 2007, Chapter 12). Basically, in the 

hierarchical method the number of clusters is not 

specified in advance as occur in non-hierarchical 

method. However, in the non-hierarchical method 

the observations may be regrouped during the 

clustering process, which does not occur in the 

hierarchical method. To improve the final solution 

(set of clusters), we can use the hierarchical method 

as exploratory technique to identify a number of 

clusters and, in the sequel, use this as input to the 

non-hierarchical method (in this case the methods 

are complementary). 

As the hierarchical method provides several cluster 

solutions, the appropriate number of clusters can be 

determined by cutting off the dendrogram at an 

arbitrary point (sometimes a subjective choice). An 

identification of the optimal number of clusters can 

be done by using some stopping rule index as 

Calinski/Harabasz pseudo-F and Duda/Hart (see 

Everitt et al., 2011 for more details). Other methods 

can be seen in Sugar and James (2003), Sun et al. 

(2004) and Tibshirani et al. (2001), for instance. 

Finally, the application of the cluster analysis involves 

the choice of a convenient similarity measure between 

the variables. In this paper it is used the classical 

squared Euclidean distance, but in Bastos and Caiado 

(2012) it is introduced a new distance measure for 

clustering financial time series based on variance 

ratio test statistics. 

The methodology presented above allows us to 

determine the number of regimes and estimate the 

market parameters established in (1). Moreover, 

from (5) it is possible to establish in which regime i 

the market belonged to at each past instant t, 

considering the past observations of the series of 

multivariate distance {d(t); t = 1,…, T}. However, to 

apply the model (1) for new observations (i.e. 

observations that were not considered in the sample 

{r(t); t = 1,…, T}, and which will be denoted by r0(t) it 

is necessary to establish a criterion for classifying to 

which regime a new observed vector of returns r0(t) 

belongs to. 

Following the ideas in Chow et al. (1999), a simple 
way would be to assume that the vector of returns 
r0(t) is described by a normal distribution with 

vector of averages r  and covariance matrix . Then 
the distance d0(t) (defined as in (4) with r0(t) instead 
of r(t)) would follow a chi-squared distribution with 
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n degrees of freedom, 
2

n . From a level of 

significance  a threshold distance, d , could be 

defined so that one of the two market regimes (i = 1 
or i = 2) could be established in case the observed 

distance d0(t) is higher than d , i.e. d0(t) > d . This 

procedure is somewhat arbitrary to define the 

threshold d  and would be only suitable for two 

regimes. In the sequel it is proposed a procedure to 
classify regimes based on the set of clusters (or 
groups) defined in (5). Based on linear classification 
rule (see Rencher, 2002, Chapter 9), consider the sth

 
threshold s

d , s = 1,…, N – 1, of the multivariate 

distance series {d(t); t = 1,…, T} as follows: 

1

1
( ),

2
s s sd z z       (9) 

in which zt is the center of the group Gt, with i = 
1,…, N, defined as: 

1

1
,

im
i

i k

ki

z d
m

 

    (10) 

where mi and i

imd  are as defined in (5). From this set 

of threshold distances { ; 1,…, 1}
s

d s N
 
the market 

regimes are classified as follows: 

0 1

1 0 2

1 0

1,  if  ( )

2,  if  ( )
( )

,  if  ( ).
N

d t d

d d t d
t

N d d t
 

  (11) 

The procedure proposed in this section can be 
summarized as follows: 

1. From a series of daily vector of returns {r(t); t = 
1,…, T} determine the series of multivariate 
distance {d(t); t = 1,…, T} as defined in (4). 

2. Using cluster analysis segregate the series of 

multivariate distance {d(t); t = 1,…, T into k 

groups (or clusters), as proposed in this section. 

Set the number of regimes as N = k, mi, Gi and 
i

imd  as in (5). 

3. From the set of groups {Gi; i = 1,…, N} 
established in Step 2, estimate for each group the 

vectors of average returns i and the covariance 

matrices i applying (6) and (7), respectively. 
Apply (8) to estimate the transition matrix P. 

4. Finally, to classify a new observation ro(t) which 

regime is unknown apply the criteria (11). 

It should be pointed out that the methodology 

proposed here to identify and determine the number 

of regimes and classify a new observation which 

regime is unknown, characterized by (5)-(11), allows 

to work with more than two regimes and does not 

require the normality hypothesis on the vector of 

returns r(t) as considered in Chow et al. (1999). 

3. An empirical application 

This section presents an application of the proposed 

methodology to a portfolio optimization problem 

with enhanced index tracking and switching regime 

(as presented in Costa and Paulo, 2007). The model 

assumes that the market regimes switch according to 

a finite state Markov chain, in which the returns of 

the assets are described as in (1). 

