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Abstract

The mean-variance framework coupled with the Sharpe ratio identifies optimal 
portfolios under the passive investment style. Optimal portfolio identification under 
active investment approaches, where performance is measured relative to a benchmark, 
is less well-known. Active portfolios subject to tracking error (TE) constraints lie on 
distorted elliptical frontiers in return/risk space. Identifying optimal active portfolios, 
however defined, have only recently begun to be explored. The Ω – ratio considers 
both down and upside portfolio potential. Recent work has established a technique to 
determine optimal Ω – ratio portfolios under the passive investment approach. The 
authors apply the identification of optimal Ω – ratio portfolios to the active arena 
(i.e., to portfolios constrained by a TE) and find that while passive managers should 
always invest in maximum Ω – ratio portfolios, active managers should first establish 
market conditions (which determine the sign of the main axis slope of the constant TE 
frontier). Maximum Sharpe ratio portfolios should be engaged when this slope is > 0 
and maximum Ω – ratios when < 0. 
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INTRODUCTION

Investment styles follow one of two broad approaches: active and 
passive. Active fund managers trade frequently and engage energeti-
cally with the market. Successful active managers identify high-per-
forming assets and time trades to extract maximal performance, 
buying when prices are low and selling when they are high. Skill 
in this space is usually measured relative to a benchmark, usually a 
market index or an assembly of similar securities with constraints 
on portfolio weights, asset quality, and acceptable risk. Passive man-
agers select and purchase desired securities and hold these for in-
vestment horizons, spanning periods of economic booms and busts. 
Such managers’ proficiency is measured on an absolute basis; they 
minimize transaction fees and aver that “good” securities outper-
form in the long run. 

Both styles have pros and cons, and the ebb and flow of economic ac-
tivity often dictate investor style selection: passive usually in stable 
markets and active in volatile ones. Events such as the 2020 COVID-19 
pandemic, which severely shocked global markets, emphasize the im-
portance of agile, active investing. Managers capable and eager to 
quickly dispose of airline, oil, or tourism-related stocks avoided the 
worst of the downturn and significantly outperformed less nimble 
investments.
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Modern portfolio theory led to the design and application of the widely-used efficient frontier, which 
plots – in return-risk space – the locus of portfolios whose arrangement of constituent security weights 
generates maximal returns at each specified risk level. Sharpe identified the optimal portfolio on this 
frontier: one whose excess return (usually over the risk-free rate) per unit of risk taken to achieve that 
return was maximized. This framework of asset selection is ideally suited to the passive investment style. 
Identifying an optimal portfolio using this construction implies that markets are relatively static and 
that buying and holding the optimal portfolio will eventually lead to the desired risk/return character-
istics (Rudd, 1980). 

Active investment strategies require more complex structures. Portfolios whose performance and risk 
are measured relative to a benchmark follow a different locus of possibilities in return-risk space (Strub & 
Baumann, 2018). Jorion (2003) demonstrated that such portfolios occupy a distorted ellipse in this space 

– rather than the efficient frontier’s hyperbola for absolute risk and return. This ellipse’s dimensions and 
orientation are governed by many factors, including the variance-covariance matrix of underlying se-
curity returns, benchmark weights in the permissible universe of investable assets, constituent portfolio 
weights relative to the benchmark, and the size of the TE.1 The greater the deviation from benchmark 
weights, the higher the possibility for outperforming (or underperforming) that benchmark (and the 
higher the TE). To limit excessive risk-taking, active managers are often limited by mandates not to 
exceed a prescribed TE. There are profound differences in how portfolio risk and return evolves and is 
measured under active and passive investment styles. In common use for passive portfolios, standard 
performance metrics require complex reformulation and behave in unfamiliar ways in an active space. 

The Ω – ratio, a performance metric that makes no distributional assumptions about asset returns, is 
popular amongst passive investors, but determining the asset allocation to generate an optimal Ω – ra-
tio portfolio eluded the researchers for years. The Ω – ratio’s definition imbues it with non-convex prop-
erties, which do not yield to standard optimization techniques. Recently, Kapsos, Zymler, Christofides, 
and Rustem (2011) accomplished this feat using linear programming, but their approach has not been 
applied to active portfolios, i.e., those constrained by TEs. The authors identify maximum Ω – ratio 
portfolios on the constant TE frontier under different market conditions and compare these portfolios’ 
performance over time to universal (unconstrained) Ω – ratio portfolios.

The remainder of this article proceeds as follows. A literature review, which provides information re-
garding the development of the relevant investment strategies and the metrics, which govern perfor-
mance measurement, follows in section 1. Section 2 describes the data chosen and explains the math-
ematics governing TE constrained portfolio performance. The Ω – ratio framework, the identification 
of the optimal Ω – ratio portfolio in passive space, and how this structure may be applied in active space 
are also discussed in this section. Section 3 presents and discusses the results of the analysis and pos-
sible ramifications. The last section concludes and provides some recommendations. 

1 Defined as the standard deviation of the difference between portfolio and benchmark returns (themselves governed by the difference 
between portfolio and benchmark weights).

