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Exotic options with Lévy processes: the Markovian  

approach
Abstract

This paper proposes a simplified methodology to price exotic options when the log returns follow a Lévy process. The 

Markovian approach is simpler than others proposed in literature for these processes and it allows to define hedging 

strategies. In particular, the authors consider three Lévy processes (variance gamma, Meixner and normal inverse 

Gaussian) and show how to compute barrier, compound and lookback option prices. The article first discusses the use 

of a homogeneous Markov chain approximating the risk neutral log return distribution. Then, it describes the method-

ology to price exotic contingent claims. Finally, the paper compares the convergence results considering the three dif-

ferent distributional assumptions. 
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Introduction©

It is well known that log returns are not Gaussian 

distributed. In particular, exponential Lévy models, 

that assume asset log returns follow a Lévy process, 

have been widely used in the recent financial litera-

ture. This distributional assumption represents a 

possible choice to overcome some drawbacks that 

afflict the traditional Black-Scholes model. Many 

empirical researches show the lack of the geometric 

Brownian motion and highlight the necessity to 

model asset returns by stochastic processes with 

skew and fat-tails distributions (see, among others, 

Rachev and Mittnik, 2000). Lévy non-Gaussian 

processes meet this necessity because their distribu-

tions can take into account skewness and excess 

kurtosis. Black-Scholes model also suffers the so 

called volatility smile. Specifically, the implied 

volatility, which should be a constant value, when 

plotted against strike prices, displays graphs which 

are smile shaped, that is, in-the-money and out-the-

money volatilities are higher than at-the-money 

volatilities. Instead, empirical studies (Eberlein et 

al., 1998; Rachev and Mittnik, 2000) show how 

exponential Lévy models can reduce, at least in part, 

this volatility behavior. 

Geman et al. (2001) provide a theoretical motivation 

to the use of Lévy processes in financial applica-

tions. They define an economic model where price 

processes result to be differences of two increasing 

stochastic processes, representing, respectively, the 

up and down movements of the market. Then, the 

resulting price processes are of finite variation and 

with jumps. Thus, pure jump Lévy processes, such 

as the variance gamma (VG) and CGMY processes 

can be used as distributional assumptions in this 

economic modeling. Moreover, since Lévy processes 

                                                     
© Sergio Ortobelli Lozza, Alessandro Staino, 2011. 

are semimartingale, their use can be justified by the 

studies on no-arbitrage assumption (see Harrison 

and Kreps, 1979; Harrison and Pliska, 1981; and 

Delbaen and Schachermayer 1994). Unfortunately, 

Lévy processes except the Brownian motion and the 

Poisson process do not satisfy the so-called predict-

able representation property of a martingale and 

thus there exist infinitely many equivalent martin-

gale measures. The choice of the right equivalent 

martingale measure is still a delicate problem. Gen-

erally, it is the market to choose for us, that is, given 

a set of current option prices, one should select the 

equivalent martingale measure that approximates 

better this set of data.

Option pricing under exponential Lévy models can 
be performed in several ways and each method can 
be more suitable according to the chosen Lévy proc-
ess and contingent claim to be priced. When the 
option is European and we know the Lévy subordi-
nator process of the time-changed Brownian repre-
sentation, then Monte Carlo method can be very fast 
and accurate. For example, Ribeiro and Webber 
(2003; 2004) developed simulation schemes for the 
Normal Inverse Gaussian (NIG) and VG processes 
on the base of inverse Gaussian and gamma bridges, 
respectively. Instead, more general Lévy processes 
can be simulated through a compound Poisson ap-
proximation (see Asmussen and Rosi sky, 2001). 
When the option is American, Monte Carlo method 
is not so straightforward and an adjustment to opti-
mal stopping problems has to be carried out. Thus, 
the least squares Monte Carlo method (see Long-
staff and Schwartz, 2001; and Carrière, 1998) can be 
used to approximate conditional expectations. Va-
nilla options can be easily priced by Fast Fourier 
Transform methods, which only need the knowledge 
of the characteristic function of the risk-neutral 
stock price process. Since Fast Fourier Transform 
methods return option price surfaces within a sec-
ond, they make computationally efficient the cali-
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bration of exponential Lévy models to the market 
prices. Barrier and lookback options can be treated 
by Wiener-Hopf approaches, but this methods are 
generally time consuming and quite complex (see 
Boyarchenko and Levendorskii, 2002; and Yor and 
Nguyen, 2001). Moreover, Wiener-Hopf factors 
depend on the density function of the Lévy process, 
which is usually unknown. The partial-integro dif-
ferential equation (PIDE) approach can be applied 
to price vanilla and European barrier options. This 
PIDE is derived by the Feynman-Kac formula for 
Lévy processes (see Nualart and Schoutens, 2001; 
and Raible, 2000). Numerical solutions are thus com-
puted applying finite difference schemes for PIDE 
with boundary conditions (see Cont and Voltchkova, 
2005; and Hirsa and Madan, 2003). Even American 
options can be priced by PIDE approach, but, in this 
case, we have to solve a system of partial-integro dif-
ferential inequalities. Numerical solution can be ob-
tained by the analytic method of lines or Garlekin 
methods (see Meyer and Van Der Hoek, 1997; and 
Matache et al., 2003). The above list of numerical 
methods does not represent at all a complete review of 
all existing methodologies. It only constitutes a partial 
revision of some popular techniques. For example, 
recently, there has been a considerable development of 
quadrature methods, starting from the Sullivan’s 
studies (see Sullivan, 2000; Andricopoulos et al., 
2003; O’Sullivan, 2005; and Lord et al., 2008). 

The main contributions of this paper are: (1) the 

extension of the Duan et al.’s approach (see Duan 

and Simonato, 2001; and Duan et al., 2003) to price 

exotic contingent claims when the underlying fol-

lows an exponential Lévy process; (2) a new meth-

odology to price lookback type options; (3) an em-

pirical analysis of the proposed methodology. 

Thus we first describe how to extend the Duan et 

al.’s lattice scheme (see Duan and Simonato, 2001; 

and Duan et al., 2003) to price contingent claims 

when the log return follows a Lévy process. The 

possibility to use lattice schemes dates back to the 

Amin’s work (Amin, 1993), where the author ap-

plies a lattice scheme to price Bermudan options 

under jump-diffusion processes. Kellezi and Webber 

(2004) described four methods to construct lattices 

that approximate a general Lévy process. The first 

construction is obtained from the density function of 

the Lévy processes, whereas the other three ones are 

obtained, respectively, from the generating triplet, 

from a subordinated Brownian representation, and 

from a time copula. In their paper, Kellezi and 

Webber use the density function construction to 

price vanilla and Bermudan options under NIG, VG 

processes. Differently from Kellezi and Webber 

(2004), we construct a sequence of Markov chains 

converging weakly to the underlying Lévy process 

on a finite set of dates. Then, the option pricing 

problem is reduced to that one of pricing contingent 

claims under Markov chains. The discretization 

process presents the same advantages of the bino-

mial model, since it permits us to price path depend-

ent contingent claims. With this method it is simple 

to obtain prices of Bermudan options, whereas 

American prices can be computed as limits of Ber-

mudan prices, doing the sets of dates more and more 

dense. In particular, we examine the Markovian 

approach to price compound, barrier, and lookback 

options assuming exponential Lévy models for the 

underlying. Doing so, on the one hand, we extend 

Duan et al.’s approach when applied to price com-

pound and barrier options. On the other hand, we 

discuss a new approach for pricing fixed and float-

ing strike price lookback options. 

In the proposed empirical analysis we compare op-

tion pricing results under the assumption that the log 

return follows either a NIG process, or a VG process 

or a Meixner process or a standard Brownian mo-

tion. Then, we show the convergence of the com-

pound option prices in the case analyzed by Geske 

(1979) for the Brownian motion and we extend the 

same analysis to the other three Lévy processes. For 

compound and barrier options we just adapt the 

Markovian approach to Lévy processes. Alterna-

tively to classic methods (see Babbs, 2000; and 

Cheuk and Vorst, 1997) we propose a different ap-

proach to price fixed and floating strike price look-

back options in a Markov chain framework. More-

over, discretizing the continuous Markovian models 

we can approximate very well the right prices of 

floating strike lookback contracts, since in these 

contracts the maximum and/or the minimum of the 

underlying asset price are computed over some 

dates only, such as daily, weekly or monthly.  

