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Abstract 

Trends offer direction and momentum. However, trends in mortality are affected by 
trend breaks, which are a consequence of mortality shocks. Additionally, insufficient 
historical data challenge the credibility of the forecasted trends, which are useful for 
actuaries in pricing, reserving, and valuing life insurance products. To address these 
challenges, the study aims to determine and incorporate trend breaks among indi-
vidual causes of death and coherently forecast them by applying the bottom-up hierar-
chical forecasting approach for life insurance models. The models used are categorized 
as base (linear model), auto-statistical (Arima, Exponential-Smoothing, and Prophet), 
and auto-machine learning. The data from the World Health Organization consisted 
of annualized mortality quantities by cause, gender, age, and period for Kenya. Results 
based on the mean absolute percentage error criteria across the causes of death showed 
that all the models apart from the base model showed significant improvement after 
accounting for the trend breaks with the best being the auto machine learning ap-
proach leading with seven causes of death. Updating forecasts based on the computed 
trend breakpoints that varied between 2007 to 2011 generally improved forecast accu-
racy. These results suggest that forecasting errors may be reduced after accounting for 
trend breaks and model specifications. Furthermore, this implies that insufficient data 
do not necessarily produce deficient forecasts. The study’s contribution involved ap-
plying approaches that enhance the accuracy of forecasting models to prevent adverse 
effects of mortality shocks in actuarial modeling. 
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INTRODUCTION

Long-term trends in mortality and longevity offer direction and 
momentum and are useful in mortality modeling, which is of val-
ue to actuaries in insurance, medical, and social security schemes. 
However, mortality trends are affected by structural trend breaks, 
which are also known as mortality shocks (Tang et al., 2022). For 
instance, the HIV/AIDS epidemic had the biggest impact on mor-
talities at the start of the century (Bett et al., 2023), specifically in 
the Kenyan case. Contextually, deaths due to HIV/AIDS peaked in 
2000 for both males and females, negatively strained insurance li-
abilities, and contributed to the insolvency of insurance companies 
because of inaccurate estimations of mortality risk assumptions 
(Waweru, 2014). However, the eventual reduction of deaths due to 
HIV/AIDS accounted for the upward revision of the life expectan-
cy in Kenya (UN, 2017). This scenario has further compounded 
uncertainty in mortality modeling not only due to HIV/AIDS but 
also other causes of death, hence the need to incorporate causes of 
deaths in modeling mortality.
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Earlier mortality models were premised that mortality increases with age and were purely deterministic 
(Bengtsson & Keilman, 2019). However, patterns from mortality data have displayed uncertainty in the 
rates over time and led to the development of widely used models such as the Lee and Carter (LC) (1992) 
and the Cairns Blake Dowd (CBD) Model (Cairns et al., 2009). To date, these models form the backbone 
of mortality modeling in many jurisdictions, especially in developed countries with adequate historical 
data and long-term trends, which are necessary for linearity; however, this is not the case for developing 
countries like Kenya, where data are insufficient and unstable due to mortality shocks.

1. LITERATURE REVIEW 

The studies of changepoint models are vast; they in-
clude non-parametric methods proposed by Pettitt 
(1979), as well as approaches linked to decision theo-
ry, as suggested by Dayanik et al. (2008). These stud-
ies have concluded that Bayesian approaches are the 
most appropriate in determining trend structural 
breaks. A drawback, however, is the increased dif-
ficulty in representing the posterior distribution, 
that is, in the detection of changes in a trend where 
new data are continually generated, necessitating 
the update of the posterior with each new piece of 
information. This iterative update can rapidly grow 
intricate, particularly in relation to dimensionality. 
An effective method eventually preferred is to com-
pute the set of changepoints that are most probable, 
known as the Maximum A Posteriori (MAP) set 
(Fearnhead, 2005). However, the primary concern 
in applying this Bayesian approach is in the selec-
tion of priors.

