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Abstract

Guaranteed Minimum Income Benefit are variable annuities contract, which offer the 
policyholder the possibility to convert the guarantee level into an annuities income for 
life. This paper focuses on the optimal customer behavior assuming the maximization 
of the discounted expected future cash flows over the full life of the contract duration. 
Using convenient scaling properties of the contract value enables to reduce the com-
plexity (dimension) of the problem and to characterize the policyholder’s decision as a 
function of the contract moneyness across four main choices: zero withdrawals, guar-
anteed withdrawals, lapse and the income period election. Sensitivities to key drivers 
such as the market volatility, the interest rate and the roll-up rate illustrate how crucial 
are not only the environment, but also the product design features, in order to ensure 
a fair and robust pricing for both customer and life insurer. In particular, the authors 
find that most empirical contracts are usually underpriced compared to mean optimal 
behavior pricing, which empirically translated into multiple updates of behavior as-
sumptions and re-reserving by life insurers in the recent years.
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INTRODUCTION

The world’s older population is growing rapidly. According to data 
published in 2015 by the United Nations, there was a substantial in-
crease of 48% (from 607 to 901 million) of people aged 60 or over be-
tween 2000 and 2015. And by 2050, the population aged 60 and over 
might reach nearly 2.1 billion.

Moreover, the “oldest-old” (aged 80 or over) population accounted for 
14% of old population (aged 60 or older) in 2015, and is expected to tri-
ple 2015’s value by 2050. As a result of these demographic shifts, longer 
life expectancy, increasing lifestyle and health-care costs, the idea that 
individuals and households need to plan for their own retirement is 
gaining a lot of attention. On the other hand, low interest rates are 
putting pressure on the insurance sector, pushing providers and con-
sumers alike to look for ways to make themost of their assets.

This situation has led insurance companies to offer a range of sav-
ings products indexed on financial assets (stocks, funds, government 
bonds...), so-called unit linked products, exposing policyholders to fi-
nancial markets and providing them with different ways to consoli-
date investment performance over time, as well as protection against 
mortality-related risks. However, in order to make these products 
more attractive, insurers started to offer complex guarantees. The 
most famous examples of such contracts are variable annuities.
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Variable annuities are unit linked or managed fund vehicles, which offer optional guarantee benefits 
against investment and mortality/longevity risks for the customer. These guarantees are usually referred 
to as GMxB, where x stands for the class of benefits involved. Specifically, the Guaranteed Minimum 
Income Benefits (GMIB), launched in the 1990’s, provide policyholders the right to convert the benefit 
base at the end of a so-called “deferral period” into annuities for life, with a constant rate fixed at in-
ception. Generally speaking, the value of the benefit base is not less than the initial account value paid 
by policyholders. Due to enduring competition, most insurers have added some “features” for these 
guarantees: for example, the benefit base can be reset to the high-water mark of the account value on 
anniversary dates (step-up or ratchet) when the market has performed well, or can roll up with a fixed 
percentage (known as roll-up rate, e.g. 2%), regardless of the market conditions.

In these variable annuities, policyholders’ behavior is a major risk for the insurer, and a complex issue 
that affects life insurance industry in almost every aspect: product design, pricing, marketing and dis-
tribution, financial reporting and risk management. The recent Quantitative Impact Study (QIS 5) of the 
Solvency II framework showed that behavior risk is the most important risk among life underwriting 
risks for variable annuities, as illustrated by solvency issues experienced by the policyholder run in the 
late 1980’s. As the behavior risk assumptions may significantly impact the profitability, a rigorous mod-
eling framework of the behavior risks is necessary.

Traditionally, the customers’ behavior has been modeled by historical or backward looking statistical 
regressions, which have empirically underestimated the risk due to the scarcity of extreme scenario 
samples for these new products and the inability to dynamically extrapolate the observed behavior to 
various market conditions. In contrast, a “rational” behavior strategy valuation is a prudent forward-
looking approach, where policyholders lapse in a way that maximizes the net present value of the future 
cash flows, depending on key drivers such as market conditions, as illustrated by the past observations, 
especially during the sub-prime crisis since 2008: when the interest rate goes up, the discounted value 
of the insurer’s annuities decreases, so if the portfolio value rises at the same time, then the guarantees 
become worthless and more customers should surrender their policies to get back the account value; in 
the opposite situation, where both interest rate and account value decrease, the contract becomes much 
more attractive, thus leading to a reduced lapse rate.

Naturally, customers are certainly not able to calculate the rational exercise times associated to such 
very complex products. Still, rational behavior reflects a potential extreme “herd” behavior, as experi-
enced in the last 2008 market crash, with an initial immediate and sustained fall in lapses right after the 
crash, before an abrupt recovery consistent with the interest rates. In contrast, dynamic lapses modeling 
are usually unable to provide such empirical dynamics. Besides, competitors can take advantage of new 
market conditions to propose more attractive products, thus influencing their behavior indirectly, as 
mostly illustrated since 2010.

Regarding the GMIB variable annuity on which we focus in this paper, rational behavior is not limited 
only to lapsing the contract, but also to withdrawing money without necessarily terminating the con-
tract, i.e. partial withdrawals at each anniversary date. The solution of the optimal withdrawals prob-
lem allows the insurer to mitigate policyholders’ behavior risk related to GMIB contracts. Our analysis 
points out the following observations:

• the rational withdrawal strategy by the policyholder entails 4 specific behaviors only: zero with-
drawal, guaranteed withdrawal, income benefit election and lapse. Specifically, withdrawals of me-
dium size do not seem to be among rational decisions;

• given the significant fees levels, the contract seems to be underpriced for most cases. Either increas-
ing the fees or adjusting the roll-up rate can be a solution to overcome this issue.
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1. LITERATURE REVIEW

There is a large literature on pricing and hedg-
ing variable annuities guarantees. Most of it ad-
dresses the individual variable annuities contracts. 
Milevsky and Posner (2001) price a GMDB con-
tract using the usual risk-neutral valuation theo-
ry. Gerber and Shiu (2003) exploit the closed-form 
solution of European look-back options to price 
complex guarantees embedded in some equi-
ty-linked annuities. Milevsky and Salisbury (2005) 
study the impact of policyholder behavior on the 
cost and value of the GMWB rider and argue that 
the current pricing is not sustainable. An analysis 
of the design of gen- eral equity-indexed annui-
ties from the investor’s perspective and a general-
ization of the conventional design are proposed in 
the paper by Boyle and Tian (2008).

The optimal behavior approach in a GMWB val-
uation was formalized in the work by Dai et al. 
(2008). They develop a singular stochastic con-
trol problem in a continuous framework, and al-
so construct discrete pricing formulation that 
models withdrawals on discrete dates. In Bauer, 
Kling, and Russ (2008), the authors develop an 
extensive and comprehensive framework to price 
any of the common guarantees available with VAs, 
using Monte Carlo simulations in deterministic 
withdrawals scenarios. On the other hand, Chen, 
Vetzal, and Forsyth ( 2008), in their work explore 
the effect of various modeling assumptions on the 
optimal withdrawals strategy of the policyholder, 
and examine the impact on the guarantee value 
under sub-optimal withdrawals behavior. Shah 
and Bertsimas (2008) analyze the GLWB option 
in a time continuous framework considering sim-
plified assumptions on population mortality, and 
adopting different asset pricing models. In the pa-
per by Bacinello et al. (2011), a number of guar-
antees under a more general financial model with 
stochastic interest rates, volatility, and mortality 
are considered. A utility-based approach (see Gao 
& Ulm, 2012) is used to study the valuation of the 
GMDB rider.

Holz et al. (2012) price GLWB contracts for differ-
ent product designs and model parameters under 
the geometric Brownian Motion dynamic. They 
consider various policyholders behaviors assump-
tions including deterministic, probabilistic and 

stochastic models. The GMIB is studied in the 
work by Deelstra and Rayée (2013) under a local 
volatility framework. The authors argue that an 
appropriate volatility modeling is important to 
the long-dated guarantees. Finally, Dai and Yang 
(2013) develop a tree model to price the GMWB 
rider embedded in deferred life annuity contracts. 
Other papers investigate the impact of volatility 
risk, or assess the mortality risk in GLWB, or ana-
lyze equity and systematic mortality risks, see for 
example in the work by Fung et al. (2014), Graf et 
al. (2011), Piscopo and Haberman (2011). Recently, 
the work by Shevchenko and Luo (2016) provides a 
useful general framework to price different living 
and death guarantees. They use a direct integra-
tion method to solve the problem and compare it 
to PDE-based methods. In the following, we will 
focus on the PDE method for the GMIB product. 
Our goal is to be able to analyze the impact of dif-
ferent market drivers and product design on poli-
cy holders’ behaviors and the value of the contract. 
The remainder of this paper is organized as follows. 
Section 2 details the GMIB product. Section 3 in-
troduces the modeling assumptions, while Section 
4 provides the valuation of GMIB product from a 
rational framework perspective, where some con-
venient scaling properties enable to reduce the di-
mension of the pricing problem. Section 5 focuses 
on the results depending on specific product de-
signs and market drivers (interest rates, volatility). 
The last section is the conclusion.

2. PRODUCT DESCRIPTION

Guaranteed Minimum Income Benefit (GMIB) 
product appeared in the market in 1996. This 
guarantee enables policyholders to make annual 
partial withdrawals (typically from 4% to 7%) of 
their guaranteed protection amount and ensures 
an analogous percentage of the GMIB benefit base 
for their entire lifetime, no matter how the invest-
ments in the sub-accounts perform. It combines 
longevity protection with withdrawals flexibility, 
hence, it is seen as a “second generation” guaran-
tee. The guarantee can concern one or two lives 
(typically spouses). Each annual withdrawal does 
not exceed some maximum value, but it is evident 
that the total amount of withdrawals is limited 
only to the exhaustion of the client’s account val-
ue. Annual withdrawals of about 5% of the (sin-
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gle initial) premium are commonly guaranteed for 
insured aged 60+. In case of death, any remain-
ing fund value is paid to the insured dependents. 
To satisfy the new needs of an ageing population, 
insurance companies have started offering a life-
time benefit feature with GMIB. We will illustrate 
in the following section a typical commercialized 
GMIB product.

2.1. Beneftt base and partial 
withdrawals

To describe the benefit features of this GMIB 
clearly, some key terms must be addressed: GMIB 
benefit base and guaranteed withdrawals amount 
(GWA).

• GMIB benefit base: The GMIB benefit base is 
an amount used to determine the guaranteed 
annual withdrawals amount and lifetime pay-
ments. The GMIB benefit base is created and 
increased by allocations and transfers to the 
account value, as well as annual withdrawn 
amounts. This percentage is know as roll-up 
rate and deferral roll-up rate. It must be no-
ticed that the GMIB benefit base is a “fictive” 
amount, i.e., it can not be considered as an ac-
count nor cash value, only as a reference in the 
calculation of lifetime payments and guaran-
teed withdrawals amounts.

