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Abstract

The investment nous of active managers is judged on their ability to outperform speci-
fied benchmarks while complying with strict constraints on, for example, tracking 
errors, β  and Value at Risk. Tracking error constraints give rise to a tracking error 
frontier – an ellipse in risk/return space which encloses theoretically possible (but not 
necessarily efficient) portfolios. The β  frontier is a parabola in risk/return space and 
defines the threshold of portfolios subject to a specified β  requirement. An -TEα  
frontier is similarly shaped: portfolios on this frontier have a specified TE  for a maxi-
mum TE  Utility and associated risk aversion have also been explored for constrained 
portfolios. This paper contributes by establishing the impossibility of satisfying more 
than two constraints simultaneously and explores the behavior of these constraints on 
the maximum risk-adjusted return portfolio (defined arbitrarily here as the optimal 
portfolio).
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INTRODUCTION

Active portfolio managers aim to outperform their benchmarks 
while adhering to constraints imposed by principals. One of the 
most commonly-used of these constraints is the tracking error ( ).TE  
Researchers also refer to this quantity as the tracking error volatility, 
but the phrase has largely fallen out of use amongst practitioners and 
became simply tracking error), the annualized standard deviation of 
the difference between the fund and benchmark returns (whether ex 
post or ex ante). Optimizing portfolio performance over a benchmark, 
while constrained to a ,TE  is non-trivial. Problems begin with the 
definition of optimal. Optimal portfolios have been variously defined 
as those constrained by a TE  which: (1) outperform the benchmark 
by the greatest amount with no regard to portfolio volatility (Roll, 
1992), (2) have the same volatility as the benchmark and highest ex-
cess return over the benchmark (Jorion, 2003), (3) have the highest 
risk-adjusted return (Maxwell, Daly, Thomson, & van Vuuren, 2017), 
and others.

Contemporary active managers are not only constrained by ,TE  others 
include portfolio α  (Alexander & Baptista, 2010) and β  (Roll, 1992; 
Betrand, 2009, 2010) from the capital asset pricing model (CAPM), 
Value at Risk (VaR) from a risk point of view (Palomba & Riccetti, 
2013; Rodposhti & Sharareh, 2015), or utility, which combines risk and 
return (Stowe, 2014). These multiple restrictions are often incompat-
ible. Increasing portfolio ,β  for example, decreases risk-adjusted re-
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turns. Assembling portfolios which obey strict VaR requirements, as well as TE  constraints, is often 
impossible. Despite these mutually exclusive objectives, active fund managers must comply with man-
dates bearing these impositions, indeed, their performance (and subsequent remuneration) is based on 
strict compliance with these mandates. 

This paper traces the development of various frontiers and boundaries in risk/return (and sometimes in 
mean/variance) space, which define the limits of the active fund manager’s investable universe. These 
limits characterize efficient portfolios in the sense that they establish maximal returns for given levels 
of risk, or ,β  ,α  VaR or other parameters, or combinations of these. Inevitably, the regions bordered by 
these limits shrink as constraints are added. Depending on the severity of the constraints, the potential 
universe of permitted investments is sometimes undefined. Navigating this narrow arena of possibili-
ties and optimizing the returns generated from it is a complex task. The contribution of this paper is to 
assemble these frontiers and then populate the return/risk space within them, using the same small but 
stylized asset universe to demonstrate the consequences of the limitations.

This paper proceeds as follows. Section 1 discusses the relevant literature governing some of the con-
straints imposed on active managers, and traces the mathematical development which describes the 
plausible (and ever-diminishing) investment universe given the array of mandated constraints. The 
relevant mathematics is introduced, defined and contextualized in section 2. The data used are also de-
scribed in this section. Section 3 presents the results and discusses the consequences of constraints on 
active portfolio optimization. Last section concludes.