The application of regression models in time series, 
especially in estimating structural breaks, was ini-
tially presented by Bai (1994) and then expanded to 
consist of several breaks (Bai & Perron, 1998) based 
on the algorithm exhibited in the study by Bai and 
Perron (2003) and further confirmed by Zeileis et 
al. (2003). The underlying algorithm is derived from 
dynamic programming as it calculates the appro-
priate breakpoints, given the specified number of 
breaks at the onset. The fundamental concept is that 
of the Bellman principle (Giuseppi & Pietrabissa, 
2022) that is a solution to a complex problem can be 
established by solving smaller and individual sub-
problems optimally and thereafter combining them, 
which is advantageous because it enables system-
ization and computational efficiency. Coelho and 
Nunes (2011) and Tang et al. (2022) analyzed the 
topic of forecasting future mortality and life expec-
tancy when there is a major shift in the underlying 
mortality pattern. They demonstrated, under the LC 

framework, the use of statistical testing to identify 
structural changes, resulting in a precise forecasting 
model for the overall mortality rate. Specifically, they 
conducted examinations to identify any changes in 
the mortality index’s pattern. The three main catego-
ries of approaches proposed to include the impact of 
structural changes are the regime-switching model 
(Hamilton, 1989), the broken-trend stationary model 
as proposed by Perron (1989), and the difference sta-
tionary processes with breakpoints by van Berkum 
et al. (2013). Milidonis et al. (2011) observed that re-
gime-switching models may illustrate different states 
of mortality. More precisely, they observed that dis-
tinct averages and variations characterize the error 
term of the mortality index in the LC model as it 
transitions between two different states. Additionally, 
they proposed possible departures from the assump-
tion that the error term follows a normal distribu-
tion. A key critique of regime-flipping models is that 
it may be unrealistic to assume that influences on 
human mortality, such as medical breakthroughs, 
propel newer causes of death.

Several studies (Arnold & Glushko, 2021; Arnold 
& Sherris, 2015; Caselli et al., 2019; Robertson et 
al., 2013) have pushed for the inclusion of causes 
of death as a way to break down overall mortality. 
This has also been shown by the use of hierarchical 
forecasting in mortality modeling with causes of 
death (Li & Lu, 2018). In general, this approach al-
lows for the organic breakdown of aggregated data 
into more specific subcategories, resulting in a hier-
archical format (Athanasopoulos et al., 2009). The 
techniques for generating consistent predictions for 
both hierarchical time series encompass top-down, 
middle-out, combined, and bottom-up approaches 
(Hyndman et al., 2011). Research has demonstrated 
that the latter approach plays a crucial role in en-
abling accurate initial projections, thereby enhanc-
ing the efficiency of the reconciliation process and 
ensuring the consistency and precision of the final 
forecasts.
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The philosophy behind the disaggregation of the 
hierarchical forecasting approach is that the fore-
casts should be coherent, unbiased, and mini-
mal. The base forecasts are the main focus of the 
bottom-up approach and encompass the causes 
of deaths that eventually aggregate into the total 
mortality forecast; this aligns with the key pur-
pose of this study. Additionally, this approach op-
timizes the information at the base, as Zhang et 
al. (2023) assert that accurate initial predictions 
are crucial for producing consistent and unified 
predictions in hierarchical forecasting. This co-
herence ensures the proper alignment of predic-
tions at different hierarchy levels with aggregation 
requirements. Enhancing the precision of the ini-
tial base forecasts improves the overall precision 
of the reconciled forecasts. In contrast, Gross and 
Sohl (1990) introduced the top-down approaches, 
which aim to predict the performance of individ-
ual goods in a product line by starting from the 
top series and progressively moving downward. 
The top-down approach leads to a loss of infor-
mation, particularly from the lower levels, which 
impacts the overall reconciliation. On the other 
hand, the middle-out approach integrates both 
top and down methods, thereby averaging the re-
sults (Wickramasuriya et al., 2019). The bottom-
up approach is advantageous because it minimizes 
information leakage and captures the dynamics of 
individual univariate series. Additionally, the ad-
vent of capable computer infrastructure reduces 
the cost of computing when modeling numerous 
individual series simultaneously.

Developments in mortality modeling have also 
seen an increase in the application of algorith-
mic models that are an alternative to stochas-
tic statistical models, as pointed out by Breiman 
(2001). These models are also known as machine 
learning models and are classified as super-
vised, unsupervised, and reinforcement learning 
(Richman, 2018). Mullainathan and Spiess (2017) 
point out that they constitute the general foun-
dation of representation learning, where the ma-
chine receives raw data and subsequently detects 
patterns. Furthermore, the study asserts that ma-
chine learning has demonstrated its applicabil-
ity in actuarial modeling, effectively addressing 
many regression model-based problems because 
manual implementation can introduce errors, and 
incorporating machine learning techniques may 

enhance model accuracy. However, one limita-
tion of the above models is their reliance on suf-
ficient data. That notwithstanding, using tuned 
deep neural learning methods, one can custom-
ize the neural architecture and capture the com-
plexities of cause-of-death features with limited 
data. Additionally, automatic machine learning 
approaches (LeDell & Poirier, 2020) that train nu-
merous models and iteratively tune vast hyperpa-
rameters to enhance accuracy justify these mod-
els. Thus, the incorporation of automated machine 
learning approaches to hierarchical forecasting of 
the cause of death is considered.