1. LITERATURE REVIEW

Modern portfolio theory (MPT) is a well-estab-
lished and widely implemented paradigm, which 
asserts that investors select portfolios based upon 
their level of risk aversion. Set out by Markowitz 
(1952), the framework gives rise to a set of efficient 
portfolios – those characterized by the maximum 
possible return at any given risk level – which trace 

out a boundary in return-risk space known as the 
efficient frontier. The literature is replete with im-
provements and adaptations, augmentations and 
variations of MPT. Markowitz, Schirripa, and 
Tecotzky (1999), for example, showed how – by 
pooling assets – investors could collectively pro-
vide constituent members higher expected returns 
for given risks than individuals could generate 
alone. These results were confirmed and extend-
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ed by Kwan (2003), and more recent innovations 
are provided by Canakgoz and Beasley (2008) and 
Calvo, Ivorra, and Liern (2012).

Sharpe (1966) identified an optimal portfo-
lio on the efficient frontier, the highest risk-ad-
justed portfolio return, measured as the quo-
tient of portfolio return above the risk-free rate 
and the portfolio’s risk (defined by its volatility), 

( )- / ,P f PSR rµ σ=  where SR is the Sharpe ratio, 
μ

P
 is the portfolio annual return, r

f
  is the annual-

ized risk-free rate, and σ
P 

is the annualized port-
folio volatility (or risk). This portfolio represents 
the single intersection point of the capital market 
line (CML) hinged at the risk-free rate on the re-
turn axis and the frontier, i.e., where the CML is 
tangent to the frontier. Despite many assumptions 
embedded in the determination of this optimized 
portfolio (e.g., Muralidhar, 2015), it remains a pop-
ular metric (Sharpe, 1994; Guastaroba & Speranza, 
2012; Lo, 2012; Qi, Rekkas, & Wong, 2018).

MPT and the tangent portfolio reflect the passive 
portfolio management style in which assets are 
bought and held for “long” investment horizons, 
usually several months or years. This style enjoys 
the benefits of low trading costs and a through-the-
cycle view of market performance resting on the as-
sumption that superior assets will outperform the 
broader market even though influenced by it. The 
active management style (strategic stock selection 
and timing), while more expensive because of trad-
ing expenses, is dominated by fund managers who 
purchase and sell securities when prevailing condi-
tions signal danger or opportunity. This style has 
been eclipsed in recent times by index (passive) in-
vesting, but this has given rise to systemic problems 
(Anadu, Kruttli, McCabe, Osambela, & Shin, 2018), 
and the alleged inferior performance of the active 
investment style has been challenged by Cremers, 
Fulkerson, and Riley (2019) whose research found 
evidence that ‘conventional wisdom’ had been un-
fairly critical of the value of active management 
which continues to outperform the passive style 
(Berk & van Binsbergen, 2015; Pederson, 2018; 
Mutunge & Haugland, 2018; Dolvin, Fulkerson, & 
Krukover, 2018). 

Active fund performance is assessed relative to a 
benchmark, commonly a market index or a selec-
tion of securities constrained by investor prefer-

ences. Superior active funds should outperform 
the returns generated by the benchmark and si-
multaneously not exceed a prescribed, relative risk 
measure: the TE defined as the standard deviation 
of the differences between portfolio and fund re-
turns (Filippi, Guastaroba, & Speranza, 2016).

Using a mean/variance (Markowitz) framework, 
Roll (1992) established a description of portfolio op-
timization relative to a benchmark for a given TE. 
These optimal, but constrained, portfolios trace out 
a frontier much like the efficient frontier (but shift-
ed to the right – i.e., lower potential returns with 
higher risk), in return/risk space. Bertrand, Prigent, 
and Sobotka (2001) and Larsen and Resnick (2001) 
reconsidered the problem of mean-variance max-
imization under TE constraints, but Jorion (2003) 
was the first to mathematically formulate the con-
stant TE frontier, a distorted ellipse in return/risk 
space comprising TE-constrained portfolio return/
risk coordinates. Stowe (2014) provides a recent, 
comprehensive treatise on the relevant mathemat-
ics governing TE constrained portfolios.

Maxwell, Daly, Thomson, and van Vuuren (2018) 
and Maxwell and van Vuuren (2019) adapted and 
extended Jorion’s (2003) approach to TE con-
strained portfolio optimization by establishing a 
technique which identified the tangent portfolio 
on the constant TE frontier. Analogous to the tan-
gent portfolio on the efficient frontier, this port-
folio (where the analogous CML – also hinged at 
the risk-free rate on the return axis – is tangent 
to the constant TE frontier) represents the maxi-
mal risk-adjusted return portfolio constrained by 
a given TE. Daly, Maxwell, and van Vuuren (2018) 
explored α, β and investor utility behavior for TE 
constrained portfolios, and Evans and van Vuuren 
(2019) investigated several portfolio performance 
metrics on the constant TE frontier. Gunning 
and van Vuuren (2019) surveyed the mechanisms 
which drive constrained portfolio performance by 
examining the influence of macroeconomic con-
ditions on the shape of the TE frontier (certain 
market conditions alter the slope of the main ax-
is of the constant TE frontier ellipse (often from 
> 0 to < 0), which profoundly influences TE con-
strained portfolio performance).