• (Annual) guaranteed withdrawals amount 
(GWA): The “annual guaranteed withdrawals 
amount” is the withdrawals amount suggest-
ed by the insurer. It is equal to the annual roll-
up rate in effect on the first day of the contract 

year, multiplied by the current benefit base. 
It is also the maximum amount upon which 
the benefit base is reduced without penalty, in 
contrast to excess withdrawals.

In Table 1, the authors illustrate a concrete ex-
ample of the calculations of a GMIB benefit. BB 
designates the benefit base and AV refers to the 
account value. The contract initial premium is 
$100,000. The policyholder does not make any 
withdrawals till the 6th contract year and once 
he/she does, all withdrawals stay within the 
boundaries of the GWA. Therefore, the GMIB 
benefit base does not diminish. The effect of 
excess withdrawals will be discussed later. Till 
the 5th contract anniversary, the deferral roll-
up rate is used to calculate the amount, which is 
credited to the benefit base each year, since no 
withdrawals has been made. For example, the 
GMIB benefit base in the 5th year is calculat-
ed by taking the value of the previous year and 
adding the corresponding 5%, i.e. 

$120,510  5.4% $120,510

$120,510 6,507.54 127,017.54.

+ ⋅ =
= + =

 

Once the client proceeded to his/her first with-
drawal, the roll-up rate determines the evolution 
of the GMIB benefit base and the annual GWA. If 
the maximum guaranteed quantity is withdrawn, 
the benefit base remains unchanged, as shown in 
years 6 to 9, i.e. the same quantity withdrawn from 
the benefit base is added by the roll-up amount. In 
case of withdrawing less than the annual GWA, a 
greater value for the benefit base is obtained. In 
the 10th year, the policyholder only withdraws 4% 

Table 1. GMIB benefit base evolution for an allocation of $100,000 with partial withdrawals that does 
not affect the value of the guaranteed account

Year Deferral/Roll-up 
rate GMIB BB WA Percentage of 

GMIB BB
GMIB BB after 
withdrawals

0 – $100,000 $0 0% $100,000

1 4.8% $104,800 $0 0% $104,800

2 4.3% $109,830 $0 0% $109,830.40

3 5.2% $114,553 $0 0% $114,553.11

4 5.4% $120,510 $0 0% $120,509.87

5 5.0% $127,017 $0 0% $127,017.40

6 4.7% $133,368 $6,268.31 4.7% $127,099.96

7 5.2% $133,368 $6,935.15 5.2% $126,433.12

8 5.4% $133,368 $7,201.89 5.4% $126,166.39

9 6.0% $133,368 $5,334.73 4.0% $128,033.54

10 7.3% $136,036 $5,441.43 4.0% $130,594.21
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of the GMIB guaranteed value. Consequently, the 
benefit base becomes 

$133,368 $5,334.73 $133,368 6.0%

$128,033.54 $8002.08 $136,035.62.

− + ⋅ =
= + =

 

The step-up option enables the policyholder to 
reset the guaranteed withdrawals balance to the 
current higher account value when investment 
performance is strong. By choosing to reset the 
benefit base, the policyholder is able to increase 
the total benefit amount and the annual guar-
anteed withdrawals amount. The option may re-
duce the inflation effect on incomes when the 
account value goes up and the step-up option is 
available. Accordingly, the period over which life-
time payments can begin is extended of 10 years. 
Nevertheless, at policyholder’s 95th birthday, the 
lifetime payments are set to automatically begin 
no matter how many times the reset option has 
been chosen. In Figure 1, which illustrates the evo-
lution of the protected account value, and the dif-
ferent options for the GMIB benefit base, the con-
tract is issued at the policyholder’s 50th birthday. 
Partial withdrawals from this annuity contract 
are taxable as ordinary income and, if made prior 
to age 591/2, may be subject to an additional 10% 

federal tax and withdrawals charges. All amounts 
invested in the annuity’s portfolios are subject to 
fluctuation in value and market risk, including 
loss of principal. The account value may be re-
duced due to fees and charges such as operations 
and sales charges, administrative fees, and option-
al benefits additional charges.

2.2. Fees and charges

The fee structure has an impact on the GMIB price. 
The GMIB charge is deducted from the contract 
value periodically. It is usually presented as a per-
centage of the current account value, although it 
can also be a percentage of the initial premium, a 
percentage of the remaining guaranteed benefit 
amount, or the greater of these two. The annual 
charge ranges for a GMIB product are comprised 
between 20 and 75 basis points depending on the 
nature of the benefit.

2.3. Lifetime payments

Lifetime GMIBs provide guaranteed annual in-
come until death. Policyholders are also able to 
access potentially increased account values, and 

Figure 1. Behavior of the account value and the different options for the GMIB benefit base  
when no withdrawals have been performed
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control the asset allocation in ways that the tra-
ditional variable annuitization normally does not 
allow. Lifetime GMIBs usually have two options: 
single life or joint spousal life. For the single life 
option, the benefit payments end at the death of 
the person covered. For the joint spousal life op-
tion, the benefit payments end when the remain-
ing spouse dies. The fee rate for the single life op-
tion ranges from 25 to 55 basis points, while the 
spousal life option tends to be 10-20 basis points 
higher.

For the single life option, a spouse continuation 
option is available upon the first death with the 
same charge, but the account value and the bene-
fit amount may be adjusted. For the joint spousal 
life, there will be no recalculation of the benefit 
amount when the first death occurs. The annu-
al benefit payment amount is a percentage of the 
initial guaranteed benefit amount. The older the 
policyholder is, the larger the value of the lifetime 
payments will be. For example, the guaranteed 
factor to calculate the lifetime payment for the leg-
acy product Accumulator 7 is 5.3% if the annuity 
starts at age 73 and 7.1% if the attained age is 83. 
The factor used to calculate the lifetime payments 
is given by the insurer and depends on the policy-
holder’s age at inception.

Annual lifetime payments in GMIB products be-
gin as follows:

• the next contract year following the date the 
account value falls to zero;

• the contract date anniversary following the 
policyholder’s 95th birthday;

• the policyholder’s election to exercise the 
GMIB.

Similarly to GLWB product, GMIB is subject to a 
waiting period, which begins on the date when the 
account value is first found, and it ranges from 10 
to 15 years depending on the policyholder’s age.

If an excess withdrawal, i.e. withdrawals superior 
to the guaranteed withdrawals amount, reduces 
the account value to zero, the GMIB will be termi-
nated. Even if an excess withdrawal does not cause 
the contract to terminate, it can greatly reduce the 

GMIB benefit base and the value of the benefit, 
since it is done on a pro rata basis.

In Table 2, cash flows for a maximum annual 
guaranteed withdrawals strategy are shown. The 
current and guaranteed factors1 are illustrated for 
the case of a 60 year old male who acquires the 
contract in 2016. These factors take into account 
the age of the policyholder when the contract is 
issued, his/her gender and probability of survival. 
In the particular case of the current annuity factor, 
the market interest rates play a key role. A con-
stant net return of 3% and fees of 4.5% have been 
considered to facilitate comprehension. The fac-
tors need to be recalculated when they are faced 
with changing market interest rates.

In the case illustrated in Table 2, the policyholder 
takes the annual guaranteed withdrawals amount 
till his account value turns to zero at age 76. At 
that moment, lifetime payments begin and the 
owner of the policy faces two options: to annu-
itize the GMIB benefit base or the account value. 
Annual payments will be based on the guaranteed 
or current factor depending on the policyholder’s 
choice. This is possible till the client’s 85th anni-
versary, otherwise he will lose the possibility to 
transform the contracts benefit base into annual 
income payments. In the described scenario and 
taking the discount factors into account, the pol-
icyholder will obtain $86,981.33, meaning he will 
not recover the initial premium invested in the 
contract.

2.4. Death benefit

Insurance companies also offer the possibility of 
combining the GMIB with Guaranteed Minimum 
Death Benefit (GMDB) when the contract is pur-
chased. This is not unusual, since variable annu-
ities typically provide a guarantee if the policy-
holder dies before receiving any income.

The death benefit often equals the greater of the 
account value and total premiums paid less than 
any withdrawals. For example, a person had paid 
premiums totaling $100,000, and had made with-
drawals equaling $15,000. The account value 
stands at $80,000 because of these withdrawals 
and investment losses. If he were to die, his bene-
ficiary would receive the aforementioned quantity.
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Table 2. Protected account value and GMIB behavior given a static withdrawals strategy and lifetime 
payments1

Contract 
year AV Roll-up 

rate WA GMIB BB GMIB 
factor

Current 
factor

Annuitization 
BB

Annuitization 
AV

Lifetime 
payments

0 $100,000 $0 $100,000 4.2% 5.4% $4,204.79 $5,367.16 –

1 $99,500 6% $6,000 $100,000 4.3% 5.5% $4,269.15 $5,444.66 –

2 $93,032.50 6% $6,000 $100,000 4.3% 5.6% $4,336.57 $5,193.53 –

3 $86,597.34 6% $6,000 $100,000 4.4% 5.7% $4,407.24 $4,935.07 –

4 $80,194.35 6% $6,000 $100,000 4.5% 5.8% $4,481.31 $4,668.45 –

5 $73,823.38 6% $6,000 $100,000 4.6% 6.0% $4,558.97 $4,392.83 –

6 $67,484.26 6% $6,000 $100,000 4.6% 6.1% $4,640.42 $4,107.29 –

7 $61,176.84 6% $6,000 $100,000 4.7% 6.2% $4,725.87 $3,810.86 –

8 $54,900.96 6% $6,000 $100,000 4.8% 6.4% $4,815.53 $3,502.52 –

9 $48,656.45 6% $6,000 $100,000 4.9% 6.5% $4,909.63 $3,181.14 –

10 $42,443.17 6% $6,000 $100,000 5.0% 6.7% $5,008.38 $2,845.48 –

11 $36,260.95 6% $6,000 $100,000 5.1% 6.9% $5,111.95 $2,494.23 –

12 $30,109.65 6% $6,000 $100,000 5.2% 7.1% $5,220.49 $2,126 –

13 $23,989.10 6% $6,000 $100,000 5.3% 7.3% $5,334.10 $1,739.42 –

14 $17,899.16 6% $6,000 $100,000 5.5% 7.4% $5,452.86 $1,333.15 –

15 $11,839.66 6% $6,000 $100,000 5.6% 7.7% $5,576.81 $905.97 –

16 $5,810.46 6% $5,810.46 $100,189.54 5.7% 7.9% $5,716.80 $456.79 –

17 $0 6% $0 $0 5.8% 8.1% $0 $0,00 $5,716.80

18 $0 6% $0 $0 6.0% 8.3% $0 $0,00 $5,716.80

19 $0 6% $0 $0 6.1% 8.5% $0 $0,00 $5,716.80

20 $0 6% $0 $0 6.3% 8.7% $0 $0 $5,716.80

1  The current (resp. guaranteed) factor is the annual income rate when the income benefit is based on the account value (resp. benefit base).