In the presence of mortality shocks, limited data, 
and less adapted forecasting models due to the 
nature of the data, there is a need to consider the 
incorporation of trend breaks and improved ap-
proaches in forecasting coherently. Changepoint 
models, particularly Bayesian approaches, are ef-
fective in identifying structural breaks in trends. 
However, they face challenges in updating poste-
rior distributions with new and sequential data 
like time series, which can complicate the analysis 
as dimensionality increases, and therefore, regres-
sion models for time series utilize dynamic pro-
gramming to determine breakpoints. Integrating 
hierarchical forecasting techniques like the bot-
tom-up approach, which enhances mortality pre-
dictions by breaking down aggregated data into 
specific subcategories with machine learning 
models in mortality modeling, offers an alterna-
tive to traditional statistical methods, improv-
ing accuracy and efficiency, and can benefit from 
automated approaches for better forecasting of 
causes of death. 

This study, therefore, aims to determine and in-
corporate trend breaks among individual causes 
of death and coherently forecast them by applying 
the bottom-up hierarchical forecasting approach 
for life insurance models.

2. METHOD 

The dataset link is obtained from the World Health 
Organization, WHO database for Kenya (WHO, 
2022). It is based on 131 causes of death (COD) 
across the years 2000–2019. The data are disag-
gregated as follows: the first level, 0, is composed 
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of the aggregate mortality rate for the entire data 
set; here, the mortality rate is the average across 
age, gender, and causes of death. The second level, 
1, consists of age-partitioned aggregate mortality. 
Here, only two age categories are considered: 20 to 
60 years and over 60 years, averaged across gender 
and causes of death. The former age group caters 
to the aspects of mortality risks, legal eligibility 
for insurance purchases based on the data juris-
diction, and the working age group, while the lat-
ter caters for longevity risks or the post-retirement 
age group. The third level, 2, consists of the gender 
partition averaged across causes of deaths for spe-
cific age partitions, and the fourth level, 3, is based 
on the individual causes of deaths for specific age 
and gender partitions (Figure 1). The total mortal-
ity can be disaggregated by the age, gender, and 
cause of death variables. 

2.1. Trend breaks detection

Breakpoints refer to the number of observations 
that indicate the conclusion of a segment. Suppose 
we have a set of time-series data, denoted as y

1:n 

= (y
1
,... ,y

n
), and observation is univariate at each 

time t, y
t, 

then,

( )
1

,( )
m

t k k k tk
y t t I tα β α β τ ε

=
= + + + ≥ +∑  (1)

where y
t
 is the observed value, α, β are intercepts 

of trend, τ
k
 time points where changepoints oc-

cur, and I (t ≥ τ
k
) is an indicator function. This 

approach aims to examine that the regression 
parameters remain constant against the possibil-
ity that at least one parameter changes with time 
such that:

( )0 0:             1 ,..., .iH i nβ β= =  (2)

The model will have several changepoints, de-
noted as m, where, τ

1:m
 = (τ

1
, ..., τ

m
). The position 

of individual changepoints is a number ranging 
from 1 to n-1, including both endpoints. Let τ

0
 be 

defined as 0 and τ
m+1

 as n. The changepoints are 
assumed to be arranged in ascending order, such 
that τ

i
 < τ

j
 if and only if i < j. For this approach, the 

conventional linear regression model is examined 
(Killick et al., 2010).

2.2. Hierarchical forecasting 
approach

The projections at the bottom are referred to as the 
base forecasts. The items are arranged in the same 
sequence as the data. Subsequently, all methods 
of predicting future outcomes for hierarchical or 
clustered systems can be expressed as:

ˆ .h hy Sy=  (3)

The summing matrix S enables the combining 
structure to aggregate these forecasts coherently. 

  Figure 1. Three-level hierarchical data structure 

Total Mortality

20-60 years

Over 60 years

Female

Male
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Level 0 Level 1 Level 2 Level 3
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This matrix is defined based on the implemented 
approach. The first three columns nullify the base 
forecasts, while the n-dimensional identity matrix 
selects only the base forecasts of the bottom level. 