The Ω – ratio is a portfolio performance measure 
that captures both portfolios down and upside 
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potential while remaining consistent with util-
ity maximization (Keating & Shadwick, 2002). 
Although now widely used, an optimal Ω – ratio 
portfolio long eluded practitioners because it is 
a non-convex function, which does not lend it-
self to standard optimization techniques. Kane, 
Bartholomew-Biggs, Cross, and Dewar (2005) ex-
plored this problem empirically using simulated 
returns from a portfolio comprising three assets. 
Several local solutions were found by changing as-
set weights to maximize the Ω value and assuming 
no short-selling. Extending this work to ten (real) 
assets and employing a global optimization tech-
nique (not disclosed), Kane, Bartholomew-Biggs, 
Cross, and Dewar (2005) identified maximal Ω 
portfolios and compared their performance with 
portfolios produced using MPT (i.e., tangent port-
folios). The results showed that the allocation of 
weights for portfolios’ constituent assets was con-
siderably different from those based on risk mini-
mization. Passow (2004) and Gilli, Schumann, Di 
Tollo, and Cabej (2008) made laudable attempts 
to resolve the problem of Ω portfolio optimality. 
However, their solutions were heuristic (which 
did not guarantee the accurate identification of 
the global optimum), and their threshold accept-
ing methods were numerically unstable, requir-
ing complicated fine-tuning of the underlying 
parameters. 

The optimization of the Ω – ratio subject to portfo-
lio constraints has been considered in other port-
folio optimization research. Examples include 
the consideration of transaction costs (Beasley, 
Meade, & Chang, 2003), a maximum number of 
permissible portfolio constituents (Guastaroba & 
Speranza, 2012), and portfolio weight lower and 
upper bounds (Gnagi & Strub, 2020). 

Kapsos, Zymler, Christofides, and Rustem (2011), 
using the Ω – ratio quasi-concave property (which 
permits its transformation into a linear program), 
overcame the non-convex function problem, and 
established an exact optimization formulation. 
This solution is a direct analog to the mean-var-
iance framework and its associated Sharpe ratio 
maximization. Kapsos, Zymler, Christofides, and 
Rustem (2011) work applies to passive investment 
approaches. To date, no attempts have been made 
to explore Ω optimal portfolios, which are also 
subject to TE constraints (i.e., active style). 

In this article, several strands of related research 
are combined. The authors augment the work de-
scribed above relating to TE constrained portfoli-
os by adapting Kapsos, Zymler, Christofides, and 
Rustem (2011) optimal Ω – ratio solutions to ac-
commodate TE constrained portfolios. The au-
thors explore some properties of optimal TE con-
strained Ω – ratio portfolio performance and con-
tributed to the literature by presenting, for the first 
time, these results obtained and the implications 
of these results on the theory and practice of port-
folio optimization.

2. DATA AND METHODOLOGY

2.1. Data

The data for both benchmark and portfolios com-
prised 15 stocks (from six market sectors to ensure 
a degree of diversification) selected from a major 
emerging economy’s (South Africa) stock exchange 

– the Johannesburg Stock Exchange’s (JSE) All-Share 
Index 40 (ALSI40), which comprises 40 of the largest 
companies listed on the entire JSE, ranked by mar-
ket capitalization. The behavior of the ALSI40 rep-
resents a reasonable reflection of the overall South 
African stock market because, although it contains 
only 10% of JSE-listed companies, it includes over 
80% of the JSE market capitalization. The 15 stocks 
selected from the ALSI40 for this work – in turn – 
represent about 87% of the ALSI40 by market capi-
talization (roughly 70% of the entire South African 
stock market) and 79% of the total ALSI40 liquid-
ity determined as the average daily volume as a 
percentage of total volume for each stock, over ten 
years from January 2010 to January 2020 (Courtney 
Capital, 2020). Thus, these stocks are highly liquid, 
frequently traded by active managers, and all are 
dual-listed on international stock exchanges. 

The authors also analyzed portfolio performance 
sourced from similarly liquid, high market capi-
talization (as a percentage of total capitalization) 
stocks from diverse sectors in the US, UK, and 
European indices over the same period but found 
similar results. This is not an unexpected result: 
diversified, highly liquid portfolios perform sim-
ilarly regardless of market milieu because return 
outliers are reduced, and portfolio return distri-
butions are close to normal (Janabi, 2009).
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Monthly returns spanning 20 years from Jan-00 
to Jan-20 were used, thus covering an era charac-
terized by different market conditions: the years 
of expansionary conditions, which preceded the 
2007–2009 credit crisis, credit crisis, and post-cred-
it crisis turmoil. The currently ongoing economic 
ramifications of the COVID-19 pandemic (May 
2020) should contribute to an interesting case study.

The benchmark comprised equal proportions of 
these stocks and was rebalanced monthly. Different 
combinations of benchmark constituent weights 
(other than equal weights) were instituted and test-
ed but did not change the outcomes reported here. 
The principal driving factor is the degree of devi-
ation from the benchmark weights of the relevant 
portfolios. 

For the analysis that follows, five years of month-
ly returns were used to generate portfolio returns, 
volatilities, and correlations. The calculations 
were rolled forward one month at a time (main-
taining a five-year period to generate the relevant 
parameters) to explore the behavior of TE con-
strained optimal Ω – ratio portfolios, the impact 
of a sign-changing constant TE frontier main axis 
slope, and the observed differences between secu-
rity weights for different optimal portfolios con-
strained by TE. Although all rolling five-year peri-
ods were examined for this work (from Jan-00 to 

Jan-20), the authors selected (and present) the an-
alytical results, which most strongly demonstrate 
these impacts mentioned earlier. The two five-year 
periods identified were:

1. Oct-00 – Oct-05 characterized by 

a. relatively low volatility,
b. high returns – despite including the 9-11 US 

terrorist attack,
c. risk-free rate of 7.0%, and 
d. main axis slope of the constant TE frontier > 

0 and

2. Oct-09 – Oct-14 characterized by

a. high volatility,
b. lower returns – in the aftermath of the 2007/8 

global financial crisis,
c. risk-free rate of 5.8%, and 
d. main axis slope of the constant TE frontier < 0.