The combo variable annuities products GMI DB 
also offer optional death benefits in the form of 
roll-up or annual ratchet and reset with extra 
charges. These options are:

• Highest anniversary value death benefit – The 
“highest anniversary value death benefit” is an 
optional guaranteed minimum death bene-
fit in connection with the account value. The 
death benefit is calculated using the high-
est value of the account on the contract date 
anniversary.

• Roll-up to age 85 benefit base – The “roll-up 
to age 85 benefit base” is equal to the GMIB 
benefit base, i.e. it is reduced dollar-for-dol-
lar in the case of partial withdrawals being 
done within the limits of the guaranteed 
withdrawals amount and pro rata, when an 
excess withdrawal has been made by the 
policyholder. It is favored by the roll-up 
amount till the policyholder’s 85th birth- 
day. This option is tied only to ”Greater 
of” death benefit, i.e. it can not be chosen 
individually.

• “Greater of” death benefit – The “greater of” 
death benefit is an optional guaranteed min-
imum death benefit in connection with the 
protected benefit account value only. The 
death benefit is calculated using the greater of 
two benefit bases- the greater of the roll-up to 
age 85 benefit base and the highest anniver-
sary value benefit base. There is an additional 
charge for the “Greater of” death benefit un-
der the contract.

Once the lifetime payments corresponding to the 
GMIB start, the policyholder loses the possibility of 
keeping the GMDB. This right is lost at policyhold-
er’s 95th anniversary since the lifetime payments 
start automatically. The return of principal, high-
est anniversary value, and “Greater of” guaranteed 
minimum death benefits will terminate without 
value if the account value falls to zero as a result of 
withdrawals or payment of any applicable charges. 
This will happen whether the policyholder elects the 
GMIB or receive lifetime GMIB payments or not.

Policyholders can elect the optional death ben-
efit guarantees between age 20 and 68, implying 
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that this product targets a “younger” sector of the 
population compared to the “return of principal”, 
which can be chosen till age 80.

Some numerical examples will be presented to il-
lustrate the evolution of the GMIB and GMDB un- 
der partial withdrawals. A premium of $100,000 
is considered for a policyholder aged 60, with 
no additional contributions, and no transfers. 
Throughout these examples, no charges are de-
ducted from the account value and there is a fixed 
roll-up rate of 4%. The assumed returns do not fol-
low any market trends and were chosen to serve 
the purposes of illustrating two types of scenarios.

We define the following notation:

• GMIB BB: Guaranteed minimum income 
benefit base;

• RP BB: Return of principal benefit base;

• RU BB: Roll-up to age 85 benefit base;

• HA BB: Highest anniversary value benefit 
base;

• GO BB: “Greater of” benefit base.

Table 3 shows that the account value is reduced dol-
lar-for-dollar by the withdrawals amount before 
considering market behavior no matter the size 
of withdrawals. In alternative 1, when the owner 
with- draws the annual guaranteed withdrawals 
amount ( )4% roll-up rate $1 5[ 28,78⋅  (the roll-
up benefit bases as of the 6th contract anniversary), 
the GMIB and roll-up to age 85 benefit bases nei-
ther decrease nor increase. The return of principal 
benefit base is reduced pro rata as follows: since 
the withdrawals amount of $5,151 equals 4.21% of 
the account value ( )$5,151  4.21% $122,346 ,= ⋅  
the return of principle (RP) benefit base is also re-
duced by 4.21%, while the highest anniversary val-
ue (HAV) benefit base is reduced dollar-for-dollar, 
i.e. $128,785 (HA BB as of the last contract date 
anniversary) – $5,151 = $123,634 for the 6th con-
tract year.

In the case of an excess withdrawal, as it is the case 
of contract years 6 and 7 of the second scenario, 
the return of principal is reduced in the same way: 
since the withdrawals amount of $7,000 equals 
5.721% of the account value in 6th year ($7,000 di-
vided by $122,346 = 5,721%), the RP benefit base 
is reduced by 5.721%. The pro rata reduction of 
the roll-up benefit bases is as follows: $7,000 (the 
amount of the withdrawal, including any applica-
ble withdrawals charge) – $5,151(GWA) = $1,849 

Table 3. GMIB and GMDB behavior given policyholder’s withdrawals when the account value is less 
than the GMIB benefit base at the time of the first withdrawal

Guaranteed minimum death benefit

Year Net 
return AV WA Roll-up 

rate GMIB BB RP BB HAV BB RU BB GO BB

0 – $100,000 – – $100,000 $100,000 $100,000 $100,000 $100,000

1 3% $103,000 $0 4% $104,000 $100,000 $103,000 $104,000 $104,000

2 4% $107,120 $0 4% $108,160 $100,000 $107,120 $108,160 $108,160

3 6% $113,547.20 $0 4% $113,547.20 $100,000 $113,547.20 $113,547.20 $113,547.20

4 6% $120,360.03 $0 4% $120,360.03 $100,000 $120,360.03 $120,360.03 $120,360.03

5 7% $128,785.23 $0 4% $128,785.23 $100,000 $128,785.23 $128,785.23 $128,785.23

Alternative 1: annual guaranteed withdrawal amount (dollar-for-dollar)

6 –5% $122,345.97 $5,151.41 4% $128,785.23 $95,789.47 $123,633.82 $128,785.23 $128,785.23

7 1% $118,418.02 $5,151.41 4% $128,785.23 $91,622.45 $118,482.42 $128,785.23 $128,785.23

8 –2% $116,049.66 $5,151.41 4% $128,785.23 $87,555.36 $113,331.01 $128,785.23 $128,785.23

9 2% $118,370.66 $5,151.41 4% $128,785.23 $83,745.01 $108,179.60 $128,785.23 $128,785.23

10 2% $120,738.07 $5,151.41 4% $128,785.23 $80,171?94 $103,028.19 $128,785.23 $128,785.23

Alternative 2: excess withdrawals (pro-rata)

6 –5% $122,345.97 $7,000 4% $126,839.35 $94,278.52 $121,765.78 $126,839.35 $126,839.35

7 3% $119,016.35 $7,000 4% $124,786.30 $88,733.49 $114,803.39 $126,839.35 $126,839.35

8 –2% $109.636,02 $4,991.45 4% $124,786.30 $83,742.03 $109,811.94 $126,839.35 $126,839.35

9 2% $106,837.29 $4,991.45 4% $124,786.30 $78,750.58 $104,820.49 $126,839.35 $126,839.35

10 2% $103,982.59 $4,991.45 4% $124,786.30 $73,759.13 $ 99,829.04 $126,839.35 $126,839.35
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(“excess”), which represents 1.511% of the account 
value, there is a decrease of 1.511% in the roll-up 
benefit bases. The highest anniversary value bene-
fit base is reduced dollar-for-dollar and pro rata as 
follows: $128,785 (HAV BB as of the last contract 
date anniversary) – 

( )
( )

$5,151 GWA  

 $1,868 $128,785 – $5,151 1.511%   

$121,766.

⋅  =

=


=

=
 

In Table 4, the account value is reduced dollar-
for-dollar by the withdrawn amount no matter 
the size of withdrawal: in year 7, the AV is calcu-
lated as $135,224.50 [AV as of the last contract 
date anniversary] – $7,000 (the amount of the 
withdrawal, including any applicable withdraw-
als charge)×(1+0.03 [assumed net return for the 
7th contract anniversary]) =  $128,224.50×1.03 
=  $132,071.23. When the owner limits himself 
to making only annual guaranteed withdrawals 
[4% (roll-up rate)×$128,785 (the roll-up benefit 
bases as of the 6th contract anniversary)] the 
GMIB and roll-up to age 85 benefit are reduced 
dollar-for-dollar, but since AV after withdraw-
als is greater than the aforementioned quantity, 
they are automatically set to $130,073.

As a result of the GMIB benefit base increase 
in contract year 6, the annual withdrawals 
amount in contract year 7 is $5,203 [4% (roll-up 
rate)×$130,073 (the roll-up benefit bases as of the 
sixth contract anniversary)]. The return of prin-
cipal benefit base is reduced pro rata as shown in 
the previous exam- ples and the highest anniver-
sary value benefit base is reduced dollar-for-dollar 
as follows: $128,785 (highest anniversary value 
benefit base as of the 5th contract date anniver-
sary) – $5,151 = $123,634. The highest anniversary 
value benefit base is reset to the protected benefit 
account value after withdrawals ($130,073).

In the case of an excess withdrawal and similar 
to the previous example, the roll-up bases will 
be reduced in the same percentage as the excess. 
Taking the 6th contract anniversary as an ex-
ample, it is reduced by 5.177% ($7,000 divided by 
$135,224), which gives $121,944. The roll-up to age 
85 benefit base and GMIB benefit base are then set 
to the protected account value after withdrawals 
$128,224, since this value is clearly higher than 
that of the benefit bases after the pro rata reduc-
tion. The RP benefit base continues to be reduced 
on a pro rata basis. The highest anniversary value 
benefit base is reduced dollar-for-dollar and pro 
rata, as follows: $128,785 (highest anniversary 

Table 4. GMIB and GMDB behavior given policyholder’s withdrawals when the account value is 
greater than the GMIB benefit base at the time of the first withdrawal

Guaranteed minimum death benefit

Year Net 
return AV WA Roll-up 

rate GMIB BB RP BB HAV BB RU BB GO BB

0 – $100,000 – – $100,000 $100,000 $100,000 $100,000 $100,000

1 3% $103,000 $0 4% $104,000 $100,000 $103,000 $104,000 $104,000

2 4% $107,120 $0 4% $108,160 $100,000 $107,120 $108,160 $108,160

3 6% $113,547.20 $0 4% $113,547.20 $100,000 $113,547.20 $113,547.20 $113,547.20

4 6% $120,360.03 $0 4% $120,360.03 $100,000 $120,360.03 $120,360.03 $120,360.03

5 7% $128,785.23 $0 4% $128.785.23 $100,000 $128,785.23 $128,785.23 $128,785.23

Alternative 1: annual withdrawals amount

6 5% $135,224.50 $5,151.41 4,00% $130,073.09 $96,190.48 $130,073.09 $130,073.09 $130,073.09

7 3% $133,975.28 $ 5,202.92 4% $130,073.09 $92,454.92 $128,772.36 $130,073.09 $130,073.09

8 -2% $126,196.91 $ 5,202.92 4% $130.073,09 $88,643.14 $123,569.43 $130,073.09 $130,073.09

9 2% $123,413.86 $ 5,202.92 4% $130,073.09 $84,906.09 $118,366.51 $130,073.09 $130,073.09

10 2% $120,575.16 $ 5,202.92 4% $130,073.09 $81,242.32 $115,372.24 $130,073.09 $130,073.09

Alternative 2: excess withdrawal

6 5% $135,224.50 $7,000 4% $128,224.50 $94,823.42 $128,224.50 $128,224.50 $128,224.50

7 3% $132,071.23 $7,000 4% $125,071.23 $89,797.62 $125,071.23 $125,071.23 $125,071.23

8 -2% $122,569.81 $5,002.85 4% $117,566.96 $86,132.41 $120,068.38 $117,566.96 $120,068.38

9 2% $119,918.30 $4,802.74 4,00% $115,115.56 $82,682.80 $115,265.65 $115,115.56 $115,265.65

10 2% $117,417.87 $4,610.63 4% $112,807.25 $79,436.11 $112,807.25 $112,807.25 $112,807.25
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value benefit base as of the 5th contract anniver-
sary) – $5,151 (annual withdrawals amount) – $1,
690[($128,785 – $5,151)×1.367%] = $121,944. Here 
1.367% represents the percentage of the excess in 
withdrawals with respect to the GWA ($1,849 di-
vided by $135,224 = 1.367%). The highest anniver-
sary value benefit base is also reset to the protected 
account value after withdrawals ($128,224).