Consider the forecast notations for each of the 
lower-level series, predicting h-steps

Table 1. Forecast notations for lower-level 1

Cause of death data 

notation Meaning

TM Total aggregate mortality

20_60 Aged 20 to 60 years

60 Aged over 60 years

F_20_60 Female aged 20 to 60 years

F_60 Female aged over 60 years

M_20_60 Male aged 20 to 60 years

M_60 Male aged over 60 years

{COD_1_40}

Vector of 40 univariate series of 

individual causes of  death (bottom 
series)

Such that,

{ }
TM, h, 20_ 60, h, 60, h, F_ 20_ 60, h, F_ 60, h, 

M _ 20_ 60, h, M _ 60, h, COD _1_ 40, h, 

ŷ y y y

y

ˆ ˆ ˆ ˆ

ˆ

y

y yˆ ˆ

 (4)

By summing them up we can get, 

,  20_ 60,  60,  _ 20_ 60,  

_ 60,  _ 20_ 60,  _ 60,  _1_ 40, 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 

TM h h h F h

F h M h M h COD h

y y y y

y y y y

= + + +

+ + +
 (5)

By employing a more concise notation, the bot-
tom-up technique becomes

h hy Sb̂=  (6)

where ỹ
h
 is an n-dimensional vector of coherent h-

step ahead forecasts, and b̂̂
h
 is an m-dimensional 

vector of h-step ahead forecasts for the bottom lev-
el series. The vector ỹ

t
 represents coherent h-step 

ahead forecasts for an n-dimensional space, while 

Tab le 2. Implemented models

Model Name Formula Parameters

1. Auto. Arima 

(Mélard & Pasteels, 2000) 1 1

p qd d d

t i t i t j t ji j
y yα ε θ ε− −= =

∇ = + ∅ ∇ + + ∇∑ ∑ ARIMA(p, d, q)

2. ETS

(Billah et al., 2006; Chen & 

Moraga, 2024)

( )1 1t t t t m ty l b s ε− − −= + + l
t
 is the level; b

t 
is the trend; s

t 
is the 

seasonality and ε
t 
is the error term

3. Prophet (Taylor & Letham, 

2018) t t t t ty g s h ε= + + + h
t
 models holidays

4. Linear Model LM 

(Freedman, 2009) 0 1
   

p

i ii
y xβ β ε

=
= + +∑

y is the dependent and x’s are the 

independent variables. β
0
 and β

i 
are 

coefficients and ε is the error

5. AutoML  

(LeDell & Poirier, 2020)

a. Gradient Boosting 
Machine (GBM)

( ) ( ) ( )1    m m mF x F x v h x−= + ⋅ F
m

(x) is the model at iteration m and v is 

the learning rate 

b. Distributed Random 

Forest (DRF) 1
ˆ )

1
(

T

tt
y h x
T =

= ∑
ŷ is the predicted output; T is the total 

number of trees; h
t
(x) is the prediction of 

the t-th tree

c. Generalized Linear 

Model (GLM)
( )( ) 0 1

/  
p

i ii
g E Y X Xβ β

=
= +∑

g is the link function; E(Y/X) is the 

expected value of Y given X, β
0
 and β

i 
are 

coefficients

d. Deep Learning  

(Neural Networks)
( )( )1 1 1 1( ...  ... )ˆ L L L Ly f W f W f W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + +

ŷ is the predicted output; f is the activation 
function; Wi and bi are weights and biases 

at layer i; L is the number of layers; x is the 

input

e. Extremely Randomized 

Trees (XRT) 1
ˆ )

1
(

T

tt
y h x
T =

= ∑ Similar to DRF but splits in each tree are 

chosen at random

f. Stochastic Gradient 
Boosting (SGB)

( ) ( ) ( )1   ;  m m m mF x F x v h x θ−= + ⋅

Similar to GBM however it uses that uses 

subsampling at each iteration to reduce 
variance and improve generalization.

h
m

(x; θ
m

) is the weak learner fitted on a 
random subset of the data

g. Stacked Ensembles ( ) ( ) ( )( )1 2  , ,...,ˆ
ny g h x h x h x=

ŷ is the final prediction; g is the meta-
learner; are predictions of the i-th base 

learner; n is the number of the base 

learners
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the vector b̂̂
h
 represents h-step-ahead forecasts for 

each individual series in an m-dimensional space. 
The R package “hts” will be loaded in order to gen-
erate forecasts for the models shown in Table 2.