Portfolio behavior subject to TEs from 1% to 12% 
(in 1% increments) was explored. Descriptive statis-
tics of these securities are set out in Table 1. While 
the risk-free rates of 7% and 5.8% may seem exces-
sive post the credit crisis of 2008–2009, these high 
rates are relevant for many emerging economies. 
The magnitude of the risk-free rate on the analysis 
that follows does not influence the conclusions.

Table 1. Descriptive statistics for the period Oct-00 to Oct-05 and Oct-09 to Oct-14

Source: Bloomberg and authors’ calculations.

Statistics
Energy Materials Retail IT Consumer Financial

A B C D E F G H I J K L M N O

2000–2005

 ͞μ (%) 30.0 15.3 9.3 3.9 22.5 13.8 16.0 43.7 18.9 11.5 10.4 30.2 29.6 14.0 20.1

μ
max

 (%) 24.0 18.0 24.8 18.2 37.6 49.3 19.9 51.6 18.2 33.4 40.2 29.0 27.3 44.1 15.2

μ
min

 (%) –13.9 –18.2 –18.1 –20.9 –23.3 –21.9 –13.1 –23.3 –13.9 –28.6 –44.7 –11.9 –25.0 –47.1 –11.7

͞σ (%) 32.6 21.3 33.6 29.8 36.9 57.0 26.9 42.5 22.6 41.1 51.0 26.0 29.3 51.7 19.9

s 0.22 0.04 0.56 –0.16 0.75 0.67 0.50 1.13 0.04 0.13 –0.61 0.77 0.09 –0.33 0.30

k –0.77 1.13 0.05 –0.23 1.34 0.06 –0.30 3.23 –0.03 0.60 2.09 1.22 2.18 1.89 –0.02

2009–2014

͞μ (%) 14.2 –1.1 –2.0 9.0 –0.4 –26.5 20.8 41.8 17.1 14.8 39.8 37.2 12.2 37.5 7.4

μ
max

 (%) 16.8 14.0 15.9 17.9 19.4 23.2 17.3 25.9 11.4 15.8 24.1 15.5 19.6 21.9 13.1

μ
min

 (%) –10.5 –14.3 –21.1 –11.8 –16.8 –28.3 –17.6 –14.1 –15.3 –9.0 –14.6 –19.0 –15.6 –11.4 –9.6

 ͞σ (%) 17.3 20.3 26.0 24.6 28.2 36.0 23.6 24.5 18.4 18.1 28.1 24.4 25.5 28.8 17.2

s 0.52 –0.07 –0.17 0.27 0.22 –0.35 –0.38 0.54 –0.57 0.45 0.05 –0.69 0.40 0.48 0.31

k 0.72 0.06 0.18 –0.17 –0.69 0.50 0.31 1.90 0.56 0.38 –0.13 0.89 –0.12 –0.52 –0.04

Note: Key:  ͞μ – mean annual return, μ
max

 – max monthly return, μ
min

 – min monthly return, ͞σ – mean annualized volatility, s – 
skewness, and k – kurtosis.
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2.2. Methodology

Active investment positions differ from bench-
mark positions according to the risk appetite of 
investors. Low TEs mean active weights must be 
small, while for higher TEs, active weights are 
larger (permitting a wider range of weights rela-
tive to the benchmark). The underlying variables, 
matrices, and matrix notation are defined further 
for a sample of N constituent securities:

• q 1 N×  vector of benchmark weights;
• x 1 N×  vector of deviations from the 

benchmark;
• q

P
 = (q + x) 1 N×  vector of portfolio weights;

• E 1 N×  vector of expected returns;
• σ 1 N×  vector of benchmark component 

volatilities; 
• ρ N N×  benchmark correlation matrix;
• V N N×  covariance matrix of asset returns;
• 1 1 N×  vector of 1s; and
• r

f
 risk-free rate.

Net short sales are allowed, so the total active 
weights (q

i
 + x

i
) may be > 0 for individual securi-

ties. No assets outside the benchmark’s set may be 
included using Roll’s methodology – although, in 
principle, this is, of course, possible. Using matrix 
notation, expected returns and variances are:

• 
'B qEµ =  expected benchmark return;

• B qVqσ = ′  volatility (risk) of benchmark 
return;

•  'xEεµ =  expected excess return; and

• 
xVxεσ = ′  TE.

The active portfolio expected return and variance 
is given by ( ) 'P Bq x E εµ µ µ= + = +  

and ( ) ( ) 'P q x V q xσ = + + . The portfolio 

must be fully invested, so
 
( )1' 1.q x+ =

 

The following definitions are also required: 
1 1 1 2', 1', 1 1', a EV E b EV c V d a b c− − −= = = = −  

and 1 B b cµ∆ = −  where MVb c µ=  and 

2
2 1B cσ∆ = −  with 

21 MVc σ=  where MV is the 
minimum variance portfolio (Merton, 1972).

It is useful to recall the relevant mathematics, 
which generates various frontiers.