1. LITERATURE REVIEW

The Markowitz framework, in a fund manage-
ment context, establishes the relationship be-
tween expected portfolio returns and the vari-
ance of those returns given a universe of invest-
able assets. This relationship gives rise to the 
well-known efficient frontier; the parabolic de-
lineation in mean return/variance space. Active 
portfolio managers are, however, constrained by 
restrictions specified by the fund sponsors: poor-
ly-assembled benchmarks (which are seldom 
Markowitz efficient), maximum tracking error 
(defined as the standard deviation of differences 
between the benchmark and the active portfo-
lio’s returns), minimum outperformance of the 
benchmark, active fund ,β  VaR, etc.

Active fund managers are commonly rewarded 
for generating expected returns (by outperform-
ing mandated benchmarks) while simultaneously 
minimizing specified tracking errors. Roll (1992) 
called this the TEV (tracking error volatility) 
criterion and established conclusively that in at-
tempting to satisfy it, fund managers intentionally 
do not produce mean/variance efficient Makowitz 
portfolios under all but the rarest of circumstanc-
es. Portfolios selected by active fund managers 

would always be dominated by other portfolios 
with higher average returns and lower volatilities 
although not lower tracking errors.

Roll (1992) formalized the problem of tracking er-
ror-constrained portfolios and established an el-
egant solution for the “TE  frontier” (Figure 1), i.e. 
portfolios having a maximum total expected re-
turn possible for a given .TE  Markers are placed at 
intervals of 1% in Figure 1, so the TE -constrained 
portfolio indicated represents the maximum ex-
cess return possible for a fund relative to its bench-
mark with a TE  constraint of 4%, the point above 
and to the right of it, 5%,TE =  and so on.

Jorion (2003) augmented Roll’s (1992) solutions 
by establishing the shape of constant TE  port-
folios, i.e. the locus of active portfolios with the 
same tracking error, being equidistant from the 
benchmark. Jorion (2003) established that this lo-
cus is an ellipse in mean/variance space, but not in 
the efficient frontier ( )µ σ  plane, where µ  rep-
resents the portfolio expected return and σ  the 
active portfolio volatility (Figure 2). The shape of 
the constant TE  frontier in ( )µ σ  space is a dis-
torted ellipse in which the bi-axial symmetry as-
sociated with ellipse is lost. “Ellipse” will be used 
here when referring to the shape in either space.
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In Figure 2(a), the active manager’s dilemma is 
evident: the portfolio subject to a tracking error 
constraint which also generates the maximum 
outperformance of the benchmark has higher risk 
than the benchmark. Because of the flat shape 
(referring to the generally shallow angle of the el-
lipse’s long axis to the volatility axis) of the ellipse, 
Jorion (2003) suggested active managers invest in 
the portfolio indicated in Figure 2(b): portfolios 
with the same risk as the benchmark (on the con-
stant TE  frontier). The decrease in expected return 
(from the maximum expected return) is minimal 
again because of the ellipse’s flat shape, the portfo-
lio outperforms the benchmark and has the same 
risk as the benchmark. Jorion (2003) also found 
that this constraint improved managed portfolio 
performance, particularly those with lower sTE  
and less efficient benchmarks. For these portfolios, 
the information ratio ( ) ,IR  given by:

,
p br r

IR
TE

−
=  (1)

where pr  are the portfolio returns and br  the 
benchmark returns, is not maximized.

Maxwell, Daly, Thomson, and van Vuuren (2017) 
further explored portfolio optimization under 
TE  constraints and set forth arguments in favor 
of maximizing the risk-adjusted expected returns 
(i.e. the maximum Sharpe ratio) on the constant 
TE  frontier. Depending on the risk-free rate or re-
turn, this portfolio can lie to the left or right of 
Jorion’s (2003) suggestion. In the current (2017) 
low interest rate environment, Maxwell et al.’s 
(2017) active portfolios lie to the left of Jorion’s so 
these portfolios have a higher expected return and 
lower risk than the benchmark, the highest risk-
adjusted rate of expected return and they satisfy 
the TE  constraint. These portfolios have lower ex-
pected returns than Jorion’s (whose returns are, in 
turn, lower than the maximum expected return), 
but again the flat shape of the ellipse means that 
the portfolios’ other credentials more than com-
pensate for this decrease.