In the following section, we will set up the mathe-
matical formulation of the product for the purpose 
of studying its valuation. For the sake of simplicity, 
we will limit our study to a single benefit base.

3. FORMULATION  

AND BASIC NOTATIONS

In summary, GMIB contracts promise a policy-
holder an income stream at maturity for the rest 
of his life. Before the contract maturity, the in-
sured is allowed to withdraw a certain amount 
on a yearly basis, called a withdrawal. If the 
GMIB contract contains a death benefit (GMIB 
DB), then a certain amount is paid to the bene-
ficiaries in case the policyholder dies during the 
term of the contract.

To formulate our problem, we consider an x-year 
old policyholder possessing a GMIB contract. At in-
ception, an initial endowment is invested in a risky 
asset .tS  The specifications of the contract include 
a set of dates 0 10 ,n Nt t t t T= < < < < < =   
where 0 0t =  is the contact inception and Nt T=  
its maturity. These so-called contract anniversa-
ries are the dates in which events can take place, 
i.e. bonuses, withdrawals, payments, etc...

3.1. The contract assumptions

3.1.1. The financial market

Variable annuities pricing is based on the common 
pricing literature which assumes the existence of a 
risk neutral measure Q  under which future cash 
flows can be valued as their expected discounted 
values. The existence of such measure implies an 
arbitrage-free financial market. Moreover, the de-
rivative’s payoff can be replicated by a self-financ-
ing strategy, which allows the insurer to hedge the 
liabilities.

We assume that the risky asset ,tS  which serves 
as an underlying mutual fund for the variable an-
nuity, follows a Geometric Brownian motion with 
constant coefficients under :Q

,t t t tdS rS dt S dWσ= +

where σ  is the volatility or the risky asset, r  the 
risk-free rate and W  a standard Brownian motion 
under .Q

The money market evolves with risk-free interest 
rate, and the numeraire process tB  is given by:

.t tdB rB dt=

Under the risk neutral probability measure, the 
discounted asset process 

1

t tB S−
 is a martingale.

3.1.2. The mortality  

assumption

It is common practice among insurers to use de-
terministic mortality rate to evaluate and replicate 
their policy pool. We also use this assumption in this 
chapter by considering future mortality rates as a de-
terministic curve. Moreover, we make the common 
assumption that financial markets and biometric 
events are independent. Let us introduce the mortal-
ity notations as:

• 0 :x  the policyholder’s age at the contract 
inception;

• :nq  the probability that the policyholder, 
aged 0x  at inception, dies between time 1nt −  
and ;nt

• :np  the probability that the policyholder, 
aged 0x  at inception, is alive at time ;nt

• :ω  the limiting age beyond which survival is 
impossible.

According to the definition, we have 

( ) 11 ,n n np q p −= −  where { }1, 2, , .n N∈   
From the insurer’s perspective, the percentage of 
active contracts in a large policy pool of policy-
holders aged 0 nx x t= +  at a given time nt  is thus 
given by .np
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3.1.3. The contract state variables

At a given anniversary date ,nt  the value of a 
GMIB contract, purchased by an 0x  – year old 
policyholder at inception, is determined by three 
main state variables: the account value, the benefit 
base, and the a two-states variable determining if 
he is alive or dead at time :nt

• account value :tA  the value of the investment 
account, which is indexed on the asset value 

,tS and reduced by withdrawals and fees;

• benefit base :tG  also referred as the guar-
antee account, is an “imaginary” wealth up-
on which annuities, guaranteed withdrawals 
and benefits are calculated. However, if the in-
sured wants to lapse the contract, he will not 
be able to get this wealth;

• death process :nI  a two-states variable in 

{ }0,1  informing if the policyholder died 
during ]( 1,  ,n nt t−  or is still alive at .nt  The 
death probability in the interval ]( 1,  n nt t−  is 
given by ( )10 1 1,n n nq I I −= Ρ = = =  which 
depends on the policyholder’s age at inception.

More state variables need to be included if one 
needs to incorporate stochastic interest rate and/
or volatility, take into account taxation or consider 
different benefit bases, i.e. evolving differently or 
for different riders.

We restrict our analysis to single premium con-
tracts 0 0 ,A G=  i.e. one premium at inception 
with no additional contributions. The policyhold-
er can either withdraw money or exercise the in-
come benefit.

Withdrawals include “zero” withdrawals, guaran-
teed ones, i.e. up to a limited amount fixed by the 
insurer, excess withdrawals, i.e. withdrawals that 
exceed the guaranteed withdrawals amount, or 
completely surrender the contract, i.e. lapse.

For the sake of simplicity, we assume that the pol-
icyholder can take withdrawals each policy an-
niversary ,nt  and denote by nγ  the withdrawals 
amount. The income benefit also starts at anni-
versary years and, in case of a death benefit, the 
latter is paid out at these dates as well. Thus, the 

state variables described above may have discon-
tinuities at times 1, , .nt t  Therefore, for a state 
variable ,Y  we distinguish between its value 

nt
Y −  

before and 
nt
Y +  after events take place at the anni-

versary date .nt

3.1.4. Development between  

two policy years ]( 1,  n nt t−

Assuming that an annual guarantee fee α  is con-
tinuously charged by the issuer, the value of the 
account value 

nt
A  evolves as:

( )
1

1

,n

n n

n

t

t t
t

S
A A exp t

S
α− +

−

−

= ⋅ − ∆  
1,  2,  ,  ,n N= 

where 1n nt t t −∆ = −  and tS  follow a Geometric 
Brownian and has the closed formula:

1

21
,

2n nt t nS S exp r t t zσ σ
−

  = − ∆ + ∆    

where 1, , nz z  are independent and identically 
distributed standard normal random variables.

In practice, the guaranteed fee is charged discrete-
ly and proportional to the account value that can 
easily be incorporated into the wealth process. 
Denoting the discretely charged fee with the an-
nual basis as ,α  the wealth process becomes:

( )1

1

1 .n

n n

n

t

t t
t

S
A A t

S
α−

− +
−

= − ∆

The benefit base remains constant between two 
policy years, i.e.:

1

.
n nt t

G G− +
−

=

Remark 1. For continuously charged fees, the evo-
lution of the account value can be rewritten in the 
form of an SDE:

( ) ,t t t tdA r Adt AdWα σ= − +  (1)

where tW  is the risky asset Brownian motion, σ  
is its volatility, and r  is the risk-free rate.

In GMIBs, some of the fees are actually pro-
portional to the benefit base. We denote by 

( ). A Grespα α  fees proportional to the account 
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value (resp. benefit base). In this case, we rewrite 
the account dynamic between 1nt

+
−  and nt

−
 as

( )
1

.
n

A G

t t t tt
dA r Adt G dt AdWα α σ+

−
= − − +

3.1.5. Transition at a policy year nt

As mentioned earlier, the contract events take 
place at the discrete policy years. In the follow-
ing, we denote by 

gua

nγ  the guaranteed withdraw-
als amount, and nf  is the cash flow at time .nt  
The guaranteed withdrawals amount at nt  is typ-
ically proportional to the benefit base at time 1nt

+
−  

( )or ,nt
−  by a rate η  fixed by the insurer at incep-

tion, i.e. .
n

gua

n t
Gγ η −=  Each policy year can exhibit 

the following scenarios:

1. The insured has died within the previous year 

]( 1,  :n nt t−

If the insured has died within the previous year 
and no death benefit has been set in place we have 

0,
nt
A + =  0,

nt
G + =  0gua

nγ =  and 0.nf =

2. The insured has survived the previous policy 
year and does not withdraw any money from 
the account at time :nt

Different ratchet and roll-upmechanisms can be 
applied to the benefit base at ,nt  thus changing 
the value of the guaranteed withdrawals amount. 
The different parameters develop as follows:

• roll-up only: ( )1 ;
n nt t

G Gη+ −= +

• ratchet: ( )max , ;
n n nt t t

G G A+ − −=

• reset: ( )( )max 1 , .
n n nt t t

G G Aη+ − −= +

Here η  represents the roll-up rate, which deter-
mines the quantity credited annually to the ben-
efit base. This quantity is also used to calculate 
the guaranteed withdrawals amount each year by 

. .
n

gua

n t
Gγ η −=  If no withdrawals are made from 

the contract, i.e 0,
nt

W =  we have 
n nt t
A A+ −=  and 

the cash flows 0.nf =

3. The insured has survived the previous policy 
year and at the policy anniversary withdraws 

an amount within the limits of the guaranteed 
withdrawals amount:

Any withdrawals up to the guaranteed annual 
withdrawals amount reduce the account value by 
the withdrawn amount. Of course, we do not al-
low for negative policyholder account values and 
thus get ( )max 0,

n n
nt t

A A γ+ −= −  and .n nf γ=  
The transformations discussed in the 2nd scenar-
io) occur simultaneously with the withdrawals re-
sulting in:

• roll-up only: ( )1 ;
n n

nt t
G Gη γ+ −= + −

• ratchet: ( )max , ;
n n n

nt t t
G G Aγ+ − −= −

• reset: ( )( )max 1 , .
n n n

nt t t
G G Aη γ+ − −= + −

The guaranteed annual amount 
gua

nγ  needs to be 
recalculated using the formula presented immedi-
ately above. Note that if the annuity owner with-
draws the maximum quantity ,gua

nγ  the level of 
the benefit base remains stable when the roll-up is 
taken into account:

( )
( )

1

1 . .

n n

n n n

gua

nt t

t t t

G G

G G G

η γ

η η

+ −

− − −

= + − =

= + − =

4. The insured has survived the previous policy 
year and the policy anniversary, and withdraws 
an amount exceeding the limit of the withdraw-
als guarantee:

In this case, the account value is again reduced by 
the withdrawals amount ( )max 0, .

n n
nt t

A A γ+ −= −  
The benefit base as of the last contract anniversa-
ry date is reduced pro rata by the percentage of 
the excess withdrawals w.r.t the account value, i.e. 