2.2.1. Mean variance frontier 

Minimize 
'

P Pq Vq  subject to 1' 1Pq =  
and 'Pq E G=  where G is the target re-
turn. The vector of portfolio weights is 

( ) ( )( )2
P MV TGq a bG d q bG b c d q− + −= , 

where q
MV

 is the vector of asset weights for the min-
imum variance portfolio given by

 

11MVq V c−= , 
and q

TG
 is the vector of asset weights for the tan-

gent portfolio (with r
f
 = 0), i.e., 

1 .TGq V E b−=  
The weights of the tangent portfolio’s components, 
q

TP
, with r

f
  ≠ 0, are: 

( )
( )

1

'

1

1 '

1 1 '

f

TP

f

V E r
q

V E r

−

−

− ⋅
=

⋅ − ⋅

2.2.2. TE frontier 

Maximize 'xE  subject to 1' 0x =  and 2'xVx εσ=
. The solution for the vector of deviations from the 
benchmark is

 

'2
1' 1

b
x V E

d c

εσ −  = ± − 
 

. 

The solution to this optimization problem gener-
ates the TE frontier, a portfolio’s maximal return 
at a given risk level, and subject to a TE constraint. 

2.2.3. Constant TE frontier

Maximize 'xE  subject to 

( ) ( )

2

2and .

1' 0, '

' P

x xVx

q x V q x

εσ

σ

= =

+ + =

 

The vector of deviation weights 
from the benchmark is 

( )( ) ( )1
2 3 1 3' 1 ' '  x V E Vqλ λ λ λ−= − + + + where 

3
1

 b

c

λλ +
= − , ( )

2
2 1

2 32 2
2

2
4

d

yε

λ λ
σ
∆ −∆

= ± − −
∆ −

 

and 
2

1 2 1
3 2 2

2 2 24

dy

yε

λ
σ

∆ ∆ −∆
= − ±

∆ ∆ ∆ −
. The solution 
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for the weights which generate the tangent portfo-
lio (to the constant TE frontier) was shown by 

Maxwell, Daly, Thomson, and van Vuuren (2018) 
to involve solving for σ

P
 using:

( )

( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2 2
1 2

1
22 2 2 2 2

1 2 2

2
2

22 2 2 2 2 2 2 2
1 2 2 1

2
2

4

4

2

P B

P B
f B

P

P B P B

P

d

dr

d

ε

ε ε

ε ε ε

σ σ σ

σ σ σ σµ

σ

σ σ σ σ σ σ σ

σ

∆ − ∆ ⋅ − −
+ ∆

 ∆ − ∆ − − − ∆−   + −
∆

 ∆ − ∆ − − − ∆ + ∆ ⋅ − −  −
∆

then establishing μ
P
 on the efficient segment of the 

constant TE frontier and then backing out the rel-
evant weights. 

2.2.4. Constant TE frontier main axis slope, S
MA

The main axis slope, S
MA

 is calculated using 

1 ,B MVB
MA

B MV B MV B MV

b c
S

µ µµ
σ σ σ σ σ σ

−∆ −
= = =

− − −

where Δ
1 

determines the sign of
 
S

MA 
because the 

denominator is always > 0 since σ
B
 – σ

MV
 > 0 al-

ways. A necessary and sufficient condition for S
MA

 
< 0 is μ

B
 < μ

MV
. Note that the S

MA
 is independent of 

TE since none of its components depend explicit-
ly thereon. For the first time, the authors measure 
and evaluate the sign and magnitude of the SMA 
and explore how these (and constituents of the 
S

MA
) change over time as market conditions evolve 

plus their influence on TE constrained portfolio 
performance. 

2.2.5. Optimal Ω portfolios

Let us consider a market with N stocks. The current 
time is t = 0, and the end of the investment horizon 
is t = T. A portfolio is completely characterized by a 
vector of weights w ∈ RN, such that 

1
100%.

N

ii
w

=
=∑

The element w
i
 denotes the percentage of total 

wealth invested in the i-th stock at time t = 0. Let 
r͂
i
 indicate the random return of asset i and bold-

face the vector of return variables r͂ ∈ RN. The ran-
dom return of a portfolio of assets is defined as  
r͂
P
 = wTr͂.

Let F(r
i
) and f(r

i
) denote the cumulative density 

function and the probability density function. For 

an asset i , Keating and Shadwick (2002) define 
the Ω – ratio as:
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Integration by parts and some algebraic transfor-
mation, the Ω – ratio may be written:
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Therefore, the portfolio Ù  – ratio is:
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In this paper, portfolio optimization problems 
are investigated that aim to maximize the Ω – ra-
tio subjected to additional constraints on portfo-
lio weights. The Ω maximization problem can be 
written as: 

[ ]
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n
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s.t. 1 100%Tw =  and .w w w≤ ≤

The objective is to determine the allocation that 
gives the optimal weights (w ∈ RN) that result in 
the portfolio with the maximum Ω – ratio. The 
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constraints above relate to the budget constraint 
and the upper and lower bound on any individual 
investment.

The discrete analog for (2) is 

.
T

T

j jj

w r

w r p

τ

τ
+

−
Ω =

 − ∑
 (4)

The optimization problem is

max ,
T

w T

j jj

w r

w r p

τ

τ
+

−

 − ∑
 (5)

s.t. 1iw∑ = , and w w w≤ ≤  and where 
1/jp N= .