Roll (1992) found that all actively-managed port-
folios (under the TE  constraint) with positive ex-
pected performance have 1,β >  while portfolios 
that have higher expected returns and lower total 
volatility have 1.β <  Roll (1992) generated TE  
frontiers with a β  constraint and proved that it 

is impossible to produce a portfolio that is simul-
taneously constrained by a ,TE  a given expected 
performance and a specified .β

Bertrand (2010) allowed the tracking error to vary, 
but fixed the investor’s level of risk aversion, there-
by generating what he called aversion frontiers. 
Betrand’s (2010) 1β =  is aversion frontier coin-
cided with Roll’s (1992) 1β =  frontier and found 
that to take advantage of an expected rise in the 
market (i.e. have a 1β > ), the constructed portfo-
lio must be assembled in the context of its aversion 
frontiers, not constant tracking error frontiers. 
While these conclusions are compelling, the clear 
majority (if not all) actively managed funds have a 
mandated tracking error, not a mandated aversion 
level, so Bertrand’s (2010) work is moot.

Stowe (2014) noted that the conventional prac-
tices of β  constraints, studied in Roll (1992), and 
TE  volatility constraints, studied in Jorion (2003), 
assure utility improvements for the investor. If 
these constraints are sensibly implemented, the 
fund manager will be forced to manage a port-
folio which is more efficient than the benchmark. 
Stowe’s (2014) principal contribution was to estab-
lish the conditions under which fund managers 
could increase portfolio utility and found that the 
β  constraint always has the potential to increase 
utility, while the tracking error constraint (which 
may increase utility) always lies below the con-
strained β  frontier.

Alexander and Baptista (2010) devised a solution 
for determining the -TEα  frontier i.e. that fron-
tier which exhibits the minimum tracking er-
ror for various levels of ex ante .α  The authors 
showed that sensible choices of ex ante α  lead to 
the selection of less risky portfolios than active 
fund managers may otherwise select. 

2. DATA AND METHODOLOGY

2.1. Data

The data comprised simulated realistic weights, 
returns, volatilities and correlations for a small 
benchmark comprising three assets. Portfolio 
constituents were derived only from the bench-
mark universe (including short-selling of bench-
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mark components). We followed the example of 
Stowe (2014) who chose a simple simulated portfo-
lio comprising four assets, and the descriptive sta-
tistics for which were chosen somewhat arbitrari-
ly, but mainly for ease of exposition. Like Stowe 
(2014), we believe these examples are representa-
tive of a realistic scenario. The relevant inputs are 
provided in the Appendix.

Note that the “assets” which constitute the port-
folio could be asset classes (such as equity, bonds 
or cash) or specific industry sectors within an as-
set class (e.g. an industrial equity index, a banking 
and finance index, etc.) or individual assets such 
as single name stocks or bonds.

Karp and van Vuuren (2017) describe variations 
in excess portfolio returns in an emerging market 
environment using a Fama-French three-factor 
model. These excess returns helped identify and 
describe relevant, realistic excess portfolio returns 
for the generation of simulated data. The Fama 
and French (2015) five-factor model approach was 
also used to further refine these estimates. 

2.2. Methodology

To establish the methodologies required for the 
various frontiers, some definitions are necessary. 
These are recreated below in line with the nota-
tion developed by Roll (1992) and perpetuated by 
Jorion (2003). 

Fund managers, tasked with outperforming 
benchmarks, must take positions in assets which 
may or may not be components of the benchmark 
(depending on the fund’s mandate). The following 
definitions will be used throughout this paper.

:bq  vector of benchmark weights for a sample of 
N  assets; :x  vector of deviations from the bench-
mark; ( ):p bq  q x= +  vector of portfolio weights; 

:E  vector of expected returns; and :V  covariance 
matrix of asset returns.

Net short sales are allowed, so the total active 
weight i iq x+  may be negative for any individual 
asset .i  The universe of assets can generally ex-
ceed the components of the benchmark, but for 
Roll’s (1992) methodology, assets in the bench-
mark must be included.