3.1. Enhanced index tracking problem. Consider 

that the investor may allocate his/her financial 

resources in only (n  1) assets, being asset 1 the 

reference index (benchmark). Let Ul(t) be the wealth 

value allocated in each asset l, with l = 2, …, n, and 

XU(t) (assume for simplicity that XU(t) = X(t) from 

now on) the value of the portfolio related to the 

investments strategy U, with initial value X(0) = X0 

and time horizon T. By taking 

2( ) ( ( ) U ( ) ) ,U t U t t  
3U( ) ( ( ) ( ) )nt U t U t , 

,1 ,2( ) ( ( ) ( ) R ( ))
i i i i

R t R t R t t  and  

,3 ,R ( ) ( ( ) ( ) )
i i i n

t R t R t , we have that 

2( ) ( ) U( )X t U t t e  and 

( ),2 2 ( )( 1) (1 ( )) ( ) ( R ( )) U( ),
t t

X t R t U t e t t
 

where e  is a (n  2) dimensional vector with all the 

components equal to 1. Then, it is possible to show 

that the value of the portfolio is written as 

( ),2 ( )( 1) (1 ( )) ( ) P ( ) U( )
t t

X t R t X t t t
 
with P ( )

i
t  

,2R ( ) ( )
i i

t R t e . 

Let Y(t) represents the value of the reference 

portfolio associated with a benchmark index. It is 

supposed that its value follows the recursive equation 

( ),1( 1) (1 ( )) ( )
t

Y t R t Y t
 
with Y(0) = X(0). Notice 

that the reference portfolio’s return is given by 

,1 ,1 ,1,

1

( ) ( )
n

i i i s s

s

R t w t . The enhanced index tracking 

problem consists in finding the investments strategy 

U (U(0),…,U( 1))T  such that minimizes the 

functional 

2

( ) ( )

0

(( (0) (0)) , (0), U) ( ) ( ) ( ) ( ) ( ) ( )
T

t t

t

J X Y E t X t Y t t X t Y t .
            

   (12) 
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subject to 

( ),2 ( )( 1) (1 ( )) ( ) P ( ) U( ),
t t

X t R t X t t t
           

(13) 

( ),1( 1) (1 ( )) ( ),
t

Y t R t Y t
                                     

(14) 

where i(t) and i(t) are positive real numbers. The 

quadratic term represents the variability of the 

portfolio’s value and the linear term represents the 

expected gain related to the reference portfolio. The 

balancing between the linear and quadratic terms is 

established through the weights i(t) and i(t). Thus, 

a manager could decide on one of the three investment 

strategies: achieve an average return higher than the 

reference index (active management), replicate the 

return of a reference index (index tracking) or track 

the reference index with a positive return in relation 

to the reference index (enhanced index tracking), 

depending on the values assigned to the parameters 

i(t) and i(t). 

The solution for the problem (12)-(14), presented in 

Costa and Paulo (2007), is of a mode-dependent 

kind, that is, it depends on the regime of the market 

along the time. Then its application requires to define 

for each instant t in which of the states i the market 

belongs to, as well as to estimate the transition 

probability matrix (2), the covariance matrix and the 

expected returns described in (3). To achieve this goal 

we can apply the procedure proposed in this paper, as 

described in the next section. 

3.2. Numerical example. It is considered a portfolio 

comprised of six stocks negotiated in the Brazilian 

stock exchange (BOVESPA), named VALE3, PETR3, 

BBDC3, GGBR3, ELET3 and USIM3, in which the 

wealth value can be allocated over the time. Then the 

financial market model consists of 7 assets, l1, l2, l3, l4, 

l5, l6 and l7, being the asset l1 chosen as the benchmark 

(Ibovespa index/IBOV). For the purpose of this 

study the historical stocks prices are considered for 

the period of 08/01/2008-01/31/2009 (a sample 

daily return with size T = 116). The application of 

the proposed methodology is presented in the 

following steps. 

Firstly, the series of multivariate distance {d(t);  

t = 1,…, 116} as defined in (4) was calculated. Using 

STATA software, the hierarchical algorithm (with 

between-groups linkage cluster method and squared 

Euclidean distance measure) was applied to cluster 

the series {d(t); t = 1,…, 116} and computed the 

Duda/Hart indices to choose the optimal number of 

cluster (as shown in Table 1). 