The paper is organized as follows. Section 1 is a 

brief introduction to Lévy processes and their use in 

pricing problems. Section 2 discusses the Mark-

ovian approach and shows some convergence results 

for Bermudan, European options and their Greeks 

when the log return follows either a NIG process, or 

a VG process or a Meixner process. In Section 3 we 

deal with the compound, barrier and lookback op-

tions when we use the three different Lévy proc-

esses. Finally, we briefly summarize the results. 

1. Pricing with exponential Lévy processes 

In this Section we describe Lévy processes reporting 
their characterization by the Lévy triplet and we 
discuss the asset pricing with exponential Lévy 
processes. Let us assume in the market there are two 
assets: a riskless asset and a risky asset whose log 
return process follows a Lévy process. In particular, 
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we assume that the riskless asset has price process 

dssrexpB
t

t
0

, where the right continuous with 

left-hand limits time-dependent function )(tr  de-

fines the short term interest rate. While we assume 
the risky asset pays no dividends and presents price 

process )exp(0 tt XSS , where the log return 

process 0)( ttXX  (i.e., )/log( 0SSX tt ) is an 

adapted RCLL Lévy process defined on a filtered 

probability space P
tt ,,,

0
, that satisfies 

the usual conditions. 

Non-Gaussian Lévy processes generally take into ac-

count the skewness and the heavy tails often observed 

in the log return distribution. As a matter of fact, Lévy 

processes are all the stochastic processes with station-

ary, independent increments and stochastically con-

tinuous sample paths. Since they have infinitely divisi-

ble distributions, their characteristic function )(u  is 

uniquely determined by the triplet ],,[ 2
 that 

identifies the so-called Lévy-Khintchine characteristic 

exponent )(log)( uu  given by: 

),()11)(exp(
2

1
)( }1|{|

22 dxiuxiuxuuiu x

where R , 02
 and  is a measure on 

}0{\R  with .dxx )()1( 2
 In particular 

the Lévy triplet ],,[ 2
 identifies the three main 

components of any Lévy process: the deterministic 

component ( ), the Brownian component (
2

) and 

the pure jump component ( ). For further details on 

the theoretical aspects we refer to Sato (1999). Un-

der the assumption the log return process follows a 

Lévy process whose trajectories are neither almost 

surely increasing nor almost surely decreasing we 

can always guarantee that there exists at least one 

equivalent martingale measure. Since the market is 

generally incomplete, then more than one equivalent 

martingale measure could exist. Given the risk neu-

tral probability measure P
~

, we can use it to deter-

mine the free-arbitrage price of any contingent 

claims with maturity T. That is, given the contingent 

claims function R:H  ( T -measurable 

function), then its price at time t is: 

t

~T

t
t |dsrexp HE(s)(H) P

.        (1) 

There exist several techniques to determine a risk 
neutral martingale measure. However, the choice of 
the equivalent martingale measure is not subject of 
the present paper and we adopt the mean-correcting 
measure just to follow other financial studies (see, 
among others, Ribeiro and Webber, 2003, 2004; 
Shoutens, 2003). A two steps methodology com-
monly is used:  

1. To determine a class of equivalent martingale 
measures. 

2. To determine the risk neutral measure, among 
the equivalent martingale measures, that mini-
mizes a distance with respect to some historical 
contingent claim prices. 

Typically, in order to determine the optimal parame-
ters that better approximate the risk neutral distribu-
tion, we minimize the root mean squared prediction 
error (RMSE) with respect to the observed prices. 

Therefore, we consider N  historical contingent claim 

prices ),,1( Nicci
 and we determine the risk 

neutral Lévy process parameters  that minimize 

2

1

)(min=RMSE ii

N

i

Lpcc ,    (2) 

where )(iLp  is the price of the i-th contingent 

claim obtained using the relation (1) under the 
equivalent martingale Lévy density with the pa-

rameters .

Next, we consider three Lévy processes alternative 
to the Brownian motion that present skewness and 
semi heavy tails: the normal inverse Gaussian proc-
ess (NIG), the variance gamma process (VG) and 
the Meixner one.

1.1. Normal inverse Gaussian. Under the assump-

tion that the log return follows a NIG pro 

cess ),,,( qNIG , with parameters  > 0, 

)( , , 0 , Rq , we have that the char-

acteristic function of the process at time t is given by: 

iutqiutexptq,t,,;uNIG

2222 )()()( .

That is the density of the log return at time t is given by: 

22

22

122

)()(

))()((K
)()(

tqxt

tqxt
tqxtexp

t
tq,t,,;xfNIG ,

where )(K x  denotes the modified Bessel function of the third kind with index .
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1.2. Variance gamma. The variance gamma 
process can be also defined as the difference be-
tween two independent gamma processes. Under 
the assumption that the log return follows a VG 
process, VG( , v, , q) , with parameters  > 0, v > 0 

and q, R, the characteristic function of the process 

at time t is given by: 

iuqt
v

t

VG euiutqt
t

tu 22

2

1
1,,,;

That is the density of the log return at time t is given by: 

)2()(
1

K
)(2

2
)( 222

2

2

)(

2
1

4
1

2

22

2
2

)(

/qtx
/t

e
qt,t,t/,t;xf t

tqtx

/t

/

qtx

VG ,

where )(K
2
1 xt  is the modified Bessel function of 

the third kind with index 
2

1

v

t
.

1.3. Meixner. Under the assumption that the log re-

turn follows a Meixner process, ),,,Meixner( q ,

with parameters 0 , ),( , 0 ,

Rm  the characteristic function of the process at 

time t is given by: 

iuqt

t

e
/iucosh

/cos
qttu

2

Meixner
)2)((

)2(
),,,;( .

That is the density of the log return at time t is given by: 

Table 1. MLE of parameters and Kolmogorov-Smirnoff test of daily S&P500 log returns assuming a  

NIG process, or a VG process or a Meixner process. 

NIG  = 153.866  = 7.603  = 1.562 q = -0.00029 D = 0.0653

VG  = 0.0756  = 0.0984 v = 0.0024 q = 0.00055 D = 0.0667

Meixner  = 0.0146  = 0.1116  = 94.676 q = -0.00026 D = 0.0661

22

Meixner

)()(

)2(2

22
)(

qtxi
t

qtx
exp

t

/cos
qt,t,,;xf

t

.

In order to value the best approximation of these 
distributions, we consider quotations of the index 
S&P500 from January 2006 to March 2007. Then 
we compute the parameters maximizing the likeli-
hood function when the log returns follow either a 
NIG process, or a Meixner process or a VG process 
(see Table 1). Finally, we consider the Kolmogorov-
Smirnov test: 

|,)()(|sup xFxFD E
Rx

where EF  is the empirical cumulative distribution 

and F the assumed distribution. Considering that the 

Brownian motion hypothesis gives a value of the 

test D = 0.0766, then the other three distributional 

hypotheses present a better approximation. This 

empirical result is confirmed by the QQ-plot 

analysis of Figure 1. 

Figure 1 reports a QQ-plot among the sample and 

the Gaussian, NIG and VG distributions (we get 

similar results with the Meixner distribution). 

Thus we can see how the empirical and theoretical 

distributions are closer on the whole real line 

when we use the NIG or VG distributions to 

model the log returns.  