Expected returns and variances are expressed in 
matrix notation as:

:b bq Eµ ′=  expected benchmark return;

2 :b b bq Vqσ ′=  variance of benchmark return;

: x Eεµ ′=  expected excess return;

:p bG r r= −  gain, the fund manager’s target or 
expected performance relative to the benchmark;

2 :x Vxεσ ′=  TE  variance (defined as 2TE ) 
and

2
:

p b

b

q Vq
β

σ
′

=  sponsor-specified level of market 

risk (relative to the benchmark).

The active portfolio’s expected return and vari-
ance are given by:

( ) ,p b bq x E εµ µ µ′= + = +  (2)

( ) ( )2

2 2 22 .2

p b b

b b b b

q x V q x

q Vx x Vx q Vx ε

σ

σ σ σ

′= + + =

′ ′ ′= + + = + +
 (3)

The portfolio must be fully invested, so:

( ) 1 1,bq x ′+ =  (4)

where 1 represents an -N dimensional vector of 1s. 

Using Merton’s (1972) terminology, the following 
parameters are also defined:

1 , a E V E−′=  11,b E V −′=  11 1,c V −′=  and 

2

,
a b

d
c

−
=  (5)

1 ,B

b

c
µ∆ = −  (6)

where MV

b

c
µ=  and

�
2

2 1
� ��

B

c
,  (7)

where 21
.MV

c
σ=

Roll (1992) showed that the three parameters ,a  
b  and c  are related to the means and variances 
of two important portfolios on the efficient fron-
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tier (denoted 0P  and 1P ). The first, portfolio 0 ,P  
is the global minimum variance portfolio and 
the second, portfolio 1,P  is located where a line 
drawn from the origin passes through the global 
minimum variance portfolio and intersects the ef-
ficient frontier. Both are shown in Figure 1. These 
portfolios have the properties indicated in Table 1.

2.2.1. Tracking error frontier

The tracking error frontier is generated by maximiz-

ing x E′  subject to 1 1x′ =  and 
2 .x Vx εσ′ =

The solution for the vector of deviations from the 
benchmark x  is:

2
1 1 .

b
x V E

d c

εσ −  = ± − 
 
⋅  (8)

2.2.2. Constant TE  frontier

To generate the constant tracking error frontier:

Maximize x E′  subject to 1 0,x′ =  2x Vx εσ′ =  and 

( ) ( ) 2 .b b pq x V q x σ′+ + =

The solution for the vector of deviations from the 
benchmark x  is:

( )1

1 3

2 3

1
,bx V E Vqλ λ

λ λ
−= − + +

+
 (9)

where

3
1 ,

b 

c

λ
λ

+
= −  (10)

( )
2

2 1
2 32 2

2

2
4

,
d

yε

∆ ∆λ λ
σ ∆

−
= ± − −

−
 (11)

Table 1. Properties of portfolios 0 and 1 in terms of ,a  b  and c

Portfolio Mean Variance Weights

0P
 0E b c=

 

2

0 1 cσ =
 

1

0 1q V c−=
 

1P 1E a b=
 

2 2

1 a bσ = 1

1q V E b−=

Figure 1. Positions of portfolios 0P  and 1P  on the efficient frontier and the gain ,p bG r r= −  the fund 
manager’s outperformance target

Source: Authors.
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2

1 2 1
3 2 2

2 2 24

dy
.

yε

∆ ∆ ∆λ
∆ ∆ σ ∆

−
= − ±

−  (12)

Jorion (2003) defined 

,p bz µ µ= −  (13)

and

2 2 2 ,p by εσ σ σ= − −  (14)

and established that the relationship between y   
and z  is:

( )2 2 2 2

2 1 2 14 4 4 0,dy z yz dε∆ ∆ σ ∆ ∆+ − − − =  (15)

which is a quadratic equation in both y  and .z

Solving for z  gives:

( ) ( )2 2 2

1 1 2 2

2

4
,

2

y d y
z

ε∆ ∆ ∆ ∆ σ

∆

± − ⋅ −
=  (16)

which describes an ellipse – a constant TE  fron-
tier – in return/variance space (and a distort-

ed ellipse in risk/return space – Figure 2), once 
the definitions of z  (13) and y  (14) have been 
reinstalled. 