Table 1. Cluster solutions for the Duda/Hart index, 

Je(2)/Je(1) 

Number of clusters Je(2)/Je(1) Pseudo-t2 

1 0.2686 310.41 

2 0.2783 67.43 

3 0.2655 237.95 

4 0.3168 25.88 

5 0.1157 91.74 

The conventional rule for choosing the number of 

optimal clusters is to find the point with the largest 

Je(2)/Je(1) value that corresponds to a low Pseudo-t2 

value, which has a higher value above and below it. 

Then, from Table 1, the optimal number of cluster 

should be four (k = 4), which sizes would be m1 = 39, 

m2 = 4, m3 = 56 and m4 = 17. However, note that the 

cluster with size m2 = 4 is not appropriate to 

estimate the covariance matrices i as established in 

(3). Thus, using the same criterion of choice from 

Table 1, two groups (k = 2) as input to the k  means 

method was selected. Finally, the historical series of 

the asset returns was segregated into two groups (G1 

and G2) with size m1 = 21 and m2 = 95, respectively. 

By taking the number of regimes N = 2, two market 

regimes were considered, one of higher volatility 

(regime i = 1) and another of lower volatility 

(regime i = 2), as defined in Table 2. 

Table 2. Definition of market regimes 

Regime Description 

i = 1 Market under high average volatility 

i = 2 Market under low average volatility 

From (6) and (7) the vectors of average returns i 

and the covariance matrices i, for each regime i = 1 

and i = 2, are given by: 

1 ( 0 01233 0 02079 0 01057 0 00977 0 01292 0 01414 0 02423 ) ,. . . . . . .  

2 ( 0 00605 0 00744 0 00485 0 00544 0 01063 0 00286 0 01268 ) ,. . . . . . .  

1

0 00479 0 00481 0 00502 0 00459 0 00544 0 00331 0 00528

0 00481 0 00598 0 00563 0 00470 0 00553 0 00270 0 00561

0 00502 0 00563 0 00645 0 00504 0 00596 0 00282 0 00578

0 00459 0 00470 0 00504 0 00585 0 00551 0 00301 0 00477

0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . . ,

00544 0 00553 0 00596 0 00551 0 00715 0 00430 0 00618

0 00331 0 00270 0 00282 0 00301 0 00430 0 00410 0 00367

0 00528 0 00561 0 00578 0 00477 0 00618 0 00367 0 00733

. . . . . . .

. . . . . . .

. . . . . . .  
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2

0 00120 0 00155 0 00140 0 00096 0 00140 0 00069 0 00128

0 00155 0 00232 0 00194 0 00116 0 00185 0 00069 0 00163

0 00140 0 00194 0 00201 0 00103 0 00169 0 00060 0 00139

0 00096 0 00116 0 00103 0 00122 0 00106 0 00067 0 00109

0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

00140 0 00185 0 00169 0 00106 0 00211 0 00080 0 00155

0 00069 0 00069 0 00060 0 00067 0 00080 0 00100 0 00085

0 00128 0 00163 0 00139 0 00109 0 00155 0 00085 0 00211

.

. . . . . . .

. . . . . . .

. . . . . . .  
 

Applying (8) the estimated transition matrix (2) is 

given by: 

0.29 0.71

0.16 0.84
P , 

Being the size of each group m1 = 21 and m2 = 95, 
from (10) the center of each cluster (or group) is given 
by z1 = 15 and z2 = 5.19. Applying (9) we have one 

threshold distance 10.19d . Then, from (11) the 

market regime for a new observation, i.e. a new vector 
of returns r(t), can be classified as follows: 

1,  if  ( ) 10 19
( )

2,  if  ( ) 10 19

d t .
t

d t .
. 

With the purpose of showing the behavior of the 

enhanced index tracking problem with switching 

regime, the previously proposed methodology was 

applied to the model without regime switches (i.e. 

1 = 2 =  and 1 = 2 = ), in which the vector of 

average returns   and the covariance matrices  

were estimated using the sample daily return with 

size T = 116 and are given by 

( 0 00272 0 00233 0 00206 0 00268 0 00637 0 00022 0 00600 ). . . . . . . , 

0 00190 0 00221 0 00210 0 00166 0 00219 0 00121 0 00210

0 00221 0 00310 0 00267 0 00186 0 00261 0 00112 0 00251

0 00210 0.00267 0 00285 0 00180 0 00252 0 00104 0 00227

0 00166 0 00186 0 00180 0 00209 0 00191 0 00113 0 00184

0

. . . . . . .

. . . . . . .

. . . . . .

. . . . . . .

.00219 0 00261 0 00252 0 00191 0 00310 0 00149 0 00252

0 00121 0 00112 0 00104 0 00113 0 00149 0 00160 0 00146

0 00210 0 00251 0 00227 0 00184 0 00252 0 00146 0 00325

. . . . . .

. . . . . . .