2.3. Forecasting measurement

A forecast error refers to the disparity between an 
observed value and its predicted value, represent-
ing the unpredictable component of the observa-
tion (Smolensky et al., 2013). The expression can 
be formulated as follows: the training data consist 
of {y

1
, …, y

T
}, while the test data consist of {y

T+1
, y

T+2
, 

…}. Forecast errors are computed from the test set. 

|
ˆ .T h T h T hTe y y+ + += −  (7)

In this scenario, the forecast errors are calculated 
for multi-step forecasts with a horizon of h = 3. 
Mean Absolute Percentage Error (MAPE) metric 
would be considered. The reason of choosing this 
error metric is due to its independence from scal-
ing and sensitivity to errors. MAPE is a compara-
tive metric that is not influenced by the magnitude 
of the data. This enables the comparison of differ-
ent models on the same dataset without being af-
fected by the magnitude of the real values and 
susceptibility to errors. Additionally, MAPE en-
sures equal treatment of both overestimations and 
underestimations by utilizing the absolute values 
of errors. This mitigates the problem of positive 

and negative errors nullifying each other, a phe-
nomenon that can occur with alternative metrics 
such as Mean Error.

1

1
100,

n
t t

t t

A F
MAPE

n A=

−
= ⋅∑  (8)

where n is the number of observations, A
t
 is the 

observed value at time t, while F
t
 is the forecasted 

value at time t. R programming language (Team, 
2020) would be the main software tool to be used.

3. RESULTS 

3.1. Exploratory analysis

The temporal top nine causes of death for each 
gender and age partition over the years 2000 to 
2019 are presented in Figures 2-5. 

Figure 6 represents the tenth cause, averaged over 
the remaining causes of death and labeled as oth-
ers across the age and gender groups. The lowest 
value for this indicator is observed across years, 
which means that, on average, causes other than 
the nine main ones had a smaller impact in the 
study, taking into account time, age, and gender.

The trend change points were determined by 
structural trend change models averaged over the 

Fi gure 2. Top nine causes of death for males over 60 years of age
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Fi gure 3. Top nine causes of death for males aged 20 to 60 years 

Fi gure 4. Top nine causes of death for females over 60 years of age
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Fi gure 5. Top nine causes of death for females aged 20 to 60 years 

Fi gure 6. Other causes of death for males and females by age group 
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Table 3. Model results based on MAPE grouped by the causes of death

Univariate

BP

Linear 

Model 

(Base)

Auto. Arima ETS Prophet

Auto 

Machine 

Learning

Series

B
e

fo
re

 B
P

Aft
er

 B
P

B
e

fo
re

 B
P

Aft
er

 B
P

B
e

fo
re

 B
P

Aft
er

 B
P

B
e

fo
re

 B
P

Aft
er

 B
P

B
e

fo
re

 B
P

Aft
er

 B
P

hiv_aids_female_20_60_years 2008 51.26 291.52 14.1 8.59 109.82 51.26 289.85 35.14 47.87 23.39

maternal_conditions_female_20_60_years 2008 17.37 15.5 7.22 15.04 13.16 17.37 16.81 5.65 13.24 33.2

tuberculosis_female_20_60_years 2011 12.24 85.11 97.62 15.89 97.61 12.24 89.31 25.58 76.42 25.23

stroke_female_20_60_years 2009 7.05 3.84 2.23 7.05 4.3 7.05 5.02 8.82 10.49 6.12

cirrhosis_of_the_liver_female_20_60_years 2009 2.32 6.14 5.26 2.32 6.83 2.32 5.98 5.15 11.41 2.17

diarrhoeal_diseases_female_20_60_years 2009 6.43 11.16 16.02 6.43 3.67 6.43 10.02 4.52 32.52 8.15

lower_respiratory_infections_female_20_60_years 2009 5.21 4.17 4.41 5.21 5.21 5.21 5.61 6.26 11.65 13.21

cervix_uteri_cancer_female_20_60_years 2010 3.32 9.03 10.15 3.28 6.04 3.32 7.37 1.35 7.95 8.62

malaria_female_20_60_years 2009 7.33 13.64 19.07 7.33 4.5 7.33 14.55 4.99 5.68 6.45

other_causes_female_20_60_years 2009 1.46 3.17 1.4 1.46 4.73 1.46 3.45 2.95 5.96 3

stroke_female_over_60_years 2007 1.87 0.79 0.83 1.87 0.83 1.87 0.92 0.98 0.7 1.24

ischaemic_heart_disease_female_over_60_years 2009 3.94 0.69 2.41 3.94 2.67 3.94 0.45 0.47 8.6 1.49

lower_respiratory_infections_female_over_60_years 2010 0.49 1.78 1.9 0.49 1.9 0.49 1.79 5.25 0.58 3.9