In Figure 2, each point on the ellipse represents a 
portfolio with 5%.TE =  The point on the ellipse 
corresponding to the largest outperformance of 
the portfolio over the benchmark is common to 
both the TE  frontier and the constant TE  frontier. 
Managers attempting to maximize excess return 
need to move up and to the right of the benchmark 
in the µ σ  plane, so the portfolio will always ex-
hibit higher risk than that of the benchmark. This 
led Jorion (2003) to propose a constraint on to-
tal risk. Jorion (2003) suggested that the portfo-
lio risk could be constrained to equal that of the 
benchmark (i.e. that p bσ σ= ), which implies that 

22 .q Vx εσ′ = −

2.2.3. Constant β  frontier

Assume a fund manager is mandated to assemble 
a portfolio P  which minimizes the tracking er-
ror, generates an expected outperformance (or 
gain) G  and maintains a specified β  against the 
benchmark portfolio .b  This optimization prob-
lem can be expressed as:

Figure 2. TE  frontier, TE -constrained portfolio and constant TE  frontier (with 5%TE = ). (a) shows 
the naïve portfolio: excess return is maximised for a given TE  constraint. (b) shows Jorion’s (2003) 

suggestion: observe constraints from (a), but restrict portfolio risk to that of the benchmark 

Source: Authors.
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Minimize x Vx′  subject to 1 0,x′ =  x E G′ =  and 
2 .p b bq Vq β σ′ = ⋅

The final constraint may be rearranged and writ-
ten as:

( ) 2 ,b b bq x Vq β σ− = ⋅  (17)

( )2 1 .b bx Vq σ β′ = −  (18)

Using Lagrange multipliers, the solution for the 
weights ,x  of the relevant portfolio which satis-
fies the above constraints is 1 1 0 0 b bx q q qγ γ γ= + +  
where:

( ) ( )( )
( )( )

2 2 2

0 0

1 2 2

1 0

1
,

b b b

b b*

G E

E E

σ σ σ β µ
γ

σ σ

− + − −
=

− −
 (19)

( )( )

( )( )

2

12

0 2 2

1 0

1

,

b
b b

b

b b*

G E
b

E E

µ σ β µ
σ

γ
σ σ

 
+ − − − =

− −

 (20)

( )( )

( )( )

2
20

1 0

2 2

1 0

1

.

b
b

b

b b*

G E E
b

E E

σ µ σ β
γ

σ σ

 −
+ − − 

 =
− −

 (21)

Roll (1992) also established that 

1 1 0 0 b bG E E  γ γ γ µ= + +  and ( )2 1b bx Vq σ β′ = −  as 
required.

2.2.4. The -TEα  frontier

A portfolio is deemed to be on the -TEα  frontier if 
there is no portfolio with the same α  and a small-
er .TE  The methodology to generate this frontier 
involves first calculating three useful parameters:

2

1 ,

b f

b

r
b

k
c

µ
σ
− 

−  
 =  (22)

2

22

2 2
,

b f

bf b

b

r
b

r
k a

c

µ
σµ

σ

 − 
−   −   = + −  

 
 (23)

,
3 2

r
d b b f

k
bc c

b

µ
µ

σ

 −
   = + − ⋅      

 
 (24)

where fr  is the risk-free rate and the other sym-
bols have been defined previously.

Define

1
0

2

,,

ck

k
α

αγ −
=  (25)

1

2

,,

b

k
α

αγ =  (26)

then the vector of portfolio weights on the -TEα  
frontier, ,qα  are generated from:

( )0 0 1 1 0 11 ,, , , , bq q q qα α α α αγ γ γ γ= + + − −  (27)

where 0q  and 1q  retain the definitions established 
in Table 1.