( ) / .
n n

gua

n nt t
G Aγ γ− −⋅ −  Therefore, we have: 

1 .
n n

n

gua

n n

t t

t

G G
A

γ γ
+ −

−

 − = −
 
 

We then apply the ratchet if there is any, i.e 

( )max , .
n n n

nt t t
G G A γ+ + −= −

5. The insured has survived the previous policy 
year and decides to activate the GMIB rider:

In this case, the contract matures and lifetime 
payments begin by the following policy anniver-
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sary date taking into account the state of the varia-
bles at time .nt  Details on annuitization are given 
in the following section.

We summarize the previous cases into the 
following:

• roll-up only case:

( ) ( ), , : max 0, ,
n n n n

A

n nt t t t
A h A G Aγ γ+ − − −= = −

( )
( )( )

, , :

max 0, 1  if 

: .
1  if 

n n n

n

n

n

G

nt t t

gua

n n nt

gua
guan n

n nt

t

G h A G

G

G
A

γ

η γ γ γ

γ γ γ γ

+ − −

−

−

−

= =

 + − ≤

=   −  − >

   

 (2)

• ratchet only case:

( ) ( ), , : max 0, ,
n n n n

A

n nt t t t
A h A G Aγ γ+ − − −= = −

( )
( )

, , :

max ,  if 

:  .
max , 1  if 

n n n

n n

n n

n

G

nt t t

gua

n n n nt t

guan
n n nt t

t

G h A G

A G

A G
A

γ

γ γ γ γ

γγ γ γ

+ − −

− −

− −

−

= =

 − − ≤

=   

   − − >
   

• reset (roll-up + ratchet) case:

( ) ( ), , : max 0, ,
n n n n

A

n nt t t t
A h A G Aγ γ+ − − −= = −

( )
( )( )

, , :

max , 1  if 

: .
max , 1  if 

n n n

n n

n n

n

G

nt t t

gua

n n n nt t

gua
guan n

n n nt t

t

G h A G

A G

A G
A

γ

γ η γ γ γ

γ γγ γ γ

+ − −

− −

− −

−

= =

 − + − ≤

=    −   − − >

     

Remark 2. The guaranteed rate is usually set equal 
to the ratchet rate, i.e 

n

gua

n t
Gγ η −=  at time nt  (ii). 

The ratchet case can easily be deduced from the 
reset case by setting the ratchet and guaranteed 
rate to 0.

3.1.6. The income and death benefit

At maturity, the holder of a GMIB contract can se-
lect to take a lump sum of the account value ,

Nt
A  

annuitize this amount at an “actual” annuitiza-
tion rate or annuitize the benefit base at pre-spec-
ified guaranteed annuitization rate. Annuity fac-
tors, which give the annuitization rates, denoted 
by 

N

act

ta  for the actual, and 
N

gua

ta  for the guaranteed, 
are defined as the price of an annuity paying one 
dollar each year with either a the market’s rates 
curve, or an internal guaranteed rates defined by 
the insurer. The calculations of the annuity factors 
take into account the probability that the insurer 
is alive in the future. They are given by:

( ) ( ) ( ).0
.

,
i Nti

N

i N

x
r t t

t i

t t

a p e
ω−

− −

=

= ∑

where 
( ).
r  is risk-free interest rate in case of annu-

itizing the account value, and based on hypothesis 
fixed by the insurer in case of annuitizing the ben-
efit base. Therefore, annuitizing the account val-
ue is equivalent to a lump sum, and annuitizing a 
benefit base G  is equivalent to the amount 

.N

N

gua

t

act

t

a
G
a




For GMIB contracts analyzed in this thesis, an-
nuitization is not restricted to the maturity .Nt  
Indeed, Nt  is actually the last anniversary date 
in which the insured is allowed to annuitize. 
Typically, the policyholder can exercise his income 
benefit starting from the 10th year of the contract. 
An annuity factor is then defined for each date 

{ }10 , .n Nt t t∈  These factors are increasing, since 
an older insurer will likely to have less annuities 
than a younger one.

Thus, the cash flow of the income benefit, based on 
a financially rational acting customer, is given by:

( ), , max , .n

n n n n

n

gua

t

n actt t t t
t

a
P t A G A G

a
− − − −

 
=   

 




Otherwise ( ), , 0,
n n

n t t
P t A G− − =  where P  denotes 

the income benefit, 
nt
A −  is the level of the account 

value, and 
nt

G t−  is he level of the benefit base. 

The policyholder can subscribe to a GMDB 
along with the GMIB. In this case, if the policy-
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holder’s death occurs before or at the contract 
maturity, a death benefit is provided to the ben-
eficiaries. Assuming the policyholder dies dur-
ing ]( 1, ,n nt t−  the beneficiaries will receive the 
amount ( ),nD t   at .nt

There are several types of death benefits. The most 
famous one is the so-called return of premium 
death benefit (return of principle for the GMIB 
product). The death benefit can also consist of the 
greater of the annual ratchet benefit base and the 
current account value. Insurers typically charge 
tenth of potential market growth for this addi-
tional rider. In the case of the combo GMIB DB, 
this additional charge is 0.35% for this particular 
death benefit.

In any case, we resume the death benefit cash flow 

( ),nD t   at nt  by:

0

( , , )

, return of principal death benfit (type 0),

, account value death benfit (type 1),

, benefit base the death benefit (type 2),

max( , ), greater of the two death benefit (typ

n n

n

n

n n

n t t

t

t

t t

D t A G

A

A

G

A G

− −

−

−

− −

=

=

e 3).









Our numerical analyses will be based on type 2, 
where the benefit base evolves as described in pre-
vious section.

4. CONTRACT VALUATION

To model mortality, the standard way is to use of-
ficial life tables to estimate the death probability 

( )10 1n n nq I I −= Ρ = =  during ]( 1, .n nt t−  They 
provide annual death probabilities for each age 
and gender in a given country. Some adjustments 
can be applied to these tables. In addition to life 
tables, other approaches can be considered such as 
the stochastic benchmark Lee-Carter model Lee 
and Carter (1992), which forecasts the required 
death probabilities accounting for systematic 
mortality risk.

For pricing purposes, we consider a pool of pol-
icyholders who hold identical contracts and in 
which each insured has the same age, gender and 

2 Other criterion can be taken into account to compose an “homogeneous pool”. Some life tables consider smoking, the policy value, 
etc... However, these criteria are specific to other insurance products. To our best knowledge, the mortality table of variable annuities is 
restricted to age. The resulting death probability is a weighted average of the same age male and female holding the policy.

thus the same probabilities of life and death2. We 
assume the number of policyholders to be large 
enough such that the assumption that deaths oc-
cur exactly according to probability nq  is justified. 
Given this set of conditions, mortality risk is fully 
diversified.

In the following, we set up the pricing framework 
of the GMIB contract. In particular, we are inter-
ested in the rational policyholder behavior, which 
maximizes the expected value of his future cash 
flows. We will address a stochastic control prob-
lemas formulated in the work by Shevchenko and 
Luo (2016).

4.1. The stochastic control problem

Let ( )1, , Nγ γ γ=   be a withdrawals strategy, 

( )
0
, ,

Nt tG G G=   – the state variable corre-
sponding to the benefit base, ( )

0
, ,

Nt tA A A=   
– the account value, and ( )0 , , NI I I=   – the 
death state. We introduce the state vector before 
the withdrawals as ( ), , ,

n n
n nt t
X A G I− −=  at time 

nt
−  and ( )1,..., .NX X X=  The present value of 

the overall payoff of the GMIB contract is defined 
as:

( ) ( ) ( )
1

0 0, 0,

1

, , ,
N

N N N n n n n

n

H X B H X B f Xγ γ
−

=

= +∑  (3)

where

( ) ( )
( )

1

0

, , 1

, , 1 ,

NN N

NN N

N N N It t

N It t

H X P t A G

D t A G

− −
=

− −
=

= ⋅ +

+ ⋅
 (4)

is the cash flow at maturity and

( ) ( )
( )

1

0

, , , 1

, , 1

nn n

nn n

n n n n n It t

n It t

f X f A G

D t A G

γ γ− −
=

− −
=

= ⋅ +

+ ⋅
 (5)

is the cash flow at time .nt  Here ( ).1  is the indicator 
function, and ,i jB  is the discount factor from 

jt  
to it  ( )( ), ,  .i j j i j iB exp r t t t t= − − >

To simplify notations, we drop the mortality 
state variable nI  when the policyholder is alive, 
i.e. 1,nI =  in the function argument. We define 
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( ), ,nV t A G  as the price of the contract with a 
guarantee at the policy year nt  when ,

nt
A A− =  

.
nt

G G− =  We assume that the financial risk can be 
eliminated via continuous hedging, i.e. complete 
and frictionless market, and that mortality risk is 
fully diversified via selling the contract to a large 
number of insured of the same age. Thus, the av-
erage of the contract payoffs of M  policy hold-
ers ( )0 ,H X γ  converges to ( )

0 0 , ,t H X γΙΕ     
as ,M →∞  where I  is the real probability 
measure corresponding to the mortality process 

1 2, , , .NI I I  Then the price under the given 
withdrawals strategy γ  can be calculated as:

( ) ( )
0 0 0

,

0 0, , , ,Q

t t tV t A G H X γΙ= Ε     (6)

where ( )
0

,

0 ,Q

t H X γΙΕ     denotes the expectation 
w.r.t the state vector ,X  conditional on informa-
tion available at time 0 ,t  i.e w.r.t both the financial 
risky asset process under ,Q  and the mortality 
process underthe real probability measure .

Remark 3. The fair fee α α ∗=  is defined as the fees 
charged so that the value of the contract at time 0t  
is equal to the premium, i.e. ( )0 0 00, , .V A G A=  
It is important to note that the strategy γ  can 
change for different realizations of underlying 
wealth process and the control variable nγ  at nt  
affects the transition law of the underlying wealth 
process from nt  to 1,nt +  i.e calculating the con-
tract price in this case is reduced to solving an op-
timal stochastic control problem.

The withdrawals strategy γ  can depend on the 
information available at time tn through the 
state variable X  at nt  and is assumed to be giv-
en when the price of the contract is calculated in 
the Equation (6). Withdrawals strategies are clas-
sified into three categories : static, optimal and 
suboptimal.

• Static case. Under a static strategy ,γ  the pol-
icyholder’s decisions are deterministic, fixed 
at the beginning of the contract, and inde-
pendent the state variable value. Under this 
strategy, the price of the contract can be cal-
culated as:

( ) ( )
0 0

,

0 0, , , .Q

t tV t A G H X γΙ= Ε   

• Optimal case. Under the optimal withdraw-
als strategy, the withdrawals amount nγ  de-
pends on the information available at time nt  
through the state variable .nX  The optimal 
strategy is the strategy γ  under which the 
contract price is maximized, i.e. worst case 
scenario for the insurer best case scenario for 
the insured:

( ) ( ),

0 , ,Q

A

X argsup H X
γ

γ γ∗ Ι

∈
= Ε     (7)

where the supremum is taken over all admissible 
strategies γ  and denoted by the set .A  That is, for 
each time ,nt  we have 0, .

n
n t

Aγ −
 ∈  

• Suboptimal case. Any other strategy γ  differ-
ent from 

*γ  is called suboptimal. It can also 
depend on the state variable.