Using the portfolio weights derived from (5), Ωs 
may be calculated, and their component numera-
tors and denominators graphed. Figure 1 presents 
interesting similarities with MPT’s mean-vari-
ance framework and Sharpe ratio optimization. 
Points above the frontier are unattainable, and in-
vestors may choose better solutions for all coor-
dinates below. Kapsos, Zymler, Christofides, and 
Rustem (2011) named this locus of points the Ω 
frontier and found that it is concave, non-decreas-
ing feature arose from the optimization problem’s 
(5) convexity property. For each point on the fron-
tier, the Ω – ratio is determined by the gradient 
of the line passing through it and the origin, so 
an optimal solution (maximum Ω – ratio) is that 
point at which the line which passes through the 
origin has the highest slope (i.e., tangent to the Ω 
frontier).

3. RESULTS AND DISCUSSION

The aim is to generate constant TE frontiers for 
varying levels of TE (1% to 12% in 1% intervals) 
and then, for each constant TE frontier, estab-
lish the risk and return (and corresponding 
portfolio constituent weights) for each of the fol-
lowing maximal portfolios: return, Sharpe, and 
Ω. There are two “maximum Ω – ratio portfo-
lios”; one which simultaneously satisfies the rel-
evant TE constraint and maximizes the return 
at each TE-constrained risk level and the oth-
er unconstrained by TE, i.e., a universal max-
imum Ω portfolio. The former is identified by 
first selecting the (known) asset weights, which 
generate the upper hemisphere of portfolios on 
the constant TE frontier (i.e., from minimum 
to maximum variance portfolios on the ellipse). 
These weights are then used to generate port-
folio returns over the chosen period of interest 
(five years of monthly returns, rolled forward 
one month at a time, since Jan-00) and the asso-
ciated Ω – ratio calculated for each set of 60 (5y) 
returns. By construction, these portfolios lie on 
the constant TE frontier. 

The choice of 5y monthly sample period was based 
on the observation that fund managers general-
ly use between three and five years of monthly 
return data for portfolio construction and per-
formance metric estimation (Marhfor, 2016). The 
authors opted for the longer-range to include 
more return data and embrace a greater fraction 
of the business cycle (the average business cycle 
frequency in South Africa is about seven years 

Figure 1. Ω frontier, analogous capital market line, and location of the optimal Ω portfolio

Source: Authors’ calculations.
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(Thomson & van Vuuren, 2016), so the 5y sam-
ple period encapsulates almost one full cycle). 
Shorter periods encompass too few data to pro-
vide robust metrics and longer periods use too 
many return data because markets change con-
siderably over longer periods, styles alter, market 
dynamics adapt to different trends. 

The results of the strategy are impacted by choice 
of rolling window length (and the date at which 
the strategy is installed and implemented), but 
this work aims to illustrate portfolio perfor-
mance during two different sets of market con-
ditions: one which results in a positive main axis 
on the constant frontier and one which results in 
a negative main axis. Although the period choice 
is significant, the selection of different market 
milieus was deliberate in evaluating and catego-
rizing behavior in these times.

The Ω – ratio – measured using as threshold the 
benchmark return – for each portfolio is then 
plotted on the same x-axis (risk) as the constant 
TE frontier (the solid black line in Figure 2 for 
TE = 6%). The unconstrained (universal) Ω – ra-
tio, using the same threshold, is also shown in 
Figure 2, along with the efficient frontier and 
the capital market line (CML) for the constant 

TE frontier (Maxwell, Daly, Thomson, & Van 
Vuuren, 2018). 

In Figure 2, the period selected was Oct-00 to Oct-
05 using monthly returns. This period preceded the 
credit crisis of 2007–2009 when markets enjoyed 
buoyant returns and reduced volatility, giving rise 
to a constant TE ellipse with a positive main axis 
(Gunning & van Vuuren, 2019). The maximum Ω – 
ratio portfolio – constrained by TE – lies between 
(in terms of risk and return) the maximum Sharpe 
ratio and maximum return portfolios. In contrast, 
the universal (unconstrained) Ω – ratio portfolio 
lies outside the constant TE frontier with higher 
risk and higher return than all other constant TE 
frontier portfolios (in this example where TE = 6% 
and r

f 
= 7.0%).

In Figure 3, the period selected was Oct-09 to Oct-
14, i.e., post the worst of the turbulent market vol-
atility instituted by the credit crisis of 2007–2009. 
Portfolio annual returns are substantially lower 
than those observed in the period preceding the 
credit crisis and annual risk is higher: the configu-
ration resulting in a negative main axis for the con-
stant TE ellipse. The maximum TE-constrained Ω 

– ratio portfolio again lies between (in terms of risk 
and return) the maximum Sharpe ratio and max-

Figure 2. Orientation of relevant components in Oct-05. TE = 6% and r
f
 = 7.0%. The Ω – ratio as a 

function of risk is shown as a solid black line, tied to the right-hand axis (the maximum Ω – ratio on 
this curve is indicated). All other elements are linked to the left-hand axis

Source: Bloomberg and authors’ calculations.
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imum return portfolios. In contrast, the univer-
sal (unconstrained) Ω – ratio portfolio again lies 
outside the constant TE frontier with higher risk 
and higher return than all other constant TE fron-
tier portfolios (in this example where TE = 6% and 
r

f
 = 7.0%).