2.2.5. Fund utility

Stowe (2014, 2017) used the popular “quadratic-style” 
utility function to find the portfolio, constrained by 
a ,TE  which maximized the investor’s utility which 
increases with expected return ,pq E′  and decreases 
with risk .p pq Vq′  The relationship is:

2 ,p pU µ θσ= −  (28)

where U  is the utility function, pµ  the fund’s 
expected return, 2

pσ  the variance of the portfo-
lio’s return and θ  the coefficient of risk aversion 
(Stowe, 2014, 2017). The maximization setup is:

,p p p
w

max  q E q Vqθ′ ′−  (29)

for which Stowe (2014, 2017) provides elegant deri-
vations for the optimal portfolio. We use his results, 
but do not find the optimal utility portfolio on the 
constant TE  frontier. Instead, we investigate the 
utility around the portfolio which lies on the con-
stant TE  frontier and has maximal risk-adjusted 
return, i.e. the maximum Sharpe ratio portfolio 
constrained to the constant TE  frontier. This aug-
ments and extends our work on this portfolio under 
tracking error constraints (Maxwell et al., 2017). 

Differentiating (28) gives:

2 ,p

p

dU

d
σ θ

σ
=  (30)

and where this slope takes the value of the maxi-
mum Sharpe ratio, the investor’s utility for the 
maximum Sharpe ratio portfolio is determined. 
Maxwell et al. (2017) showed that solving for pµ  
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in (31) gives the coordinates of the maximum 
Sharpe ratio portfolio in mean/standard deviation 
space (from whence it is trivial to determine the 
maximum Sharpe ratio, knowing :fr

( )

( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2 2

1 2

1
2

2 2 2 2 2

1 2 2

2

2

2
2 2 2 2 2 2 2 2

1 2 2 1

2

2

4

4

0,
2

p b

p b
f b

p

p b p b

p

d

dr

d

ε

ε ε

ε ε ε

∆ ∆ σ σ σ
∆

∆ ∆ σ σ σ ∆ σµ

σ ∆

∆ ∆ σ σ σ ∆ σ ∆ σ σ σ

∆ σ

− ⋅ − −
+

 − − − −−   +

 − − − − + ⋅ − −  − =

 

(31)

with 
1 B

b

c
∆ µ= −  

MV

b
 

c
µ = 

 
 

and 2
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as defined by Jorion (2003).

Equating the maximum Sharpe ratio and (30) 
gives:

22 Maximum Sharpe ratio,p S

p

dU

d
σ θ

σ
= =  (32)

so:

Maximum Sharpe ratio
,

2
S

p

θ
σ

=  (33)

where Sθ  is the risk aversion coefficient tangent to 
the constant TE  frontier at the maximum Sharpe 
ratio portfolio.

3. RESULTS AND DISCUSSION

Armed with the mathematics and methodologies 
detailed in the previous section, the various fron-
tiers were constructed and a small portfolio com-
prising three stylized assets used to investigate the 
range of possible portfolios, given various man-
dated constraints.

3.1. The constant tracking error 

frontier

Roll (1992) developed the tracking error frontier 
(Figure 1). Jorion (2003) first described the con -
stant TE  frontier (Figure 2), the boundary whose 

upper edge defines the maximum return possible, 
at various risk levels, for a given fixed .TE  This 
region, an ellipse in mean/variance space, led to 
the proposition that a portfolio with the same risk 
as the benchmark on this frontier would perform 
better than the naïve ‘maximum return’ portfolio 
(whose risk is greater than that of the benchmark). 

3.2. The β  frontier

Adding a β  constraint generates a β  frontier 
on which all portfolios have the same CAPM .β  
Portfolios not geared to the market (in this case, it 
is assumed that the “market” is the benchmark) 
have 1:β =  this frontier necessarily passes through 
the benchmark (Figure 3a). For 1,β <  the frontier 
moves to the left, so portfolios with lower risk yet 
higher returns than the benchmark, in bear mar-
kets, are possible. For 1,β >  the frontier moves to 
the right in risk/return space, so only portfolios 
with higher volatility than the benchmark are fea-
sible. This result was also found by Roll (1992). 