In the following, we will be interested in the 
optimal case. Given that the state variable 

( )1, , NX X X=   is a Markov process, and the 
contract payoff is represented by Formula (3), 
the calculation of the contract value under opti-
mal strategy given by Equation (7) is brought to 
a more general problem whereby the policyhold-
er starts at an arbitrary time .nt  This falls with-
in the framework of standard optimal stochastic 
control problems for a controlled Markov process. 
Note that the control variable nγ  depends on the 
account value A and benefit base G.

Finding the contract value ( ),nV t x  at time nt  
when nX x=  for 1, ,0n N= −   is done via a 
backward Bellman equation. Since the account 
value A  evolves between two anniversary dates, 
and the benefit base is a constant piecewise func-
tion (i.e. changes at anniversary dates only), the 
required backward recursion is written between 

1nt
−
+  and nt

+
 as:

( )
( )(

( ) )
( ) ( )

( )

1 1 1

1 1 1

1 1

1 1

, 1 1 1

0 1

1 1

1 1

, ,

1 , , ,

1 , , ,

1 , , ,

, , , ,

n n n n

n n n n

n n n

n n n

n

Q

n n I nt t t

Q

I nt t t

Q

n nt t t

Q

n nt t t

V t A G

B V t A G A G

D t A G A G

q V t A G A G

q D t A G A G

+ − −
+ + +

+ − −
+ + +

+ − −
+ +

+ − −
+ +

+

Ι −
+ = +

−
= +

−
+ +

−
+ +

=

  Ε ⋅Ε +   
 + ⋅Ε =    

 = − Ε +  
 + Ε   
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with jump condition

( ) ( )(
( ) ( )( ))

, , max , ,

, , , , , , .

n nn A n n

A G

n n n

V t A G f A G

V t h A G h A G

γ γ

γ γ

−
∈

+

= +

+

The recursion starts from the maturity condition 

( ) ( ), , , ,N NV t A G P t A G− −=  goes backwards for 
1, 2, ,0.n N N= − − 

Remark 4. Given that the mortality and financial 
asset processes are assumed independent, and the 
withdrawals decision does not affect the mortality 
process, we have:

( ) ( )
0 0 0

,

0 0, , .Q Q

t t tsup H X sup H X
γ γ

γ γΙ Ι Ε = Ε Ε       

One can calculate the expected value of the payoff 
Boyle and Tian w.r.t the mortality process:

( ) ( )
00 0, , ,tH A G H X γΙ= Ε   

and then calculate the price under the given strat-
egy ( )

0 0 , ,Q

t H A G Ε  
  or under the optimal strat-

egy ( )
0 0 , .Q

tsup H A G
γ

 Ε  


Therefore we have:

( ) ( )(
( ) )

( ) ( )( )

0

0

0

0 0, 1

0

1

0, 1

1

, , , 1

, , 1

, , 1 , , .

NN N

NN

nn n n n

N N t It t

N N t It

N

n n n t I nt t t t
n

H A G B P t A G

D t A Gt

B f A G D t A Gγ

− −

−

− − − −

Ι
=

− Ι
=

−
Ι

=
=

 = ⋅Ε + 

 + ⋅Ε + 

 + ⋅Ε + ∑



Moreover, since ( )
0 01 1

nt I n nt t pτ τΙ  Ε = = Ρ > > =   
and ( )

0 1 0 11 0
n

I

t I n n n nt t t p qτ τ− − Ε = = Ρ < < > =   

for random death time τ  i.e. ( )1 1 ,n n np p q−= −  
we can rewrite ( )0 ,H A G  as follows:

( )

( ) ( )( )
( ) ( )( )

0

0, 1

1

1

1

,

, , , ,

, , , , .

N N N N

n n n n

N N N N N Nt t t t

N

n n n n n nt t t t
n

H A G

B p P t A G q p D t A G

p f A G p q D t A Gγ

− − − −

− − − −

−

−

−
=

=

= + +

+ +∑

  

(8)

Note that previously we defined 

( )1 1 .n n n nq t t tτ τ− −= Ρ < ≤ >

The payoff (3) has the same general form as the 
payoff (8). Thus, the optimal stochastic control 

problem ( ) ( )0 0 0 0, , ,t A G sup H A G
γ

 Φ = Ε  
  can 

be solved using Bellman equation. 

We describe the optimization problem at each pol-
icy anniversary date recursively by the two follow-
ing equations 

( ) ( )
1 1

, 1 1, , , , , ,
n n n

Q

n n n nt t t
t A G B t A G A G+ − −

+ +

+ −
+ +

 = Ε Φ  
 (9)

and

( ) ( )(
( )
( ) ( )( ))

1

, , max , ,

, ,

, , , , , , ,

n nn A n n n

n n n

A G

n n n

t A G p f A G

p q D t A G

t h A G h A G

γ γ

γ γ

−
∈

−

+

Φ = +

+ +

+Φ

 (10)

for 1, 2, ,0n N N= − −   starting from the final 
condition:

( ) ( )
( )1

, , , ,

, , .

N N N

N N N

t A G p P t A G

p q D t A G

− −

−
−

Φ = +

+
 (11)

As a consequence, the recursion leads to the 
same solution ( ) ( )0 0, , , , ,t A G V t A GΦ =  
and the same optimal strategy .γ  
Moreover, for each tn we have nt  we have 

( ) ( ) ( )1, , , , , , .n n n n n nt A G p V t A G p q D t A G−Φ = +

4.2. Numerical scheme for  
the discrete withdrawals model

Realistic VA riders with discrete events such as 
ratchets, bonuses as set-up options and optimal 
withdrawals have no closed form solutions. Their 
fair price needs to be calculated numerically, even 
for a standard Brownian motion with constant in-
terest rates and volatility.

The numerical solution of the backward recursion 
(9)-(10) is accomplished using PDEs, direct inte-
gration or regression type Monte Carlo methods. 
Under the static strategy, one can always use stand-
ard Monte-Carlo to simulate state variables for-
ward in time till the contract maturity or the pol-
icyholder death and average the payoff cash flows 
over a large number of independent realizations.

In the case of discrete withdrawal, following 
the procedure of deriving the Hamilton-Jacobi-
Bellman (HJB) equations in stochastic control 
problems, the value of the annuity under optimal 
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withdrawals is found to be governed by a one-di-
mensional PDE, similar to the Black-Scholes equa-
tion, with jump conditions at each withdrawing 
date to link the prices at the adjacent periods. 

In the following, we provide detailed description 
of the algorithm used to calculate the fair value of 
he VA riders and the optimal strategy.

4.2.1. General algorithm

The algorithmstarts from a final condition for 
the contract value at .Nt

−
 Subsequently, solv-

ing the PDE gives solution for the contract value 
at 1.Nt

+
−  The PDE used to calculate the expected 

value (9) under the assumed risk-neutral pro-
cess for the risky asset tS  is easily derived using 
Feynman-Kac theorem. When the risky asset fol-
lows a geometric Brownian motion process, the 
governing PDE right after a withdrawals deci-
sion nt

+
 to right before the following one 1nt

−
+  for 

1, 2, ,0n N N= − −   is expressed as the follows:

( )2 21

2

0,
n

A

t AA t A

G

At

A r A

G r

σ α

α +

∂ Φ + ∂ Φ + − ∂ Φ −

− ∂ Φ − Φ =

 (12)

to which we add boundary conditions given in the 
next section.

Note that the benefit base changes only at the an-
niversary dates and is a constant parameter be-
tween two anniversary dates. PDE (12) is solved 
using the Crank-Nicolson finite differences meth-
ods. Dai, Kuen Kwok, and Zong (2008), Huang, 
Forsyth, and Labahn (2012) used the scheme for 
pricing GMWB with discrete optimal withdraw-
als. Of course, if the volatility and/or interest rates 
are stochastic, then one needs to add extra dimen-
sions to the PDE.

Applying the jump condition (10) to the solution 
at 1,Nt

+
−  we obtain the solution at 1Nt

−
−  from which 

further backward time stepping gives us solution 
at 2 ,Nt

+
−  and so on. The numerical algorithm takes 

the following key steps:

1. Generate a finite grid for the account value A  
and benefit base ,G  i.e. 0 1 JA A A< < <  and

0 10 .KG G G= < < <

2. At ,Nt  define the final condition for each 
note point ( ), ,j kA G  1,2, ,j J=   and 

1, 2, ,k K=   to get ( ), ,nt A G−Φ  and the 
boundary conditions (17)-(18) for minA  and 

maxA  for each potential { }1,2, ,
.

k K
G ∈ 

3. For each potential benefit ,kG  1, 2, , ,k K=   
solve the PDE using the Crank-Nicolson finite 
differences scheme to obtain ( )1, , .Nt A G+

−Φ

4. Apply the jump condition (10) by perform-
ing a linear search of the withdrawals amount 

1Nγ
∗
−  that gives the maximum ( )1, , .Nt A G−

−Φ  
In general, this involves a two-dimensional 
interpolation in ( ), ,A G  since the ( ),Gh A G  
and ( ),Gh A G  do not necessarily fall in the 
grid nodes.

5. Repeat (3) and (4) for 2 3 1, , , .N Nt t t t− −= 

6. Evaluate Equation (12) for the backward time 
step 1t  to 0t  to obtain solution ( )0 , ,t A GΦ  
at 0A  and 0.G

We can add more complexity to the model, for ex-
ample, by incorporating stochastic interest rates or 
stochastic volatility, in this case, the dimension of 
the pricing PDE (12). We can also add more con-
stant path wise state variables that evolve only at 
the anniversary (tax base, extra benefit base, etc...), 
which will affect only the jump condition, i.e. the 
search of the optimum will have to be performed 
based on the new variables as well.

The finite difference scheme will be discussed in 
more detail in the next section.

4.2.2. Description of the finite differences scheme

Recall that the value function Φ  satisfies the fol-
lowing recursion

( ) ( )
1 1

, 1 1, , , , , ,
n n n

Q

n t n n n t t
t A G B t A G A G− −

+ +

+ −
+ +

 Φ = Ε Φ  
 (13)

( ) ( )(
( )
( ) ( )( ))

1

, , max , ,

, ,

, , , , , , .

n nn A n n n

n n n

A G

n n n

t A G p f A G

p q D t A G

t h A G h A G

γ γ

γ γ

+
∈

+
−

+

Φ = +

+ +

+Φ

 

(14)
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Within each time interval ( )1, ,n nt t−  only the ac-
count value varies, since all the benefit bases, death 
and life, remain constant. Thus, for ( 1, ,n nt t t+ −

+ ∈   
the annuity value ( ), ,t A GΦ  solves the following 
linear PDE for each fixed value of the benefit base G

0,t L∂ Φ + Φ =  (15)

where the operator α  is

( )

2 21

2

.