Figure 4(a) shows the Ω frontiers for portfolios 
with returns selected from the two periods (Oct-
00 – Oct-05 and Oct-09 – Oct-14). Figure 4(b) 

plots Ω – ratio at each corresponding threshold. Ω 
– ratios are higher in the latter period because the 
high volatility here leads to a higher dispersion of 
portfolio returns. The overall increase in quanti-
ty and magnitude of returns > 0% in this period, 
combined with the greater dispersion, elevates Ω – 
ratios 0%τ∀ > .

Constituent deviations from the benchmark (i.e., 

ix ) in the optimal, universal, unconstrained Ω 

Source: Bloomberg and authors’ calculations.

Figure 3. Orientation of relevant components in Oct-14. TE = 6% and r
f = 5.8%
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portfolios for the two periods are provided in 
Figure 5, grouped by the market sector.

In the former period, the optimal unconstrained 
Ω portfolio strongly overweighs the assets A and 
M while strongly underweighting C and D. Both A 
and M witnessed considerable growth in the low 
risk, high return pre-crisis period, skewing their 
return distributions to the right. Simultaneously, 
C and D both experienced large losses during this 
time, skewing both return distributions to the left. 

Similar observations were noted for assets A 
(strong growth post the credit crisis), and E and O 
(large losses with widely dispersed returns) in the 
latter period. 

The remainder of the assets’ performance was un-
remarkable; their return distributions were char-
acterized by low skewness and low excess kurtosis. 
Thus, deviations from the benchmark weights are 
small. 

The maximum Sharpe ratio’s behavior, maxi-
mum constrained Ω, and maximum return port-
folios as a TE function are shown in Figure 6(a) 
for Oct-00 – Oct-05. The locus of the return/risk 
coordinates all increase monotonically as TE in-
creases, and the relative configuration is preserved 
for all TEs (both the risk and return of the max-
imum Sharpe ratio portfolio less than that of the 
maximum Ω, and, in turn, less than that of the 
maximum return portfolio). Figure 6(b) shows the 

associated Sharpe ratios for all portfolios as TE’s 
function again monotonically increasing with 
the maximum Sharpe ratio portfolio exhibiting, 
as expected, the highest Sharpe ratio for all TEs. 
Constant TE frontiers of 3%, 7%, and 12% are dis-
played for scale, and the Sharpe ratio for the con-
strained optimal Ω portfolio is shown as a dotted 
line in Figure 6(b) for comparison. The vertical 
scales in Figures 6(a) and (b) are the same as those 
for Figures 7(a) and (b) for direct comparison.

Figure 7 duplicates the analysis presented in 
Figure 6 but for the period Oct-09 – Oct-14. When 
the constant TE frontier’s main axis is negative, 
returns for all maximal portfolios increase mono-
tonically with increasing TE, while the risk for 
these portfolios decreases then increases again as 
TE increases. 

For TE < 5%, the constrained maximum Ω – ratio 
portfolio does not lie on the efficient constrained 
portfolio set – it lies to the right of the maximum 
return portfolio, i.e., it has higher risk and lower 
return (recall that the efficient set spans the up-
per hemisphere of the ellipse from the minimum 
variance portfolio on the left to the maximum 
return portfolio on the right. Portfolios outside 
this region are inefficient). Because the same lev-
el of return is possible for this maximum con-
strained Ω portfolio, it is inefficient. This may not 
be true because the Ω – ratio makes no assump-
tions of return distribution normality. Instead, it 
uses the empirical distribution and may still be 

Source: Bloomberg and authors’ calculations.

Figure 5. Weights in optimal, unconstrained Ω portfolios for Oct-00 – Oct-05 and Oct-09 – Oct-14
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efficient because both the max Sharpe and max 
return portfolios assume a normal distribution 
of returns.

Figure 8 compares weight deviations from the 
three portfolios’ benchmark over (a) the Oct-00 – 
Oct-05 period and (b) the Oct-09 – Oct-14 period.

Source: Bloomberg and authors’ calculations.

Figure 6(a). Return/risk profiles for relevant portfolios as a function  
of TE (percentages indicate TE values)
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Figure 6(b). Sharpe ratios versus TE for Oct-00 – Oct-05
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The reasons for large over or underweighting re-
main – for either period – as discussed previously 
(for Figure 5). In Figure 8(a) for Oct-00 – Oct-05, the 
constant TE frontier’s main-axis slope is > 0 (Figure 
2) while for Figure 8(b) for Oct-09 – Oct-14 the 
main-axis slope is < 0 (Figure 3). Deviations of asset 
weights from the benchmark vary considerably over 

the two periods. The relative weights differ in mag-
nitude, the signs (overweight/underweight) are al-
so often different. The size of constituent asset de-
viation from the benchmark weights (> 0% or < 0%) 
is also greater when the main axis slope is > 0, but 
although the relative weights of the constituents 
often have different signs (like Oct-05), the mag-
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Figure 7(b). Sharpe ratios versus TE for Oct-14

Source: Bloomberg and authors’ calculations.

Figure 7(a). Return/risk profiles for relevant portfolios as a function of TE
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nitude of the differences are negligible. These ob-
servations are explained by the fact that when the 
main-axis slope is > 0, the range of risks spanned 
by the efficient portfolio set is greater than when 
the main-axis slope is < 0 (earlier period’s approx-
imately 14.5% to 20.5% (6% risk range) compared 
with later period’s 9.5% to 12.5% (3% risk range) in 
this example).