diarrhoeal_diseases_female_over_60_years 2010 5.53 9.08 7.38 5.53 8.17 5.53 9 0.84 9.77 0.42

hypertensive_heart_disease_female_over_60_years 2008 0.14 0.61 0.19 0.13 0.61 0.14 0.77 1.95 0.23 0.17

alzheimer_disease_and_other_dementias_female_
over_60_years

2009 1.09 3.88 1.13 1.18 3.62 1.09 2.62 1.66 3.02 1.13

cirrhosis_of_the_liver_female_over_60_years 2010 0.66 4.39 3.13 0.66 0.62 0.66 1.61 1.48 0.77 0.97

chronic_obstructive_pulmonary_disease_female_
over_60_years

2009 0.19 3.37 1.71 0.49 0.55 0.19 0.7 3.09 0.3 0.37

diabetes_mellitus_female_over_60_years 2010 0.79 2.64 2.55 0.79 2.64 0.79 0.81 5.07 2.65 1.7

other_causes_female_over_60_years 2009 2.35 1.99 2.9 2.35 2.1 2.35 2.14 1.04 7.1 0.61

other_causes_male_over_60_years 2008 2.42 2.8 2.01 2.42 0.45 2.42 2.16 0.88 0.33 2.9

diabetes_mellitus_male_over_60_years 2009 1.68 3.44 2.9 1.68 3.44 1.68 3.65 1.65 3.43 0.57

road_injury_male_over_60_years 2010 2.26 4.38 9.08 2.26 6.97 2.26 5.23 2.04 10.62 2.23

chronic_obstructive_pulmonary_disease_male_
over_60_years

2009 2.21 1.42 3.47 2.2 0.75 2.21 3.9 3.86 0.59 1.79

cirrhosis_of_the_liver_male_over_60_years 2009 3.17 1.11 4.49 3.17 1.64 3.17 7.89 2.88 1.22 4.05

tuberculosis_male_over_60_years 2010 22.81 136.44 129.35 22.81 118.6 22.81 144.47 7.82 98.03 7.78

diarrhoeal_diseases_male_over_60_years 2009 10.48 1.12 1.83 10.48 1.24 10.48 1.44 3.8 0.87 11.47

ischaemic_heart_disease_male_over_60_years 2009 1.53 1.28 1.55 1.56 2.67 1.53 3.77 3.88 2.58 1.5

lower_respiratory_infections_male_over_60_years 2008 4.64 3.09 3.87 4.41 3.55 4.64 5.45 2.11 1.51 3.24

stroke_male_over_60_years 2008 3.66 1.06 1.14 3.66 0.89 3.66 3.59 2.59 0.81 2.88

other_causes_male_20_60_years 2009 4.63 1.82 2.27 4.65 1.63 4.63 1.9 7.31 5.93 18.05

malaria_male_20_60_years 2009 1.7 27.5 33.75 1.7 4.57 1.7 28.19 4.05 5.98 1.61

ischaemic_heart_disease_male_20_60_years 2009 4.03 3.94 7.21 4.03 4.11 4.03 3.76 9.85 4.07 5.27

diarrhoeal_diseases_male_20_60_years 2009 9.33 1.57 3.01 9.33 5.38 9.33 3.12 9.56 25.34 8.03

lower_respiratory_infections_male_20_60_years 2009 7.09 3.26 4.3 7.1 1.93 7.09 4.71 11.07 6.06 6.69

stroke_male_20_60_years 2009 7.11 2.39 2.97 7.11 1.85 7.11 4 11.69 6.69 4.21

road_injury_male_20_60_years 2009 4.23 9.79 14.03 4.23 6.02 4.23 10.47 2.53 7.95 3

cirrhosis_of_the_liver_male_20_60_years 2009 5.49 2.93 4.4 5.49 1.82 5.49 4.75 9.22 19.44 8.87

tuberculosis_male_20_60_years 2011 13.29 93.84 114.93 16.7 114.92 13.29 99.41 26.36 86.69 12.05

hiv_aids_male_20_60_years 2007 39.13 183.73 21.39 28.57 23.8 39.13 184.79 26.13 71.06 23.52

segment breaks. Individual trend breaks were de-
termined for all causes of death, and the breaks 
ranged between 2007 and 2011. Appendix A vi-
sually represents each trend break point for each 
cause of death.