Fig. 1. QQ plot among the sample and the Gaussian, NIG and VG distributions

Here in the following we briefly recall the mean-
correcting equivalent martingale measure that we use  

in our following empirical analysis (see, among 
others, Cont and Tankov, 2003; Schoutens, 2003). 
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Mimicking the Black and Scholes model, the dis-

counted price process t
t

t SdssrS )(exp
~

0  be-

comes a martingale if we change the price process 

)exp(0 tt XSS  with ))(exp( 00 t

t

t XdssSS ,

where )(log)()( isrqs  and q is the 

translation parameter previously introduced for the 
three distributions. Therefore, we have to define a 

new equivalent probability measure P
~

 on ),(

under which the log returns follow the Lévy process 

})({ 0 t

t Xdss . In the three processes defined 

above, we have:

2222(NIG) )1()()( srs ,   (3) 

2(VG)

2

1
1

1
)()( logsrs ,           (4) 

./coslog

/coslogsrs

)))2)(((

))2(((2)()((Meixner)

          (5) 

2. A lattice method to price Bermudan and 
European options with Lévy processes 

In this Section, we opportunely adapt to Lévy proc-
esses the Markovian methodology proposed by 
Duan et al. (2003). Since Lévy processes are 
Markov processes we suggest to use an approximat-
ing Markov chain in order to price exotic options 
when the log return follows a Lévy process. This 
discretization process provides the same ductility of 
the binomial model and for this reason it is possible 
to price almost every path dependent contingent 
claim once we know the risk neutral distribution of 
the underlying Markov process. 

2.1. The Markovian approach. Assume the matur-

ity of the contingent claim is T. Our task is to ap-

proximate, under the risk neutral probability P
~

, the 

log price process 
TttS

0
)ln(  at times 

},,2,,0{ Ttstt  by a sequence of Markov 

chains Niim

m

tn snY ,12

)( },,2,1,0,
~

{  with state 

space },,,{ 21 mppp  and transition probability 

matrix Q(m) =[ ijq ] mji,1 , where m is an odd integer 

and )ln( 02/)1( Sp m . In order to fix the ideas, we 

adopt the mean correcting risk neutral valuation 

considering the riskless rate rtr )(  constant. 

Thus, we build a sequence of Markov chains 

Niim

m

tn snY ,12

)( },,2,1,0,
~

{  with state space 

},,,{ 21 mppp , converging weakly to the risk 

neutral Lévy process ,){ln( 0 tXtS t = 0, t,

2 t,…, T} (here 0)( ttXX  is the log return pro-

cess) as the state number m of the states tends to infi-

nite, where  is defined (for the three processes in-

troduced in the previous section) by equations (3), (4), 

(5). Therefore, given the current price 0S , we define 

an interval centered in )ln( 0S  such that the probabil-

ity that TST )ln(  belongs to the interval is almost 

equal to 1, i.e.:  

,1)]()(),()([)( 00 mISlnmISlnTSlnP T

where 2I(m) is the length of the interval 

)]()ln(),()[ln( 00 mISmIS . The quantity I(m)

depends on the number of the states of the Markov 
chain since to get the convergence we have to guar-

antee that )(mI  and 0/)( mmI  as the 

number of the states converges to infinity ( m )

(see, among others, Pringent, 2002). For example, 

when the Markov process 
TttSY

0
)ln(  admits 

finite mean (i.e., )ln( tSE ), we can use 

|),||,max(|)( /11/1 mm zzmI  where kz  is the k%

quantile of TST )ln( . Since )(mI  and 

0/)( mmI , we can guarantee the convergence 

of the Markov chain sequence. However, the speed 
of convergence is strictly linked to the choice of 

)(mI . Thus, we have to choose opportunely )(mI .

Duan et al. (2003) suggest to use I(m) = 

Tmlnln ))((2  for the Brownian motion. 

When we assume the mean correcting risk neutral 
valuation for the three processes introduced in the 
previous section, we observe an higher speed of 

convergence using ,
2

))log(log(
)(

m
zmI  where 

with log we mean logarithm with base 10, 

|),||,max(| 99.001.0 zzz 01.0z  and 99.0z  are respec-

tively the 1% and 99% quantiles of the 

TST )ln(  distribution. Thus in the following we 

will use this definition of I(m). The m states of the 
Markov chain are defined as: 

),(
1

12
)ln( 0 mI

m

mi
Spi

mi ,,1 . Note 

that )()ln( 01 mISp , )()ln( 0 mISpm  and 

).ln( 02/)1( Sp m

Remark. Fixed the ‘m’ values ip , we can always 

determine other ‘m’ values starting by any other 

state )(
1

12
mI

m

mk
pp i

i

k
. In particular, we 

get the transformation j

i

k pp  if and only if 

2

1mijk , that is:
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).(
1

1)(2
)ln()(

1

12 2
1

0 mI
m

mki
SmI

m

mk
pp

m

i

i

k       (6) 

The transition probability between the i-th state and 
the k-th state is given by: 

],()( 1

i

k

i

ktik cctSlnPq ,   (7) 

where
2

))log(log(
11

m
pc ii , 2/)( 1

i

k

i

k

i

k ppc ,

mk ,,2  and 
2

))log(log(
1

m
pc i

m

i

m
. Then 

we deduce the convergence of the sequence of 

Markov chains Niim

m

tn snY ,12

)( },,2,1,0,
~

{

with state space },,,{ 21 mppp , to the risk neutral 

Lévy process },,2,,0),ln({ TtttSt t  because 

0
2

))((

1

)(
112

m

mloglog

m

mI
cccc i

m

i

m

ii
,

as m  and 0
1

)(
21

m

mI
cc i

k

i

k
, as m ,

k = 2, m – 1.  

Since j

i

k pp  if and only if 
2

1mijk , then 

we have not to compute all the entries ijq  of the 

transition matrix Q(m). As a matter of fact, if we 

define 
2

1)( mijjk , mj ,,1 , then the 

entries of the transition matrix Q(m) are given by: 

if
2

1mi : ,

,,,
2

1
if0

2

1
,,2if,)(

,1if,)(

1)(

)(

1

2
11

1

m
m

ij

m
ijdxxf

jdxxf

q
t

i
i

jk

i
i

jk

t

i
i
k

i
i
k

m

X

tpc

tpc

X

tpc

tpc

i
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ij       (8) 
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,if,)(

1,,
2

1
if,)(

,
2

1
,,1if,0

1

2
1

1)(

)(

mjdxxf

m
m

ijdxxf

m
ij

q

t

i
i
k

i
i
km

t

i
i

jk

i
i
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X

tpc

tpc

m

imk

X

tpc

tpcij       (9) 

if
2

1mi : ,,,1,)(
1

mjdxxfq
t

i
i
j

i
i
j

X

tpc

tpc
ij                   (10) 

where )(
tXf  is the density function of the log re-

turn Lévy process. When m increases, the intervals 

],( 1

i

k

i

k cc  become so small that we can well ap-

proximate any integral with the area of only one 

rectangle, i.e.: 

).(
2

)( 1
11

kk
kk

XX

tpc

tpc
cc

cc
fdxxf

tt

i
i
k

i
i
k

(11)

2.2. Pricing of European contingent claims. When

the maturity of an European contingent claim is T

and we consider s steps (i.e., Tts ), then the 

price of the contingent claims is given by the 

2/)1(m -th component of the price vector: 

,)0,( )( ZQpV
s

m                 (12) 

where Z  is the m-dimensional vector of payoff at 
the maturity correspondent to the vector of log 

prices mpppp ,,, 21 . So we can assume that 

the payoff vector is given by ],...,[ ,1, mww ggZ

where }0],)[exp(max{, Kpwg iiw , w is equal 

to 1 for a call and -1 for a put. Analogously, to the 
example reported by Duan and Simonato (2001) 
with the Black and Scholes model, in Table 2 we 
show the convergence of this methodology under the 
three different distributional assumptions. In this Table 
and in all the following ones we use the mean correct-
ing risk neutral measure applied to the parameters 
estimated in Table 1. This choice is a simplification to 
the classic methodology that determines the risk neu-
tral measure obtained from the market (as suggested 
by equations (1) and (2)). Moreover, this choice 
satisfies the main objectives of our empirical analy-
sis consisting in showing the applicability of the pro-
posed methodology and the convergence to a unique 
price. Clearly these objectives should be obtained with 
any assigned parameters. Finally, the chosen parame-
ters refer to the same underlying stock process and 
thus the obtained option prices should be similar even 
for different distributional hypothesis. 
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Table 2. European put option prices under NIG, VG, 
and Meixner process 