For all values of ,β  only one sensible intersection 
with the constant TE  frontier exists (i.e. on the 
upper half of the ellipse). This point may not be 
the maximum return possible (given the TE  con-
straint) nor the maximum risk-adjusted return 

– the crux is that this intersection point may not 
be “optimal” in any sense. Active fund managers 
with portfolios subject to this combination of con-
straints (TE  and β ) and wishing to maximize ex-
cess returns are confined to a single point in risk/
return space: a highly restrictive arrangement.

Figure 3b shows the range of possible β  values 
for various levels of tracking error. This range is ef-
fectively the values of β  at which the β  frontier 
tangentially intersects the constant TE  frontier at 
either end of the ellipse. Either end represents, re-
spectively, the active fund’s minimum and maxi-
mum volatility, so it is doubtful active fund man-
agers would be interested in these extreme portfo-
lios in the first place. Thus, the range of possible 

sβ  is lower than the stylized values in Figure 3b. 

3.3. The -TEα  frontier

Figure 4 shows the -TEα  frontier, that frontier 
which exhibits the minimum tracking error for 
various levels of ex ante CAPM .α  These á s are 
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indicated on the frontier. The elements of Figure 4 
were generated using stylized asset parameters. It is 
clear that feasible, active portfolios, which simulta-
neously satisfy α  and prescribed TE  constraints, 
as well as maximize excess returns, are impossible 
(except in the case of the vanishingly small prob-
ability that the á  constraint coincides with the 
intersection on the TE  frontier). Combining ,α  
β  and TE  constraints is impossible as shown in 
Figure 4. Note, however, that using the α -frontier 
leads to the selection of less risky portfolios than 
managers might otherwise select. In Figure 4, for 
example, the (naïve) maximum return portfolio is 
considerably riskier than the intersection of the α

-frontier and the constrained TE  frontier.

Note also that the 0%α =  portfolio is necessarily 
coincident with the benchmark. 

3.4. Utility constraints

While variance minimization is an approach to 
analyzing portfolio selection, maximizing inves-
tor utility is another. The parameter ,θ  the coef-
ficient of risk aversion, measures the sensitivity or 
the trade-off. Stowe (2014) found that the weights 

for the portfolio which maximized utility under 
tracking error constraints were given by:

1
1

1

1 1
1

2 1 1
.b

EV
w V E q

Vθ

−
−

−

 
= − + ′ 

 (34)

We did not use Stowe’s (2014) maximum utility 
portfolio. Instead, we determined the utility func-
tion which is tangent to the constant TE  frontier 
at the maximum Sharpe ratio portfolio (Figure 
5a) using (32) and backed out the appropriate risk 
aversion coefficient.

Figure 5b shows the θ  surface as a function of 

fr  and .TE  While θ  decreases for increasing fr  
(understandable because, all else equal, the slope 
of the maximum Sharpe ratio decreases with in-
creasing fr ), a clear maximum θ  exists at a cer-
tain ,TE  for all .fr  It is not obvious why this 
should be.

Figure 6a further explores θ  as a function of 
.TE  A maximum θ  occurs, for this stylized ex-

ample, at about 7%.TE =  Maxwell et al. (2017) 
established that the maximum Sharpe ratio also 
increases with TE  before flattening off and de-

Figure 3. (a) Position of β  frontier for 0 9, 1 0. .β =  and 1 1.  and (b) maximum and minimum β  values 
for changing tracking errors

Source: Authors.
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Figure 5. (a) Utility function tangential to the maximum Sharpe ratio portfolio on the constant TE  
frontier and (b) θ  as a function of tracking error and risk-free rate
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creasing slightly for large ( )s 12% .TE >  Thus, a 
portfolio exists for which the Sharpe ratio itself 
is maximized. The portfolios characterized by a 
maximum θ  and a maximum Sharpe ratio are 
not the same, thus a maximum Sharpe ratio does 
not describe the reason for the maximum .θ