AA

A G

A A

L A

r A G r

σ

α α

Φ = ∂ Φ +

+ − ∂ Φ − ∂ Φ − Φ

 (16)

4.2.3. Localization and boundary conditions

Equation (15) is originally posed on the domain 

( ) [ ] ), 0, 0, .t A T∈ ⋅ ∞  For calculation purposes, 
and because asset prices are finite and so is the ac-
count value, one needs to localize this domain to 

[ ] [ ]max0, 0, ,T A⋅  where maxA  is large enough not 
to be attained by the account value during the life-
time of the annuity. Thus, we need to add comple-
mentary boundary conditions. We consider that 
we are between two anniversary dates nt

+
 and 1nt

−
+  

backwards. When 0,A =  the policyholder has 
no longer the possibility to make any withdraw-
als from his account. However, if the IB election 
is possible, then the income period begins, given 
the policyholder is alive, and the death benefit is 
activated if he is dead at 1.nt +  Since the account 
value is equal to zero, then the annuitization will 
be indexed on the benefit base. Therefore, we have:

( ) ( )

( )

1

1

1

1 1 1

,0,

,0, .

n

n

n

r t t

gua

t

n n n nact

t

t G e

a
p G p q D t G

a

+

+

+

− −

−
+ + +

Φ = ×

 
× +  
 




 

(17)

When max ,A A=  we consider retrieving all the 
cash more interesting than any other strategy 
if the policyholder is alive. If he dies, the death 
benefit will be activated. Therefore, the Dirichlet 
boundary condition for this case is

( ) ( ) ( )
( )

1

1

max 1 max 1 max

max

, ,

.

n

n

r t t

n n n

r t t

n

t A G e p A p q A

e p A

+

+

− −
+ +

− −

Φ = + =

=

 
(18)

Let us define the solution domains

[ ]1 max, 0, ,n n nt t A+ −
− Ω = ⋅ 

[ ]1 max, 0, .
n

n n
t

t t A+ −
− Ω = ⋅ 

The pricing problem for the GMIB variable an-
nuity combined withDB under the discrete with-
drawals scenario is then achieved in Ω  as follows: 
within each set ,Ω  1, , 1,n N= −  the solution 
to the problem is the viscosity solution of a decou-
pled set of linear PDEs (12) with final condition 
(11) and boundary conditions (17)-(18) computed 
from the nonlinear algebraic Equation (14).

4.3. Construction of the scheme

Let ( )0 1, , , JA A A  be the equally spaced grid 
in the direction of the account value with 0 0A =  
and 

max .JA A=  Analogously, ( )0 , , KG G  is an 
equally spaced grid for the benefit base with 0 0G =  
and 

max max .KG G A= =  The spacial steps for both 
variables are considered to be equal. That is:

,A G∆ = ∆
where

max 0A A
A

J

−
∆ =  and max 0 .

G G
G

K

−
∆ =

Hence, jA j A= ∆  and ,kG k G= ∆  , .j k∀  The 
discrete time steps are denoted by n t∆  for 

1, , ,n N=   where .T N t= ∆  Since, in our anal-
ysis, we consider that events occur only at anniver-
sary dates, which are yearly, 1t∆ =  and each time 

nt  coincides with the discrete time step .nt n=

The numerical procedure to solve the approxima-
tion in (15) is the standard finite difference ap-
proach. We use the two-level implicit finite dif-
ference scheme to discretize the differential term 
LΦ  as given in (16). Let ,

n

h j kL Φ  denote the dis-
crete value of the differential operator at the node 

( ), , .j k nA G t

The approximation is then given by:

( ){ }

2
1, , 1,2

, 2

1, 1,

,

2

.
2

n n n

j k j k j kn

h j k j

n n

j k j kA G n

j k j k

L A
A

r A G r
A

σ

α α

+ −

+ −

Φ −Φ −Φ
Φ = +

∆
Φ −Φ

+ − − − Φ
∆
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The general theta-scheme for solving Equation (15) 
is given by:

( )
1

, , 1

, ,1 ,

n n

j k j k n n

j k h j kL L
t

θ θ
+

+Φ −Φ
= Φ + − Φ

∆

where θ  is a weighting factor, 0 0.θ< ≤  For 
0,θ =  this scheme is the explicit scheme, where-

as 1θ =  corresponds to the implicit one. The er-
ror of the previous cases is of ( )2 , .O A t∆ ∆  The 
explicit scheme has stability issues, while the im-
plicit scheme is absolutely stable. The most pop-
ular scheme for approximating the solution of 
the Black-Scholes equation is the Crank-Nicolson 
scheme obtained for 1/ 2.θ =  The latter is shown 
to be unconditionally stable and ( )2 2,O A t∆ ∆  
convergent (see Duffy, 2004). In particular, this 
scheme is used in Dai et al., (2008) to solve the 
optimal pricing problem of the GMWB rider with 
rational behavior.

The discretization w.r.t the benefit base is not im-
portant here. However, since the PDE is solved 
backwards between 1nt

−
+  and ,nt

+
 we need to di-

vide this time period, i.e. the period between two 
consecutive withdrawals dates, into finer time 
steps for a good accuracy due to the finite differ-
ence approximation to the partial derivatives.

4.3.1. Applying the jump condition

Recall that changes in the benefit base only oc-
cur at withdrawals dates. After withdrawing the 
amount n  at time ,nt  the account value changes 
from 

nt
A −  to ( ), , ,

n

A

nt
A h A G γ+ =  and the benefit 

base drops from 
nt

G −  to ( ), , .
n

G

nt
G h A G γ+ =  The 

jump condition of ( ), ,nt A G−Φ  across nt  is given 
by:

( )
( ) ( )( )(

( ) ( ))
0

1

, ,

max , , , , , ,

, , , , ,

n

n

A G

n n n
A

n n n n n

t A G

t h A G h A G

p f A G p q D t A G

γ
γ γ

γ

−

+

≤ ≤

−
−

Φ =

= Φ +

+ +

 (19)

For the optimal strategy, the withdrawals amount nγ  
is chosen under the restriction 0 n Aγ≤ ≤  to maxi-
mize the value of ( ), ,nt A G−Φ  in Equation (19).

The application of the jump condition decreases 
the account value and benefit base. For each ,jG  

a continuous solution from PDE (15) is associated. 
We can restrict the possible values for the with-
drawals amount to multiples of .A∆  This im-
plies, for a given account value jA  at time ,nt

−
 the 

withdrawals amount γ  takes j  possible values: 
,j lA Aγ = −  1, 2, , .l j= 

However, numerical tests showed that a fin-
er grid is preferable for the withdrawals amount. 
Therefore, it is not guaranteed that the account 
value, nor the benefit base after the withdraw-
al, 

nt
A +  and ,

nt
G +  fall within their respective grid 

nodes. To solve this issue, a two-dimensional in-
terpolation is required. In this work, we adopted a 
bi-linear interpolation.

Suppose the jump condition requires the value 

( ),A GΦ  at the point ( ),A G  located inside a 
grid 1i iA A A +≤ ≤  and 1,j jG G G +≤ ≤  then the 
interpolation is performed as follows:

( ) ( )

( )

1

1

1

, ,

, ,

i
j

i i

i

i i

G G
A G A G

G G

G G
A G

G G

+

+

+

−
Φ ≈ Φ +

−

−
+ Φ

−

 (20)

where

( ) ( )

( )

1

1

1

1

, ,

, ,

i
j i j

i i

i
i j

i i

A A
A G A G

A A

A A
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A A

+

+

+
+

−
Φ ≈ Φ +

−

−
+ Φ

−

( ) ( )

( )

1
1

1

1 1

1

, ,

, .

i
j i j

i i

i
i j

i i

A A
A G A G

A A

A A
A G

A A

+
+

+

+ +
+

−
Φ ≈ Φ +

−

−
+ Φ

−

At last, the jump condition is achieved through 
combining (19) and (20) to find the optimal with-
drawals and maximize the function .Φ

4.3.2. Similarity and dimension reduction

An important feature of the contract value is that 
it exhibits good scaling properties in the Black-
Scholes case. We can easily verify that the solution 

( ), ,t A GΦ  of PDE (15) with boundary condi-
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tions (17) and event conditions (18) verifies:

( ) ( ), , , , ,t A G t A Gξ ξ ξΦ = Φ  

for any scalar 0.ξ >  Therefore, choosing 
1

,
G

ξ =  
we obtain:

( ) ( ), , , ,1 , ,
A

t A G G t G t A
G

φ Φ = Φ = 
 



where / .A A G=  It means that we need only solve 
to the corresponding equations for the one-di-
mensional function  defined in the following: 

• between two consecutive withdrawals dates 

( )1, ,n nt t−  φ  follows the PDE:

( )2 21

2

0.

A

t AA A

G

A

A r A

r

φ σ φ α φ

α φ φ

∂ + ∂ + − ∂ −

− ∂ − =

  



 
 (21)

• at the anniversary dates ,nt  the jump condi-
tion is explicitly expressed as the following:

( ) ( ) ( )( )(
( ))

1 2

1

, , max , ,

, ,1 ,

n n

n

n n nt t

n n n n n t

t A h t h A

p p q D t A

γ
φ γ γ φ γ

γ

− +

+

− +

+
−

= +

+ +

   



where the functions 1h  and 2h  are a reduced ver-
sion of the account value and benefit base evolu-
tion at the anniversary dates, and are defined ac-
cording to different cases:

1. Roll-up only case:

( )1

1  if ;

1  if .

n n

n
n

h
A

A

η γ γ η
γ γ η γ η

+ − ≤
=  −
− ≥ >

 
   

( )2

 if ;
1

 if .

1

n
n

n

n
n

A

h A
A

A

γ γ η
η γ

γ γ γ ηγ η

 −
≤ + −=  −

≥ > − −


  


    


2. Ratchet only case:

( )1 max ,1 ;n
nh A

A

γγ γ = − − 
 

  
 

( ) ( )2 min 1, .h Aγ = 
 

3. Reset case (roll-up+ratchet): 

( )
( )

1

max ,1  if ;

max ,1  if .

n n n

n
n n

A

h
A A

A

γ η γ γ η
γ γ ηγ γ η

 − + − ≤

 − − − ≥ >  

 

   
   

 

( )2
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1
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1
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n

n

n
n

A

h
A

A

A

γ γ η
η γ

γ
γ γ ηγ η

  −
≤  + − 

  = 
 − ≥ >  − −
 

  



   


 

It can be easily verified that PDE (21) does not 
depend on the benefit base, since the latter is 
constant between two consecutive withdrawals 
dates 1nt

+
−  and .nt

−
 Therefore, the resolution of the 

two-dimensional problem can be reduced into a 
one-dimensional problem. This is particularly 
useful when adding more stochastic variables like 
stochastic volatility and/or interest rates.