NIG process VG process Meixner process 
States 

Weekly Daily Weekly Daily Weekly Daily 

m = 101 1.7428 1.7984 1.6795 1.7489 1.7343 1.8022 

m = 501 1.7442 1.7442 1.6809 1.6852 1.7357 1.7357 

m = 1001 1.7442 1.7442 1.6810 1.6840 1.7358 1.7358 

m = 1501 1.7442 1.7442 1.6810 1.6810 1.7358 1.7358 

m = 2001 1.7442 1.7442 1.6810 1.6810 1.7358 1.7358 

m = 2501 1.7442 1.7442 1.6810 1.6810 1.7358 1.7358 

m = 3001 1.7442 1.7442 1.6810 1.6810 1.7358 1.7358 

Table 2 reports European put option prices at the 
money under NIG, VG, and Meixner processes on a 
stock price with current value S0 = 100 euro, matur-
ity T = 0.5 years, short interest rate r = 5% a.r. 
Moreover, we consider that the temporal horizon is 
shared either in 24 periods or in 126 periods (i.e., 

t  is equal respectively either to one week or to 

one day). In both cases we observe the convergence 
of the option prices when the number of the states m
increases. The convergence price is the same we 
obtain approximating the integral that defines the 
risk neutral put option price:  

dxxferTS
TX

x )()1()exp( ~
0

0 .

2.3. Pricing and hedging of Bermudan contin-

gent claims. Let us consider an Bermudan option 
with maturity T and strike price K. We assume 
that the contract may be exercised at times 

},,2,,0{ tstt , where tsT  and the prede-

termined exercise dates are given every t . If t  is 

very small the Bermudan option price approximates 
the American one. For several contingent claims it 
is sufficient to consider daily exercise dates to get 
a good approximation of American type options if 
the log returns are Gaussian distributed. However, 
when we use non-Gaussian Lévy processes the 
convergence to the American type price is slow 
(see, among others, Ribeiro and Webber, 2003; 
2004). For this reason in the following we will 
always refer to Bermudan type options (with daily 
exercise dates). By fixing the number of states m,

we build the vector of the state values 

mpppp ,,, 21  of an approximating Markov 

chain Niim

m

tn snY ,12

)( },,2,1,0,
~

{ , with risk 

neutral transition matrix Q(m). Since the states remain 
the same for all the time steps, then at each time 

},,2,,0{ tstt  there is an unique payoff vector:  

],...,[),( ,1, mwww ggKpg ,               (13) 

where }0],)[exp(max{, Kpwg iiw , w is equal 

to 1 for a call and -1 for a put. For every couple of 

vectors ],...,[ 1 maaa , ],...,[ 1 mbbb  we assume 

the vectorial notation:

]),max(),...,,max(),,[max(:],max[ 2211 mm babababa .

Therefore, the price of the Bermudan option can be 

computed using the recursive vectorial formula: 

.Ttstitsi

tpVQeKpgmaxtpV

KpgTpV

i

iwm

tr

wiw

ww

,,1,...,0

,),(),,(),(

),,(),(

1)(
 (14) 

The option price at time 0 is given by the 

2/)1(m -th element of )0,( pVw . When we 

price a contingent claim with the Markovian ap-

proach we get the vector )0,( pVw  whose elements 

are option prices corresponding to discrete values of 

the stock price. Thus, we can compute the Greeks in 

a way very similar to the finite-difference approach 

using the option prices adjacent to the 2/)1(m -th

element of )0,( pVw . However, as suggested by 

Duan et al., in order to obtain higher quality Greeks 

it is advisable to have adjacent prices very close to 

the initial stock price. This approximation problem 

can be easily solved considering the states 
2

1mp ,

and
2

1mp  in the Markov chain with  oppor-

tunely small. In this way we can use the following 

approximation of delta and gamma values: 

,
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Table 3. Delta, gamma and Bermudan put option prices with daily exercise dates under the assumption  

the log returns follow NIG, VG, Meixner processes and their Monte Carlo valuation 

NIG process VG process Meixner process 

K = 98 K = 102 K = 98 K = 102 K = 98 K = 102 

m = 501 1.2419 3.0101 1.2067 2.9527 1.2349 3.0025 
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Table 3 (cont.). Delta, gamma and Bermudan put option prices with daily exercise dates under the assumption  

the log returns follow NIG, VG, Meixner processes and their Monte Carlo valuation 

NIG process VG process Meixner process 

K = 98 K = 102 K = 98 K = 102 K = 98 K = 102 

Delta -0.2919 -0.5686 -0.2914 -0.5739 -0.2914 -0.5692 

Gamma 0.0560 0.0816 0.0572 0.0829 0.0561 0.0820 

m = 1001 1.2419 3.0101 1.1882 2.9529 1.2349 3.0025 

Delta -0.2919 -0.5686 -0.2881 -0.5732 -0.2914 -0.5692 

Gamma 0.0560 0.0816 0.0571 0.0847 0.0561 0.0820 

m = 1501 1.2419 3.0101 1.1869 2.9509 1.2349 3.0025 

Delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692 

Gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820 

m = 2001 1.2419 3.0101 1.1868 2.9507 1.2349 3.0025 

Delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692 

Gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820 

m = 2501 
MC

1.2419 
1.2431 

3.0101 
3.0121 

1.1868 
1.1891 

2.9508 
2.9552 

1.2349 
1.2356 

3.0025 
3.0047 

Delta
MC delta 

-0.2919 
-0.2911 

-0.5686 
-0.5682 

-0.2879 
-0.2886 

-0.5732 
-0.5741 

0.2914 
-0.2911 

-0.5692 
-0.5688 

Gamma
MC gamma 

0.0560 
0.0559 

0.0816 
0.0814 

0.0571 
0.0574 

0.0848 
0.0852 

0.0561 
0.0560 

0.0820 
0.0818 

Consider Bermudan put options with predetermined 

daily exercise dates and exercise prices K = 98 

euro or K = 102 euro under the assumption the log 

returns follow either a NIG, or a VG, or a Meix-

ner process. Moreover let us consider the mean 

correcting risk neutral measure applied to the 

parameters estimated in Table 1 for puts on a 

stock price with current value S0 = 100 euro, ma-

turity T = 0.5 years (120 working days), short 

interest rate r = 5% a.r. 

In order to simulate Lévy processes recall that any 

semi-martingale 
0ttXX can be represented as 

time changed Brownian motion, i.e.:

,
tItt WItX                 (15)

where }{ tI  and }{ tW  are respectively: a positive 

intrinsic time process and, a standard Brownian 
motion. Lévy processes are particular semi-
martingales. In particular, the intrinsic time process 

}{ tI  is: an inverse Gaussian process when 

0ttXX  is NIG, a gamma process when X  is 

variance gamma and it is defined by a proper proc-

ess (see Madan and Yor, 2008) when X  is a Meix-
ner process. The equation (15) is generally used to 
simulate Lévy processes using the antithetic variates 
method as variance reduction technique. In the lit-
erature there exist several variance reduction tech-
niques (see, among others, Ribeiro and Webber, 
2003; 2004; Kawai, 2008), but in this paper we use 
only the antithetic variates method. Let us explain 
the procedure when the underlying asset follows 
one of the three Lévy processes. A sample path on 

time points },,1,0:{ nktk  can be generated as 

follows: 

generate n independent random numbers {Ik, k = 

= 1,…, n} from a the intrinsic time distribution;  

generate n independent random numbers {Zk, k = 

= 1,…, n} from a standard normal distribution;  

a sample path on time points {k t, k = 0,1,…, n}

is given by:  

.nkZI

ItXXX

kk

ktktk

,,1,

,0 )1(0

Now, we can use this sample path to calculate the 
final payoff of the derivative. Let us denote this 
value by f1. According to the antithetic variates 
method, we can compute a second value f2 of the 
final payoff by using the following sample path:  

,,0 )1(0 kkktktk ZIItXXX

.nk ,,1

Finally, an estimate of the final payoff is given by 

the mean:

2

21 ff
f̂ .