. . . . . . .

. 

Note that the optimization problem aims at finding 

an optimal allocation at each instant t that 

minimizes the objective function defined in (12), 

subject to (13) and (14). From (12), the type of 

investment strategy can be defined by the balance 

between the linear and quadratic terms that is 

established through the weights i(t) and i(t), 

respectively. For the purpose of this work, an 

enhanced index tracking strategy (named here 

enhanced management) with i(t) = 0.3 and i(t) = 

0.1 was compared to an active management strategy 

with i(t) = 0.1
 
and i(t) = 0.8. Setting X(1) = 100 

and Y(1) = 100 as initial values to the portfolio of 

investments (13) and to the reference portfolio (14), 

the solution presented in Costa and Paulo (2007) for 

the problem (12)-(14) was implemented using the 

Matlab software. Figure 1 and 2 (see the Appendix) 

show the results for the value of the portfolio 

investment X(t) and the value of the reference portfolio 

Y(t), for enhanced management and active manage-

ment strategies (with and without switching regime). 

From Figure 1 and Figure 2 we can see that on 

average the model with regime switches performs 

better than the model without regime switches. The 

performance of an investment can be measured 

using some kind of indicator as Sharpe ratio and 

Jensen’s alpha (see Sharpe, 1994; Jensen, 1968; and 

Liptona and Kishb, 2010, for example). To measure 

the performance of the investment portfolio for each 

model (with and without regime switches) three 

indicators were used: mean squared error measure, 

Sortino ratio (Sortino and van der Meer, 1991) end 

upside potential ratio (Sortino et al., 1999). The 

mean squared error measure (MSE) was calculated 

as follows: 

2

1

1
( ( ) ( ))

T

t

MSE X t Y t
T

, 

where X(t) is the value of the portfolio and Y(t) is 

the value of the reference portfolio. The Sortino 

ratio (SR) was calculated by: 
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T
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t

X t Y t
T

SR

X t Y t
T

, 

where I (x) is such that I (x) = x if x < 0 and I (x) = 0 

if x  0 (in this case the minimum acceptable return 

(MAR) is replaced by the reference portfolio Y (t)). 

Finally, the upside potential ratio (UPR) was 

calculated as follows: 

1

2

1

1
( ( ) ( ))

1
( ( ( ) ( )))

T

t

T

t

I X t Y t
T

UPR

X t Y t
T

, 

where I+(x) is such that I+(x) = x if x > 0 and I+(x) = 0 

if x  0. Notice that the indicators SR and UPR 

measure the average of excess return and the 

average of return above the benchmark, respectively, 

divided by the downside risk (or downside volatility). 

Table 3 shows the results for the application of the 

three indicators presented above. 

Table 3. Performance measures considering the two 

strategies: enhanced management and active 

management 

 Enhanced management Active management 

Type of model SR UPR MSE SR UPR MSE 

With regime switches 0.57 29.27 1.68 15.48 34.77 4.99 

Without regime switches 1.26 15.79 2.67 2.92 31.05 2.86 

From Table 3 note that SR for the model with 

regime is less (greater) than SR for the model 

without regime, considering the enhanced (active) 
 

management strategy. On the other hand, we can 

also see that UPR for the model with regime is 

greater than UPR for the model without regime in 

both strategies. Moreover, from the MSE indicator 

we can see that the value of the portfolio is more 

(less) adherent to the benchmark when the model 

with regime is used (compared to the model without 

regime), considering the enhanced (active) 

management strategy. Therefore, we can conclude 

that the model with regime switches, developed 

using the methodology proposed in this article, 

performed better than the model without regime. 

Conclusion 

This paper presents a non-parametric procedure 

based on cluster analysis tools for determining the 

number of regimes, estimate the parameters, and 

define in which regime the market belongs to, for 

financial markets under regime switching. In this 

case the expected value and covariance matrix of the 

asset returns can change according to a Markov 

chain taking values in a finite set. This new 

approach is a simple alternative to the classical 

multivariate Markov switching framework (MMS) 

used to estimate the market parameters and define the 

regimes along the time. The application of an MMS 

model can become cumbersome and computationally 

intensive when there is a large number of market 

regimes and variables. The proposed methodology was 

applied to a portfolio optimization problem with 

enhanced index tracking and switching regime. The 

results showed a satisfactory performance of the 

model with regime switches when compared to the 

case without regime switches. 
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Appendix 

 

Fig. 1. Values of the portfolio investment X(t) considering the enhanced management strategy without regime switches  

and with regime switches 

 

Fig. 2. Values of the portfolio investment X(t) considering the active management strategy without regime switches  

and with regime switches 
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