Figure 9 presents asset K’s weight deviations 
from the benchmark over the two periods as TE’s 

function. Several interesting features are appar-
ent. The profiles are broadly similar regardless 
of the main axis slope: all increase or decrease 
monotonically as TE increases. This reflects the 
stability of benchmark deviations as TE changes 

– these are gradual, not abrupt. The benchmark 
weight deviations for the maximum Sharpe ratio 
and maximum return portfolios are almost iden-
tical over the two periods, while those for the 
maximum Ω portfolio are notably higher in the 
second period. 

Source: Bloomberg and authors’ calculations.

Figure 8. Benchmark weight deviations for relevant portfolios  
in (a) Oct-00 – Oct-05 and (b) Oct-09 – Oct-14
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Asset K is a large conglomerate, which enjoyed un-
precedented success after the credit crisis. Several 
fortuitous mergers and acquisitions buoyed the 
company’s profitability, it’s weighting in the over-
all market index swelling from 1% to 10% over 
this period. K’s return distribution becomes in-
creasingly skewed to the right as time passes. The 
weights in the maximum Ω – ratio portfolio in-
crease accordingly, as the Ω – ratio balloons. This 
is untrue the maximum Sharpe portfolios because 
this approach assumes that returns are normally 
distributed. As K’s volatility increases over time 
(due to large positive returns), the Sharpe ratio 
is penalized (as a risk-adjusted return portfolio), 
so weights do not change much despite a strong-

ly-performing asset. The maximum return port-
folio underweights K relative to the benchmark 
because its performance is strongly tied to the 
benchmark (itself representing the broad market, 
being well-diversified, and having equally weight-
ed components). This leads to strong positive cor-
relations with other asset returns, which perform 
favorably over the periods but not spectacularly. 
Adding asset K increases the risk relative to the 
benchmark beyond that of the specified PD, so the 
only option is to underweight this asset at the oth-
ers’ expense. This may generate the highest return 
portfolio, but it is only the maximum Ω – ratio 
portfolio that fully exploits a strongly outperform-
ing asset.

CONCLUSION AND RECOMMENDATIONS 

Identifying and characterizing portfolios’ behavior with a maximum Ω – ratio and constrained by 
TEs has been implemented and investigated here for the first time. Such portfolios differ from uni-
versal – unconstrained Ω – ratio portfolios, both in risk and return characteristics and constituent 
asset weights (and, therefore, they differ in their respective weight deviations from the benchmark). 
Unconstrained Ω portfolios distribute weights among components depending on both positive and 
negative return configurations. Portfolios that limit the magnitude of negative returns and encour-
age positive returns have the highest Ω – ratio and are selected for optimality. Portfolios constrained 
by TE, however, must allocate component asset weights differently. Because the relative risk level 
of these portfolios must equal the TE, constrained Ω portfolios penalize assets whose risk profile 
prevents reaching relative risk equal to the TE (while favoring assets which generate portfolios with 
more positive returns than negative ones). This arises from the complex interplay of not only com-
ponent volatilities, but also correlations between components. Individual assets whose returns are 

Figure 9. Asset K’s deviation in weight from the benchmark for the relevant portfolios in (a) Oct-00 – 
Oct-05 and (b) Oct-09 – Oct-14

Source: Bloomberg and authors’ calculations.
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strongly correlated with those of the benchmark (or “market” if the benchmark represents broad 
market exposure) – while appearing favorable due to high positive returns – may be penalized be-
cause their inclusion leads to relative risk different from the TE.

When the constant TE frontier’s main axis is < 0 (a feature that arises only in conditions of high 
market turbulence, usually short-lived, lasting only a few months), the range of possible return/risk 
combinations for optimal portfolios (Sharpe, Ω – ratio or return) is considerably reduced. Portfolios 
under these conditions exhibit similar risks and returns and have similar component weights. When 
the constant TE frontier’s main axis slope is > 0 (a longer-lasting and far more prevalent feature of 
the constant TE frontier, arising from “normal” market conditions), the range of possible return-risk 
combinations is considerably greater. Variation in component asset weights is also higher when the 
constant TE main axis slope is > 0. 

Passive asset managers relying on absolute rather than relative performance should always allocate 
asset weights using the universal maximized Ω – ratio portfolio. Such portfolios have been shown to 
outperform other vaunted “optimal” alternatives. Active managers who require portfolios to outper-
form a prescribed benchmark while maintaining a prescribed level of risk relative to it subvert the 
mechanisms employed by optimal Ω – ratio portfolio construction, reducing – or eliminating – its 
effectiveness. In these cases, market conditions – which dictate the sign of the constant TE frontier’s 
main axis slope – should also be considered. When the constant TE frontier’s main axis is > 0, stra-
tegic active asset managers should allocate asset weights using a maximum Sharpe ratio framework. 
Tactical (shorter-term) active asset managers should use a maximum Ω – ratio approach to deter-
mine asset weights.

Possible future work could include an explicit, long-term, empirical investigation of the veracity 
of these conclusions. Current (2020) highly volatile market conditions, due to the fallout induced 
by the COVID-19 pandemic, could serve as an interesting case study to gauge and calibrate these 
effects. 

Future work could also explore the dual impacts of trading commissions and trading costs. Investigating 
restrictions on short-selling in available portfolios may also be of interest. However, improved trading 
platforms and computation speeds continue to erode such limitations, so such work’s impact may di-
minish in the future.
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