5. RESULTS

The main goal of this study is to assess the be-
havior risk of a given GMIB product, in case pol-
icy- holders maximize their expected cash flows. 
Through optimal withdrawals amounts, or IB 
election, the insurer is concerned that his product 
may lead to “undesirable” policyholders behaviors. 
Given a state of the universe in a future time, and 
a set of up-front fixed hypotheses (management 
and guar- antee fees, interest rates and volatility), 
the optimal framework allows us to predict these 
behaviors through the stochastic control problem 
detailed in previous sections. The product hypoth-
eses usually change to account for a new financial 
environment or customers needs.

We choose two close variations of the product 
launched in the last decade, which we call them 
re- spectively, Product A and Product B. These 
are two GMIB products to which a death benefit 
(DB) can be added, i.e. Product A-DB and Product 
B-DB. The parameters values are given in Table 5.
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Table 5. Model parameters

Parameters Product A Product B

Policy holders initial age 0x
60 60

First date for IB election 10th 10th

Last age for IB election 85th 95th

Last age for DB if any 95 95

Interest rate r 2% and 4% 2% and 4%

Volatility σ 20% 20%

Roll-up rate η 6% r + 1%

Initial premium 0A
$100, 000 $100, 000

Total fees 
A Gα α α= + 3.5% 3.5%

We compare these variations for roll-up and reset, 
with and without death benefit. We conduct the 
experiments to illustrate the following:

• Policyholders rational behavior for Products 
A, B, A-DB and B-DB based on the two di-
mension approach, giving the withdrawals 
surface as a function of the account value A 
and benefit base G, for two different interest 
rate values, in four different periods in time. 
We also give with- drawals as a function of the 

moneyness A/G based on the dimension re-
duction approach:

• policyholders rational behavior for 
different values of the volatility 

{ }10%,20%,30%,40% ;σ =

• the contract initial value as a function of inter-
est rates for Product A-DB;

• the contract initial value as a function of the 
total fees.

5.1. Overview of the policyholder 
behavior

5.1.1. Roll-up only case

First, in Figure A1, we present the withdrawals 
amount surface as a function of the account value 
A and benefit base G, for Products A and A-DB 
with roll-up only for fixed times 3,  13,  23t =  
and 2%,  4%.r =  As a first remark, the guar-
anteed account must be higher than the account 
value for the policyholder to stay in the contract. 
Depending on the moneyness, he or she can 

Figure 2. The withdrawals strategy 
G

γγ =  as a function of time t  and moneyness 
A

G
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choose not to withdraw, or withdraw the guaran-
teed amount. The IB election (using the guaran-
teed account) is left at maturity or for very small 
account values. These findings are actually con-
firmed in Figure 2 where we give the withdraw-
als strategy as a function of time t and moneyness 
A/G based on the dimension reduction scheme.

Based on Figure A1 and Figure 2, we can point out 
the following remarks:

• there is a wider range of guaranteed with-
drawals for 4%r =  compared to 2%.r =  It 
tells us that for a roll-up rate as high as 6%, the 
policyholder tends to wait for the benefit base 
to increase at this rate in a low interest rates 
environment instead of draining the subac-
count and guaranteed account;

• the death benefit increases the expected cash 
flows in the future, which is also a motive for 
the policyholder to wait;

• the IB election indexed on the guaranteed ac-
count is only expected to happen in the ab-
sence of a death benefit. Even in such case, it 
only takes place closer to the maturity of the 
product and for small account values. Actually, 
the ratio /act guaa a   is not very favorable for 

the insured, and he or she would rather start 
withdrawing the guaranteed amount few 
years earlier;

• actually, fees are quite high so the account 
value usually drops quickly. This restricts the 
analysis to /A G  relatively small.

Note that reducing the dimension allows to in-
crease the speed of calculations.

Product A was launched in a period when interest 
rates were around 4%, which justifies the choice of 
a 6% roll-up rate. Given the behavior expressed in 
Figure 2, the actual interest rate level may seem to 
be quite high and the product more interesting for 
the insured than the insurer.

Later, Product B was launched with reconsidered 
assumptions. The roll-up rate becomes indexed on 
the short-term interest rates with a spread of 1%. 
The insurance company attracted the costumer by 
setting a longer limiting age to annuitize (until the 
policyholder’s 95th anniversary). In Figure 3, we 
give the policyholder behavior in time as a func-
tion of the moneyness.

While the behavior remains very close, we can 
however notice that in the absence of the death 

Figure 3. The withdrawals strategy as a function of time and moneyness 
A

G
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benefit, partial withdrawals disappear, the likeli-
hood of the IB election is higher for low interest 
rate, and left until the last years for higher inter-
est rate. Moreover, the likelihood of recovering 
the account value is higher than in Product A. In 
the presence of a death benefit, withdrawing the 
guarantee becomes interesting around the 20th 
anniversary of the contract, while an IB election is 
exercised at maturity.

5.1.2. Reset case

Ratchets allow for the benefit base to be set at the 
account value level when the latter is higher than 
the previous benefit base level. Combined with the 
roll-up, we have the reset, which is a very attrac-
tive feature for policyholders who are interested 
in the stochastic performance of stock markets, 
but at the same time want to have a guaranteed 
minimum performance. We present in Figure 
A2 and A3 the results related to products A and 
B with and without death benefit for the previous 
interest rates and roll-up values. In this case, the 
insured sticks with guaranteed or zero withdraw-
als for most time, and tends to elect the income 
benefit in the last anniversary date if the account 
value is low, and recover it otherwise. The reset is 
very costly for the insurance company, however, 
fees are quite high for this product and the ratchet 
takes place only at early dates, since the account 
value is brought down by the fees rate.

In what follows, we will focus on the roll-up only 
case in an attempt to analyze the impact of some 
key parameters in the pricing and expected poli-
cyholders rational behavior for these products.

5.1.3. The impact of volatility

The volatility level assumption is very important for 
variable annuities in general and the GMIB prod- 
uct in particular. Based on Product A for the hy-
pothesis used above, we compare two levels of vol-
atility (which we can compare to the 20% volatility 
case given in Figure 2. We can see in Figure A4 and 
A5 that the lower the volatility, the earlier guaran-
teed withdrawals start. Moreover, the lapsing like-
lihood is also higher. This means that the more un-
certain are markets, the more the policyholder tends 
to withdraw money from his account. On the other 
hand, the IB election does not seem to be affected.

5.1.4. Roll-up rate  

and fees

There is a trade-off between roll-up rate and 
fees. The roll-up is the mechanism that ensures 
the policyholder a minimum return, which can 
be higher than the money market. However, to 
be able to provide interesting roll-up rates, in-
surance companies need to be hedged from un-
certain interest rates. In this sense, they use for 
example swaps. Therefore, they need to collect 
fees that at least allow for a fair pricing for the 
contract, i.e. such that the paid cash f lows equal 
the premium. On the other hand, high fees can 
have a perverse effect. By decreasing the sub-
account value, especially in periods of low per-
formance, present collected fees reduce future 
potential ones. On the long run, combined with 
guaranteed withdrawals, the income benefit 
can be elected by bringing the account value to 
zero. Moreover, when the the account value falls 
to zero, the insurance company can no longer 
collect fees and starts to pay the guarantee.

In Figure A6, we compare the value of the con-
tract at inception for different parameters of 
Product B as a function of total fees. The fair 
price corresponds to ( )00, 1.Aφ =  We see that 
the contract is under-priced with death benefit. 
The fair fees would be as high as 7%. Without the 
death benefit, they are around 3%, which is close 
to the rates applied by the insurance company. 
In Figure A7, we conduct a similar test by vary-
ing the roll-up rate for Products A, A-DB, B and 
B-DB for 2%.r =  We notice that ( )00, 1Aφ =  
corresponds to a roll-up rate that is close to the 
interest rate except one of the products. Indeed, 
Products A, A-DB and B-DB are under-priced 
for the features they provide. On the other hand, 
the insurance company was conservative in the 
roll-up rate assumption for Product B, which al-
lows it to be profitable even for the worst case 
scenario. Of course, insurance companies do 
not expect (and hope not) that all policyholders 
follow an optimal behavior. However, prudent 
hypotheses can prevent from important losses. 
Including a proportion of policyholders that are 
likely to behave op- timally is one of the solu-
tions. Note that the GMIB product is less risky 
than the GMWB in that the annuity factor is 
defined with conservative assumptions.
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CONCLUSION

In this work, we analyzed the optimal behavior of a policyholder entering a GMIB contract combined 
with a death benefit guarantee. The solution is based on a optimal stochastic control framework using 
the mean criterion in a Black-Scholes framework, and solved numerically using recursive dynamic pro-
gramming techniques. Considering only the account value varies between two anniversary dates, we 
used finite differences methods and a linear search for the optimal withdrawals to maximize the ex-
pectation of discounted future cash flows. Such calculations give an optimal withdrawals function that 
depends on time, account value and benefit base. Taking advantage of the good scaling properties pro-
vided by the contract payoff and the asset price, we are able to reduce the dimensionality of the problem 
to time and moneyness, making calculations faster and results interpretation easier.

The policyholder’s optimal behavior corresponds to the worst case scenario for insurance companies. 
Therefore, even though insurers are not expected to behave optimally, a good insight of how they may 
act in case they do, given a market environment, can allow insurers to be more effective in pricing and 
hedging their products. We find that the optimality consisted mainly in four choices: zero with- draw-
als, guaranteed withdrawals, lapse and IB election. We presented these results for two different products 
before analyzing the impact of some of the contract key parameters.

Finally, these results can be used as a guide to practitioners in the design of new products where a par-
ticular client behavior is desired. The model can be used to calculate the fair withdrawals fee with hedg-
ing purposes. In particular, we find that these products are under-priced in case of a optimal behaviors, as 
it was already mention ed by Milevsky and Salisbury (2006) in the case of GMWBs. We believe that under-
standing policyholder behavior is a critical concern to the future of life insurance business, and due to its 
importance, further research is required.
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APPENDIX

Figure A1. Policyholder optimal withdrawals amount as a function  
of the account value A and benefit base G for Product A and A-DB
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Figure A2. The withdrawals strategy as a function of time t  and moneyness 
A

G

Figure A3. The withdrawals strategy as a function of time t  and moneyness 
A

G
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Figure A4. The withdrawals strategy as a function of time t  and moneyness 
A

G
 for 10%σ =  

Figure A5. The withdrawals strategy as a function of time t  and moneyness 
A

G
 for 30%σ =
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Figure A7. The contract value at inception as a function of the roll-up rate η   

for Product A and B with and without DB for 2%r =  

Figure A6. The contract value at inception as a function of the total fees α  for Product A with  
and without DB for 2%,  4%r =
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