The locus of the maximum Sharpe ratio portfo-
lio, as TE  increases, moves up (increased return) 
and to the left (decreased risk) of the benchmark. 
At higher levels of ,TE  the portfolio continues 
to move up, but then moves to the right, i.e. ab-

solute risk increases. At some value of ,TE  the 
maximum Sharpe ratio portfolio will be coincident 
upon Jorion’s (2003) proposal (i.e. where b pσ σ= ) 
and for higher TE  values, the portfolio will con-
tinue to move up and right eventually coincident 
with the maximum return portfolio (coincident 
with the TE  frontier and ellipse) in the clockwise 
direction (see Maxwell et al., 2017). Investor risk 
aversion increases dramatically with increasing 

TE  (labels indicated on the graph) and increasing 

pσ  – the portfolio risk of the Sharpe ratio portfo-
lio at that level of TE  (Figure 6b).

CONCLUSION AND SUGGESTIONS

Portfolios subject to TE  constraints are always sub-optimal to those that are not. Furthermore, as the 
TE  constraint is in excess return space and relative to an investor or a somewhat arbitrarily defined 
benchmark (in general), there is potential for greater inefficiency should fund managers naïvely pursue 
maximum excess returns as a sole investment objective. As a TE  is taken as a given in portfolio man-
agement, optimization under such constraint is of great interest to practitioners.

Before addressing the selection of an optimal portfolio under ,TE  α  and β  constraints and what that 
means in terms of maximizing excess and risk-adjusted returns, and the subsequent impact upon in-
vestor utility, it is important to note what is meant by an optimal portfolio. An optimal portfolio is one 
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which maximizes investor’s utility, not necessarily that which minimizes risk, maximizes returns, nor 
that which maximizes risk-adjusted returns. Therefore, an optimal portfolio for one investor may not be 
the same as the optimal portfolio for another investor. Unfortunately, to assign a number to utility, one 
looks at risk aversion (or risk tolerance), but this does not encompass the full utility an investor derives 
from an investment (whether that be avoiding large losses or realizing large gains). There is a subjective 
component of utility, or investor satisfaction, which cannot be captured numerically. Furthermore, in-
vestors are not always aware what provides the most utility/satisfaction from an investment. Although 
the peak of the utility curve and the peak of the maximum Sharpe curve do not coincide, and the 
maximum risk-adjusted portfolio is not identified as the optimal portfolio (in utility terms), it could 
be argued that it should be. The understanding of optimality, risk and utility (and their interaction) 
requires re-adjustment. As an investor’s utility cannot be fully captured, it cannot be concluded that 
the maximum Sharpe portfolio is not the optimal portfolio as it is the maximum risk-adjusted return 
portfolio and will provide the investor with far more utility than a more risk-averse portfolio. Therefore, 
as they are generally uninformed, investors should attempt to maximize risk-adjusted returns, rather 
than avoid risk.

Another important discussion is that between risk and volatility. A high volatility portfolio is not neces-
sarily riskier than a lower volatility portfolio, as the volatility estimate employs both positive and nega-
tive returns. A high volatility portfolio could comprise of predominantly positive (“good”) returns and 
a lower volatility portfolio could comprise of predominantly negative (“bad”) returns. Portfolio risk, on 
the other hand, is the risk of losing capital. In the above example, the lower volatility portfolio contrib-
utes more risk than the higher volatility portfolio. Reducing portfolio risk would thus reduce the poten-
tial capital losses, and metrics such as VaR, conditional VaR and downside deviation should therefore 
be optimized. One could adjust the Sharpe ratio and attempt to maximize the Sortino ratio instead; this 
may provide substantially more utility to the risk-averse investor.
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APPENDIX

Correlation matrix:

1 +0.09 +0.16

1 +0.12

1

Volatility vector:  28% 25% 18%

Benchmark weights:  50% 22% 28%

Annualized :r    15% 19% 6%
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