Say we have generated M final payoff f̂ , then the 

standard error is much smaller than that obtained 

with 2M standard simulations. 

In Table 3 we report the option prices and the values 

of delta and gamma obtained either with Monte 

Carlo (MC) simulations or with the Markovian ap-
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proximation when we assume 
610  Even in this 

case we observe the convergence of these values for 

a number of states m greater than 500.  

Observe that the prices and the Greeks obtained 

with Meixner and NIG processes are very similar 

and are always higher than the prices obtained with 

the VG process. These results confirm the analogous 

obtained for the European put prices of Table 2. 

Clearly these differences are essentially due by the 

different evolution of the processes and by the risk 

neutral measure used in this analysis. We compare 

the results using Monte Carlo simulations with vari-

ance reduction techniques and we need 5 millions 

simulations to get similar results to those given by 

the Markovian approach. The prices difference be-

tween the Markovian approach and those obtained 

by generating Monte Carlo simulations is generally 

of order 
310 .

3. Compound, barrier and lookback option 

prices with Lévy processes 

In this Section we propose to value exotic option 

prices assuming that a sequence of Markov 

chains Niim

m

tn snY ,12

)( },,2,1,0,
~

{  describes the 

risk neutral behavior of )ln( tS  at times {0, t, 2 t,

…, s t = T}. We compute compound, barrier, and 

lookback option prices under the three distributional 

assumptions. In particular, the methodology pro-

posed is innovative for compound, and lookback 

options that have not been dealt by Duan and Si-

monato (2001) and Duan et al. (2003). 

3.1. Compound options. Compound options are 

options written on options and can be of four types: 

a call on call, a put on call, a call on put, and a put 

on put. Consider a call on call. At the first maturity 

1T  the compound option holder has the right to pay 

the first exercise price 1K  and get a call. Then, the 

call gives to the compound option holder the right to 

buy the underlying asset at the second maturity 2T

paying the second exercise price 2K . The Mark-

ovian approach allows to price easily compound 

options. Using the recursive system to price an op-

tion with maturity 12 TT  and exercise price 2K ,

we find a vector which represents the possible prices 

at time 1T  of the European option on which the first 

option is written. Denote this vector as: 

]
~

,...,
~

[),(
~

,1,1 111 mwww VVTpV ,               (16) 

where w1 is equal to 1 for a call and -1 for a put. The 

payoff at time 1T  of the compound option is given 

by the vector 

},0],1),(
~

[{max),( 1121 12
KTpVwTpV ww  (17) 

where 1 and 0  are respectively vectors of ones and 

zeros, w2 is equal to 1 for a call and -1 for a put. 

Thus, using again the recursive system with s steps 

(i.e., 1Tts ), the price at time 0 of an European 

option on an European option is given by the 

2/)1(m -th element of the vector 

),()0,( 1)( 2

1

2
TpVQepV w

s

m

rT

w .

Table 4 and Figure 2 exhibit the prices of compound 
options obtained under Brownian motion, NIG, VG, 
and Meixner processes (considering different num-
ber of states m). Figure 2 shows that the biggest 
differences are between the prices obtained either 
with the VG process or with the Brownian motion. 
Generally the prices obtained with the VG process are 
lower than those obtained with the Brownian motion 
as also observed in the previous Tables 2 and 3.

Fig. 2. Compound option prices under Brownian motion, NIG, VG, and Meixner processes when K2 is respectively 102 (a), 

100 (b), 98 (c) and K1 = 2. 
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Table 4 describes the evolution of the estimates 

prices when we use different number of states m.

In particular, we compare the results we get under 

the Brownian motion and those given by Geske’s 

closed formula (see Geske, 1979). These prices con-

cern European calls on European calls, where the 

current asset price is S = 100, the first call has strike 

price K1 and maturity T1 = 0.25 years, and the second 

call has strike price K2 and maturity T2 = 0.25 years. 

We consider two possible strike prices K1 (K1 =  

= 1.5, 2) and three possible strike prices 2K ( 2K =

= 98, 100, 102). Moreover, the short interest rate is  

r = 5%, the annual volatility of the Brownian motion 

is  = 10.14%, and the parameters of the NIG, 

Meixner and VG processes are (for simplicity) those 

ones of Table 1. 

Table 4. Compound option prices under Brownian motion, NIG, VG, and Meixner processes.  

Brownian motion Brownian motion 
K1 = 2 

K2 = 98 K2 = 100 K2 =102
K1 =1.5

K2 = 98 K2 = 100 K2 =102

m = 101 3.7530 2.5803 1.6764 m = 101 4.1629 2.9332 1.9609 

m = 501 3.7540 2.5851 1.6747 m = 501 4.1637 2.9381 1.9598 

m = 1001 3.7542 2.5851 1.6747 m = 1001 4.1637 2.9385 1.9598 

m = 1501 3.7542 2.5852 1.6746 m = 1501 4.1637 2.9386 1.9598 

m = 2001 3.7542 2.5852 1.6747 m = 2001 4.1637 2.9386 1.9597 

Geske 3.7542 2.5852 1.6747 Geske 4.1637 2.9386 1.9597 

NIG process NIG process 
K1 = 2 

K2 = 98 K2 = 100 K2 =102
K1 =1.5

K2 = 98 K2 = 100 K2 =102

m = 101 3.7380 2.5584 1.6607 m = 101 4.1479 2.9127 1.9438 

m = 501 3.7360 2.5655 1.6577 m = 501 4.1459 2.9189 1.9415 

m = 1001 3.7359 2.5660 1.6574 m = 1001 4.1459 2.9190 1.9413 

m = 1501 3.7359 2.5660 1.6275 m = 1501 4.1459 2.9191 1.9414 

m = 2001 3.7359 2.5660 1.6575 m = 2001 4.1458 2.9191 1.9414 

Meixner process Meixner process 
K1 = 2 

K2 = 98 K2 = 100 K2 =102
K1 =1.5

K2 = 98 K2 = 100 K2 =102

m = 101 3.7304 2.5519 1.6552 m = 101 4.1394 2.9065 1.9365 

m = 501 3.7289 2.5578 1.6494 m = 501 4.1389 2.9107 1.9330 

m = 1001 3.7288 2.5578 1.6496 m = 1001 4.1388 2.9108 1.9329 

m = 1501 3.7287 2.5580 1.6495 m = 1501 4.1388 2.9110 1.9329 

m = 2001 3.7287 2.5580 1.6495 m = 2001 4.1387 2.9110 1.9330 

VG process VG process 
K1 = 2 

K2 = 98 K2 = 100 K2 =102
K1 =1.5

K2 = 98 K2 = 100 K2 =102

m = 101 3.6634 2.4874 1.5795 m = 101 4.0738 2.8397 1.8610 

m = 501 3.6800 2.5043 1.5965 m = 501 4.0904 2.8564 1.8776 

m = 1001 3.6805 2.5048 1.5971 m = 1001 4.0909 2.8570 1.8781 

m = 1501 3.6806 2.5049 1.5971 m = 1501 4.0910 2.8571 1.8782 

m = 2001 3.6807 2.5050 1.5972 m = 2001 4.0911 2.8571 1.8783 

Notes: We conseder European calls on Europeans calls, where the current asset price is S = 100, the first call has strike price K1 and 

maturity T1 = 0.25 year, and the second call has strike price K2 and maturity T2 = 0.25 years. 