Subsequently, the hierarchical forecasts for the test 
periods 2017, 2018, and 2019 based on the bottom-
up approach were presented in Table 3 and Figure 
7, that is, the distribution of mean absolute per-
centage error (MAPE) scores across the years pre 
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(from 2000) and post (based on updated points 
from 2007 to 2011) and grouped by model. The 
year 2000 had the highest level of errors, possibly 
due to the presence of structural breaks in the en-
tire dataset. However, 2008, 2009, and 2010 have 
reduced errors, possibly due to the update of the 
forecasts starting from the trend change points.

3.2. Forecasting accounting for trend 
breaks

Auto ML performed best in seven univariate series 
after accounting for trend breaks; they include cir-
rhosis of the liver for females aged 20 to 60 years, 
diarrhoeal diseases for females over 60 years, dia-
betes mellitus for males over 60 years, tuberculo-
sis for males over 60 years, malaria for males 20 to 
60 years, tuberculosis for males over 60 years, and 
other causes for females over 60 years, as shown in 
Table 3. Prophet performed best in four univariates 
after accounting for trend breaks; they include cer-
vix for uteri cancer for females 20 to 60 years, road 
injury for males over 60 years, lower respiratory in-
fections for males over 60 years, and road injury for 
males 20 to 60 years, as shown in Table 3. LM per-
formed best in four univariates after accounting for 
trend breaks; they include lower respiratory infec-
tions for females aged 20 to 60 years, cirrhosis of the 
liver for males aged over 60 years, ischaemic heart 

disease for males aged over 60 years, and diarrheal 
diseases for males aged 20 to 60 years, as shown in 
Table 3. Auto Arima performed best in two univari-
ates after accounting for trend breaks; they include 
HIV/AIDS for females aged 20 to 60 years old and 
hypertensive heart disease for females over 60 years 
old, as shown in Table 3. ETS performed poorly, shy 
of being the worst as compared to the base model af-
ter accounting for trend break, as shown in Table 3.

3.3. Forecasting without accounting 
for trend breaks

Exponential Smoothing (ETS) performed best in 
seven univariate analyses without accounting for 
trend breaks. They include diarrheal diseases for 
females aged 20 to 60 years, malaria for females 
aged 20 to 60 years, cirrhosis of the liver for fe-
males over 60 years, cirrhosis of the liver for males 
aged 20 to 60 years, lower respiratory infections for 
males aged 20 to 60 years, stroke for males aged 20 
to 60 years, and other causes for males aged 20 to 
60 years, as shown in Table 3. Auto ML performed 
best in five univariate series without accounting 
for trend breaks; they include stroke for females 
over 60 years, other causes for males over 60 years, 
chronic obstructive pulmonary disease for males 
over 60 years, diarrheal diseases for males over 
60 years, and stroke for males over 60 years (see 

 Figure 7. Distribution of MAPE against models over the years 2000–2019 
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Table 3). Auto Arima performed best in four uni-
variates without accounting for trend breaks; they 
include maternal conditions for females 20 to 60 
years, stroke for females 20 to 60 years, others for 
females 20 to 60 years, and HIV/AIDS for females 
20 to 60 years, as shown in Table 3. Prophet per-
formed best in two univariates without accounting 
for trend breaks; they include ischaemic heart dis-
ease for females over 60 years and ischaemic heart 
disease for males aged 20 to 60 years, as shown 
in Table 3. LM performed best in one univariate 
without accounting for trend breaks; they include 
tuberculosis for females aged 20 to 60 years, as 
shown in Table 3.

However, other results were also obtained: auto-
arima, ETS, and LM led with similar lowest scores 
for MAPE in four univariate series; they include 
lower respiratory infections for females over 60 
years, Alzheimer’s disease and other dementias for 
females over 60 years, chronic obstructive pulmo-
nary disease for females over 60 years, and diabe-
tes mellitus for females over 60 years (see Table 3).

4. DISCUSSIONS

The change in the cause of death trend confirms 
that each univariate series has a point where 
the accuracy score improves. At this realization 
point, the ultimate model update performs better. 
The auto-ML model performed the best after ac-
counting for trend changes based on the number 
of series it was leading. Generally, the remaining 
models also performed well when applied to the 
entire dataset. However, the ETS model had no 
leading univariate forecast after the trend break; 
in fact, it performed the best together with LM 
over the entire dataset from 2000. It is notewor-
thy to suggest that ETS requires a longer his-
torical dataset. Similar studies (Hyndman & 
Athanasopoulos, 2018; Petropoulos et al., 2013) 
have reached the same conclusion. Therefore, in-
sufficient data do not necessarily imply deficient 
forecasts.