3.2. Barrier options. Barrier options may be of 
two types, knock-out and knock-in. We proceed 
explaining how to use the Markovian approach to 
price knock-out options and we refer to Duan et al. 
(2003) for knock-in options. An option is said 
knock-out when it becomes worthless if the underly-
ing asset touches or crosses a constant barrier H at 
any monitoring time. The barrier can be lower or 

upper (i.e., H or H ). A barrier option is double when 

there are two barriers and the underlying asset must 

remain between these two barriers at the monitoring 

days. Following Duan et al. (2003), we introduce an 

auxiliary variable ta  which takes the value 1 if the 

barrier condition is triggered before or at time t, and 

the value 0 otherwise. If we denote with 

);,( ti atpv  the option price at time t, for a knock-

out option we have: 

for every time ,0)1;,(
ktkiw atpv

if Ttsts , },0],)([{)0;,( KpexpwmaxaTpv iTiw

if tktk , k = 0, s – 1,  
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)0;,(0,|0,
~

,0,,max)0;,(
111 11

kkkkkkk tkjtittjt
m
j

tr

tiwtkiw atpvapXapXPeaKpgatpv ,

where w is equal to 1 for a call and -1 for a put, and 

Europan.if0
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aKpg i

tiw k

To compute the transition probability, we define the set of the states for which the option is knocked out and be-

comes worthless: 

option.double})(or)(:},,1{{

option,out-and-up})(:},,1{{

option,out-and-down})(:},,1{{

HpexpHpexpmi

Hpexpmi

Hpexpmi

ii

i

i

When the states ip  and jp  do not belong to ,

the conditional probabilities are the same of the 

matrix Q(m) = [
ijq ] as described in the previous 

section, otherwise they are equal to zero. There-

fore, the probabi-lity to transit from state ip  to 

state jp  are given by: 

otherwise,0

,andif

}0,0{ 11

cc

ij

tittjtij

jiq

apX|a,pXP
~

where 
c

 is the complement of . Therefore the 
matrixes that define the conditional probabilities 
(that we call quasi-transition probabilities matrices) 
for the down-and-out, up-and-out, and double bar-
rier-out options are respectively given by: 

,
),;,(0

00

1,1

1,11,1

mkmkQkkm

kmkkk

DO

,
00

0),1;,1(

,,

,

lmlmllm
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lmklkkl
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DBO lklkQ
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,11,1

,11,11,1

000

0),;,(0

000

.

where k is the index number of the log price located 

immediately above the lower barrier H, l is the index 

number of the price located immediately below the 

upper barrier H*, 0i, j is an i × j matrix of zeros, and 

Q(i,j; k,l) is the sub-matrix of Q(m) taken from rows i to 

j and from columns k to l inclusively. Thus the knock-

out option price with maturity T and strike price K can 

be computed using the recursive vectorial formula: 

)0;,(),...,0;,(

)0;,(

1 TmwTw

Tw

aTpvaTpv

aTpV
 (18) 

and for tktk , k = 0, s – 1,  

0;,,0,,max0,,,...,0,,0,,
111 kkkkk tkw

tr

twtkmwtkwtkw atpVeaKpgatpvatpvatpV ,  (19) 

where ])0,,(),...,0,,([)0,,( 1 kkk tmwtwtw aKpgaKpgaKpg ,

and  is either DO , or UO , or DBO , depend-

ing on the nature of the knock-out option. The 

knock-out option price at time 0 is given by the 

2/)1(m -th element of )0;0,( 0apVw . Barrier 

option prices are very sensitive to the position 
between discrete asset prices and barrier value. 
Thus, to reduce this effect it is important to define 
the cells of the Markovian approach so that the 
barrier value correspond exactly to a cell’s border. 

Table 5. European barrier option prices under NIG, VIG, and Meixner processes. The current asset price,

the short interest rate and the maturity are respectively S = 100, r = 5% and T = 0.5 

 European down-out call options under 
NIG process 

European down-out call options under  
VG process 

European down-out call options under  
Meixer process 

Strike price Weekly Daily Weekly Daily Weekly Daily 

K = 100 H = 94 H = 98 H = 94 H = 98 H = 94 H = 98 H = 94 H = 98 H = 94 H = 98 H = 94 H = 98 

m = 501 4.1358 3.1026 4.1059 2.8162 4.0826 3.0813 4.0536 2.7955 4.1288 3.0986 4.0993 2.8123 

m = 1001 4.1359 3.1033 4.1059 2.8183 4.0825 3.0820 4.0625 2.8071 4.1288 3.0993 4.0993 2.8145 

m = 1501 4.1359 3.1031 4.1058 2.8177 4.0825 3.0812 4.0553 2.7991 4.1288 3.0991 4.0991 2.8139 

m = 2001 4.1359 3.1029 4.1059 2.8171 4.0825 3.0815 4.0544 2.7996 4.1288 3.0989 4.0990 2.8132 

m = 2501 4.1359 3.1028 4.1059 2.8168 4.0825 3.0813 4.0546 2.7991 4.1288 3.0988 4.0991 2.8129 
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Table 5 (cont.). European barrier option prices under NIG, VIG, and Meixner processes. The current asset price,  

the short interest rate and the maturity are respectively S = 100, r = 5% and T = 0.5 

 European up-out call options under  
NIG process 

European up-out call options under  
VG process 

European up-out call options under  
Meixner process 

Strike price Weekly Daily Weekly Daily Weekly Daily 

K = 100 H = 102 H = 106 H = 102 H = 106 H = 102 H = 106 H = 102 H = 106 H = 102 H = 106 H = 102 H = 106 

m = 501 1.1594 4.1648 0.9289 3.8133 1.1844 4.2817 0.9680 4.0230 1.1610 4.1780 0.9301 3.8265 

m = 1001 1.1563 4.1616 0.9203 3.8025 1.1847 4.2820 0.9439 3.9200 1.1579 4.1730 0.9210 3.8096 

m = 1501 1.1568 4.1607 0.9217 3.7997 1.1847 4.2818 0.9420 3.9126 1.1579 4.1735 0.9210 3.8115 

m = 2001 1.1565 4.1607 0.9206 3.7996 1.1849 4.2820 0.9425 3.9123 1.1580 4.1730 0.9214 3.8099 

m = 2501 1.1564 4.1604 0.9204 3.7995 1.1847 4.2818 0.9420 3.9119 1.1579 4.1732 0.9211 3.8103 

Table 6. Bermudan down-out and up-out put option prices, where both early exercise and monitoring are  
on daily basis under NIG, VG, and Meixner processes.  

 Bermudan down-out put with daily monitoring Bermudan down-out put with daily monitoring Bermudan down-out put with daily monitoring 

Strike price NIG  VG  Meixner 

K = 101 H = 96 H = 99 H = 96 H = 99 H = 96 H = 99 

m = 501 2.2453 1.1477 2.2568 1.1579 2.2496 1.1452 

m = 1001 2.2453 1.1462 2.2394 1.1540 2.2496 1.1438 

m = 1501 2.2454 1.1459 2.2382 1.1535 2.2497 1.1436 

m = 2001 2.2454 1.1458 2.2380 1.1534 2.2497 1.1434 

m = 2501 2.2454 1.1455 2.2380 1.1533 2.2498 1.1432 

 Bermudan up-out put with daily monitoring Bermudan up-out put with daily monitoring Bermudan up-out put with daily monitoring 

Strike price NIG VG  Meixner 

K = 101 H = 101 H = 104 H = 101 H = 104 H = 101 H = 104 

m = 501 1.1425 2.0802 1.1174 2.0635 1.1302 2.0747 

m = 1001 1.1334 2.0800 1.1165 2.0417 1.1308 2.0744 

m = 1501 1.1335 2.0793 1.1164 2.0407 1.1309 2.0736 

m = 2001 1.1341 2.0793 1.1164 2.0405 1.1316 2.0736 

m = 2501 1.1337 2.0795 1.1165 2.0404 1.1312 2.0737 

Notes: The current asset price, the short interest rate and the maturity are respectively S = 100, r = 5% and T = 0.5. 

Table 5 exhibits European barrier option prices. We 
consider two possible strike prices K = 100 and  
K = 90 for different fixed barriers and different dis-
tributional assumptions (NIG, VG, and Meixner). 
Even for this Table we assume that the temporal 
horizon is shared either in 24 periods or in 126 peri-

ods (i.e., t  is equal respectively either to one week 

or to one day). These prices refer to European 
down-out and up-out call options on a stock price 
with current value S0 = 100 euro, maturity T = 0.5 
years, short interest rate r = 5% a.r. We also com-
pare some of these results for European barrier 
options with those obtained with Monte Carlo 
simulations with variance reduction techniques. In 
this case we need more than 10 millions simula-
tions to get the same results we get with the 
Markovian approach. In particular, the Monte Carlo 
approximation appears more time consuming for 
the VG process. Similarly, Table 6 displays Ber-
mudan barrier option prices with daily exercise 
dates on a stock with the same current asset price, 
short interest rate and maturity. In this case, we 
consider Bermudan down-out and up-out put op-
tion prices assuming a strike price K = 101 and 
that the early exercise and the monitoring are on 
daily basis. As for Bermudan and European vanilla 

options Tables 5 and 6 show a good tendency to-
wards a specific price when we increase the num-
ber of states of the Markov chain. 

3.3. Lookback options. Lookback options belong 

to the class of path-dependent options and can be 

of two types, fixed and floating strike price. In the 

case of European fixed strike lookback option, the 

strike price is fixed at purchase but the option is 

not exercised at the market price. For a call, the 

option holder can look back over the life of the 

option and choose the highest price of the under-

lying asset, whereas, for a put, the option holder 

can choose the lowest price. Thus, the fixed look-

back option is exercised at the selected market 

price against the fixed strike. If American, the 

right of the option holder is extended to the whole 

time to maturity. In the case of European floating 

strike lookback option, the strike price is fixed at 

maturity. For a call, the strike price is fixed at the 

lowest price reached by the underlying asset during 

the life of the option, whereas, for a put, it is fixed at 

the highest price. At maturity the floating lookback 

option is exercised at the market price against the 

floating strike. If American the lookback option can 

be exercised at any time during its life. 
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In this Section we explain how to price and hedge 

such types of contracts by the lattice built in the 

previous section. Given the time interval ],0[ T ,

where T  is the temporal horizon, we remember 

that ],0[ T  is discretized by the set of times 

},,2,,0{ Ttstt  and that the log-price 

process },,2,1,0),{ln( snS tn  is approximated, 

under the mean-correcting martingale measure P
~

,

by a Markov chain },,2,1,0,{ snY tn  with state 

space },,,{ 21 mppp  and transition probability 

matrix mjijiqQ ,1, ][ .

Consider an European floating strike lookback put, 

then the payoff at maturity T is given by: 

,TT SM

where .,...,2,1,0:max snSM tnT  The evolution 

of the price process },,2,1,0:{ snS tn  is ap-

proximated under P
~

 by the Markov chain nŶ tn :

},,2,1,0 s  with state space :)exp({ ii pŷ

},,1 mi and transition probability matrix 

mjijiqQ ,1, ][ . We define the function ),,( whZ p

n

mwh ,,1, , and sn ,,2,1,0 , as the value at 

time tn  of the contingent claim with final payoff 

TT SM , when the current asset price is equal to 

wŷ  and the maximum asset price up to time 

tn )1(  has been hŷ . Therefore, at time Tts

we consider the final payoff matrix: 

,

0)2,()1,(

00)1,2(

000

mZmZ

Z

p

s

p

s

p

s

where, by definition, )0,max(),( wh

p

n ŷŷwhZ .

According to the risk-neutral pricing, at time 

ts )1(  we have: 

,if,),(),(
1

1 whejhZqwhZ trp

swj

m

j

p

s    (20) 

.if,),(),(
1

1 whejwZqwhZ trp

swj

m

j

p

s      (21) 

Equations (20) and (21) have a quite immediate 

explanation: wjq  is just the probability to move 

from the state wŷ  to the state jŷ ; on the right-hand 

of (20) we have ),( jhZ p

s  because wh ŷŷ  and 

thus the maximum at time ts )1(  is hŷ , whereas 

on the right-hand of (21) we have ),( jwZ p

s  be-

cause wh ŷŷ  and the maximum is wŷ ;
tre  is 

just the discount factor. Iterating the procedure, at 

time tn  we obtain:

.)),,(max(),( 1

1

trp

nwj

m

j

p

n ejwhZqwhZ        (22) 

After s  backward steps we have a matrix whose 

element ),(0 whZ p
 is the value at time 0  of the 

contingent claim with payoff TT SM , when the 

current asset price is wŷ  and the maximum before 

time 0  has been hŷ . Therefore, the price of the 

contingent claim is given by any value ),(
2

1
0

mp hZ

with
2

1mh . Bermudan (American) style options 

can be priced by:  

wh

trp

nwj

m

j

p

n ŷŷejwhZqwhZ ,)),,(max(max),( 1

1

for 1,,1,0 sn ,

and then taking the element 
2

1
0 , mp hZ  with 

2

1mh .

Example. Let us describe better the method show-
ing a simple numerical example. Assume that we 
have only three times, t = 0, 1, 2, that is, the ma-
turity of the European lookback put is T = 2 and 

t = 1. Then, the current asset price is S0 = 100 
and its evolution is described by the Markov chain 

}2,1,0:{ nŶn  with state vector and transition 

matrix given respectively by:  

103

102

100

98

97

ŷ ; .

5/210/35/110/10

5/15/25/120/320/1

10/15/15/25/110/1

20/120/35/15/25/1

010/15/110/35/2

Q

The function ),(2 whZ p
 is given by: 

,

01356

00245

00023

00001

00000

),(2 whZ p
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where 0,max),(2 wh

p ŷŷwhZ , 5,,1, wh , hŷ

and wŷ  are the h-th and w-th element of the state 

vector ŷ . Now, assuming that the short interest rate 

is %5r  and using equation (22), we obtain: 

3317.19500.18537.27574.33757.4

3317.11890.19976.18537.24244.3

3317.11890.16659.03317.17122.1

3317.11890.16659.01902.03805.0

3317.11890.16659.01902.00

),(1 whZ p ,

and

9635128252714521466346553

9635165591981613503261052

9635165591022519121127131

9635165591022515044043880

9635165591022515044029410

),(0

.....

.....

.....

.....

.....

whZ p .

Then, in this simple example, we have that the 

price of the lookbacuik put is given by 

),(
2

1
0

mp hZ 1.0255 for 
2

1mh  (i.e., 
pZ0 (1,3) = 

=
pZ0 (2,3) = 

pZ0 (3,3) = 1,0255). In this example we 

have done a little abuse of notation, that is, we have 

used ),( whZ p

n  to denote whether the same function 

),( whZ p

n  or the matrix of the values of ),( whZ p

n .

As the finite-difference approach, where the final 

output is a vector of option prices corresponding to 

discrete values of the asset price, with the lattice 

scheme above we also obtain a vector of option prices

corresponding to asset prices. This vector is exactly 

given by the principal diagonal of the matrix 

),(0 whZ p
 (we are continuing with our abuse of 

notation). Then, the Greek letters delta and gamma 

can be computed from the option prices adjacent to 

),(
2

1

2

1
0

mmpZ  along the principal diagonal. Indeed, 

remembering that the price partition is constructed 

on the logarithmic asset price, the following equa-

tions can be used to approximate the delta and 

gamma (see Duan et al., 2003):

,
1

2

),(),(

0

2
1

2
1

02
3

2
3

0

S

ZZ mmpmmp

(23)

2

0

2
1

2
1

02
3

2
3

0

2

2
1

2
1

02
1

2
1

02
3

2
3

0 1

2

),(),(),(2),(),(

S

ZZZZZ mmpmmpmmpmmpmmp

,              (24) 

where
2/)1(2/)3(2/)1(2/)1( mmmm pppp

.
1

2

m

I

In the case of European floating strike lookback 
call, we have at maturity T the payoff ST MT,

where .snSM tnT ,,1,0:min

Then, we define the function ),,( whZ c

n h,w=1,…, m,

and n = 0,1,…, s, as the value at time tn  of the 

contingent claim with final payoff ,TT MS  when 

the current asset price is equal to wŷ  and the mini-

mum asset price up to time tn )1(  has been hŷ .