According to Bett et al. (2022), mortality shocks 
such as pandemics and famines introduce trend 
breaks and distort the temporal series either up-
wards or downwards. Such events are uncertain, 
inevitable, and ultimately affect total aggregate 

mortality. These results demonstrate that such 
scenarios would necessitate a customized ap-
proach to dealing with the causes of death that 
form the base forecasts. The bottom-up hierarchi-
cal forecast reconciliation approach is appropriate 
because it focuses on the base forecasts and co-
herently aggregates them into the total. As a re-
sult, actuaries should consider this approach as 
confirmed by (Van Berkum et al., 2016), especially 
while dealing with mortality shocks.

The forecasting models were implemented using 
three types of models categorized as base (LM), 
auto-statistical (Auto. Arima, ETS, and Prophet), 
and auto-machine learning (GBM, DRF, GLM, 
Neural Networks, XRT, SGB, and ensembles), 
which also contained deep learning approaches. 
Each cause of death yielded a unique set of opti-
mal models across 40 univariate series separate-
ly. This is because the fitting and forecast were 
achieved using a bottom-up model, which is ad-
vantageous as it models from bottom-up based 
on individual causes and endeavors to apply all 
the available resources, which is consistent with 
the data and studies (Zhang et al., 2023). From 
the results among the models, the auto-machine 
learning models gave the best outcome, being the 
second when all the dataset was used and being 
the top after allowance for structural breaks were 
incorporated. Studies by Mancuso et al. (2021) 
and Abolghasemi et al. (2019) establish this 
conclusion. Other models implemented ranked 
highly also across the different years, meaning 
that none were redundant, however, this result 
shows that updating trend breaks is vital as it im-
proves the overall result.

The linear model LM has been set as a base model 
to specifically track the trend component, which 
does not take into account any change points. 
These results confirm that the specific models 
are suitable for non-linear and linear data struc-
tures, and as seen, the total aggregate mortality 
is based on disaggregate causes of deaths; there-
fore, individual models would be viable to be 
modelled individually and progress collectively. 
Additionally, this study suggests that for specific 
causes of death, the length of the data is not neces-
sarily a measure of quality data. The forecast ac-
curacy of the 40-time series models demonstrates 
this. According to the findings, updating forecasts 
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based on the change point generally improves 
forecast accuracy. These results suggest that, to 
reduce fitting and forecasting errors, each series 
should undergo trend breaks and model specifica-
tion prior to forecasting.

Due to the insufficiency of historical data, the 
forecast horizon can only be applied to shorter 
time intervals, preferably one to three years. For 
instance, it can match the annual actuarial valua-

tion of life and pension schemes or even periodic 
life tables that span three years of experience in 
computation. 

It is important to note that the years 2007 and 2011 
have been omitted for the purpose of this study 
because they contain only one and two causes, re-
spectively, which is inadequate for comparative 
studies. Therefore, future studies may consider in-
vestigating such a scenario.

CONCLUSION

The aim of this study is to determine and incorporate trend breaks among individual causes of death 
and coherently forecast them by applying the bottom-up hierarchical forecasting approach for life in-
surance models. The study employed a two-pronged approach: Firstly, it aimed to identify the individ-
ual series’ structure and pinpoint the trend change point, achieved through a linear structure change. 
Secondly, it employed a bottom-up hierarchical forecast approach that maximized the base series. This 
approach forecasted the causes of death using appropriate models, including a base, auto-statistical, and 
auto-machine learning approach, all based on the mean absolute percentage error score. The compara-
tive results were presented as pre- and post-trend change points, and generally, a reduction in mean 
absolute percentage error was observed across the models because each series showed different results. 
These results suggest that incorporating trend change generally improves forecast accuracy. However, it 
is important to note that each model performs differently, regardless of the length of data and the pres-
ence of mortality shocks. These studies contribute to the forecast reconciliation approach by incorpo-
rating trend breaks. Further research could consider taking into account uncertainties associated with 
trend breaks, such as bootstrapping, which measures levels of accuracy in cause-of-death prediction 
estimates.
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APPENDIX A. Causes of death trend breaks based on 2000–2019 
dataset

Figures A1. Plot of causes of death trend breaks based on 2000–2019 dataset
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Figures A1 (cont.). Plot of causes of death trend breaks based on 2000–2019 dataset
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Figures A1 (cont.). Plot of causes of death trend breaks based on 2000–2019 dataset
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Figures A1 (cont.). Plot of causes of death trend breaks based on 2000–2019 dataset
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