In this case our final payoff matrix becomes:  

,

000

),2(00

),1()2,1(0

mZ

mZZ
c

s

c

s

c

s

where 0,max),( hw

c

s ŷŷwhZ , and, with an 

argument similar to one for floating lookback put 

options, at time tn  we have: 

.)),,(min(),( 1

1

trc

nwj

m

j

c

n ejwhZqwhZ

After s backward steps we obtain a matrix whose ele- 

ment ),(0 whZ c
 represents the value at time 0  of the 

contingent claim with final payoff ,TT MS  when the 

current asset price is wŷ  and the minimum before time 0 

has been hŷ . Then, the price of the contingent claim is 

given by ),(
2

1
0

mc hZ  with 
2

1mh . Bermudan floating 

lookback call options can be priced by the equation: 

,,)),,(min(max),( 1

1

hw

trc

nwj

m

j

c

n ŷŷejwhZqwhZ

for 1,,1,0 sn , and then taking the element 

2

1
0 , mc hZ  with 

2

1mh .

Let us now study the pricing and hedging of fixed 
strike lookback options. We begin with the case of 
fixed strike lookback put options which have at matur-

ity T  the payoff TMK , where tM

snS tn ,...,1,0:min  and K is the fixed strike 

price. Then, we define the function ),,( whW p

n

mwh ,,1, , and sn ,,1,0 , as the value at 

time tn  of the contingent claim with final payoff 

TMK , when the current asset price is wŷ  and the 

minimum asset price up to tn )1(  has been hŷ .
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The final payoff matrix is:  

,

),()2,()1,(

),2()2,2()1,2(

),1()2,1()1,1(

mmWmWmW

mWWW

mWWW

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

where, by definition, 

0,max),( ,whmin

p

s ŷKwhW .

In order to compute at time tn , 1,,1,0 sn ,

the vales of the function ),( whW p

n  we can use the 

recursive equation: 

.)),,(min(),( 1

1

trp

nwj

m

j

p

n ejwhWqwhW

Finally, after s  backward steps, we obtain a matrix 

whose element ),(0 whW p
 represents the value at time 

0  of the contingent claim with final payoff TMK ,

when the current asset price is wŷ  and the minimum 

before time 0  has been hŷ . Then, the price at time 0

is given by ),(
2

1
0

mp hW  with 
2

1mh . For Bermudan 

(American) fixed lookback put options, we have:  

)0,max(),( ),min( wh

p

s ŷKwhW ,

m

j

wh

trp

nwj

p

n ŷKej,whWqwhW
1-

,min1 ,,minmax, 1,,1,0 sn ,

and the price at time 0  is given by ),(
2

1
0

mp hW  with 

2

1mh .

European fixed strike lookback call options have 

at maturity T the payoff ,KMT where

},,,1,0:{max snSM tnT  and K is the 

fixed strike price. For this type of options we de-

fine the function ),,( whW c

n mwh ,,1, , and 

sn ,,1,0 , as the value at time tn  of the con-

tingent claim with final payoff ,KMT  when the 

current asset price is wŷ  and the maximum asset 

price up to tn )1(  has been hŷ . Then, at maturi-

ty T our payoff matrix is:  

,

),()2,()1,(

),2()2,2()1,2(

),1()2,1()1,1(

mmWmWmW

mWWW

mWWW

c

s

c

s

c

s

c

s

c

s

c

s

c

s

c

s

c

s

where )0,max(),( ),max( KŷwhW wh

c

s . In this case 

we can compute the function ),( whW c

n  by the re-

cursive formula  

,)),,(max(),( 1

1

trc

nwj

m

j

c

n ejwhWqwhW

1,,1,0 sn ,

and, at time 0, ),(0 whW c
 represents the value of the 

contingent claim with final payoff ,KMT  when 

the current asset price is wŷ  and the maximum be-

fore 0 has been hŷ . Then, the price of the fixed 

lookback call is given by ),(
2

1
0

mc hW  with 
2

1mh .

In the case of Bermudan fixed strike lookback call 

options, we have:  

)0,max(),( ),max( KŷwhW wh

c

s

KŷejwhWqwhW wh

trc

nwj

m

j

c

n ),max(1

1

,)),,(max(max),( 1,,1,0 sn ,

and the price at time 0 is given by ),(
2

1
0

mp hW  with 

2

1mh .

Observe that the equations (23) and (24), which return 

delta and gamma values, continue to be valid not 
only for floating strike lookback put options, but 
even for all other types of lookback options, Euro-
pean and Bermudan (American).  

Table 7. European and Bermudan (early exercise on daily basis) floating strike lookback put option  

prices, where monitoring is on daily and weekly basis using NIG, VG and Meixner processes 

 European lookback put 

Brownian motion NIG process VG process Meixner process 

 Weekly Daily Weekly Daily Weekly Daily Weekly Daily 

m = 501 2.7121 3.1344 2.6680 3.0511 2.5998 3.0058 2.6605 3.0439 

m = 801 2.7125 3.1355 2.6683 3.0524 2.6000 2.9866 2.6609 3.0452 

m = 1001 2.7126 3.1358 2.6684 3.0528 2.6001 2.9843 2.6610 3.0456 

m = 1501 2.7127 3.1361 2.6685 3.0531 2.6002 2.9832 2.6611 3.0459 
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Table 7 (cont.). European and Bermudan (early exercise on daily basis) floating strike lookback put option 

prices, where monitoring is on daily and weekly basis using NIG, VG and Meixner processes 

 Bermudan lookback put 

 Brownian Motion NIG process VG process Meixner process 

 Weekly Daily Weekly Daily Weekly Daily Weekly Daily 

m = 501 2.8587 3.2919 2.8176 3.2253 2.7528 3.1780 2.8113 3.2195 

m = 801 2.8695 3.3216 2.8180 3.2266 2.7532 3.1646 2.8117 3.2209 

m = 1001 2.8696 3.3218 2.8181 3.2269 2.7533 3.1630 2.8118 3.2212 

m = 1501 2.8697 3.3221 2.8182 3.2273 2.7534 3.1624 2.8119 3.2215 

In Table 7 we show the prices of European and 
Bermudan floating strike lookback put options, 
based on daily and weekly monitoring under the 
Brownian motion, NIG, VG and Meixner processes. 
The current asset price, the short interest rate and 
the maturity are respectively S = 100, r = 5% and  
T = 0.25. We compare the results for the European 
put with NIG and the VG processes (for all the 
processes we use the same parameters of Table 1). 
We compare part of these results using Monte Carlo 
simulations with variance reduction techniques. 
Even in this case we need more than 5 millions 
simulations to get the similar results for pricing 
European floating strike lookback put options.  

In order to value the differences among computa-
tional times of the different option valuations we 
propose to compute the average times and the root 
mean squared errors (RMSE) of the times needed to 
compute the above European Bermudan lookback 
put options. In particular we repeat the 100 times the 
computation of the values with the Markov and the 
Monte Carlo simulation and then we compute the 
average times and the RMSE of these times. Table 8 
reports the main differences observed among the aver-
age computational times of European floating strike 
lookback put option prices. From the comparison it 
appears evident the better performance of the Mark-
ovian approach in terms of computational time. 

Table 8. Average computational times for European Bermudan lookback put options obtained with Mark-
ovian (m = 801 states) and Monte Carlo valuation 

NIG VG Meixner 

Daily Weekly Daily Weekly Daily Weekly 

Markov average time 977 sec 186 sec 1445 sec 275 sec 1116 sec 212 sec 

Markov RMSE in % 0.0004 0.00001 0.007 0.00067 0.0009 0.00007 

MC average time 1140 sec 217 sec 1693 sec 322 sec 1398 sec 266 sec 

MC RMSE in %  0.014 0.003 0.103 0.0097 0.09 0.007 

Conclusions

The paper shows the simplicity of the Markovian 
approach to price vanilla options and some types of 
exotic options when the log return follows a Lévy 
process. Clearly, we couldn’t be exhaustive since this 
approach can be used to price many other Markovian 
processes and exotic options. In particular, the discre-
tization process with Markov chains permits to price 

path dependent options once we are able to approxi-

mate the risk neutral distribution of the underlying 

Markovian log return process. Moreover, we believe 

that further possible applications and extensions of the 

Markovian approach should be discussed for 

GARCH(1,1) processes with infinitely divisible distri-

butions of the residuals, stochastic volatility Lévy 

processes and subordinated Lévy processes.  
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