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Yair Orbach (Israel)

Parametric analysis of the Bass model
Abstract

In this research, the authors explore the influence of the Bass model p, ¢ parameters values on diffusion patterns and
map p, g Euclidean space regions accordingly. The boundaries of four different sub-regions are classified and defined,
in the region where both p, g are positive, according to the number of inflection point and peak of the non-cumulative
sales curve. The researchers extend the p, g range beyond the common positive value restriction to regions where either
p or g is negative. The case of negative p, which represents barriers to initial adoption, leads us to redefine the motiva-
tion for seeding, where seeding is essential to start the market rather than just for accelerating the diffusion. The case of
negative g, caused by a declining motivation to adopt as the number of adopters increases, leads us to cases where the
saturation of the market is at partial coverage rather than the usual full coverage at the long run. The authors develop a
solution to the special case of p + ¢ = 0, where the Bass solution cannot be used. Some differences are highlighted be-
tween the discrete time and continuous time flavors of the Bass model and the implication on the mapping. The distor-
tion is presented, caused by the transition between continuous and discrete time forms, as a function of p, g values in

the various regions.

Keywords: Bass model, mapping, diffusion patterns, discrete time, continuous time, seeding.

JEL Classification: M3.

Introduction

The theory of diffusion of innovation, proposed by
Bass (1969), has been explored, implemented and
extended by numerous researches. Some researchers
extend the model to explicitly consider market or
industry characteristics or behavior. Others examine
implementation of the model on various cases and
show that adding more factors improves the capabil-
ity of the model to capture complex behavior in de-
tails. Another direction taken by some researchers
was to explore the factors that influence parameters
values estimation and forecasts accuracy. Some re-
searches explore empirically how the Bass model
parameters vary across products and markets, usual-
ly at the ranges when p << g and 0.1< ¢ < 0.7. Bass
(1969) notes that there are two different categories
of diffusion curve patterns. When g > p, the period-
ic sales grow until they reach a peak and, then, de-
cline asymptotically to zero. When ¢ < p, periodic
sales decline asymptotically to zero starting from
launch. Little attention has been directed since then
to a further comprehensive exploration of the con-
straints and classification of the Bass model parame-
ters and how they affect the adoption curve patterns.

Another issue that has attracted little attention in
diffusion theory is the transition between the conti-
nuous time form and the discrete time form of the
Bass model. While many researchers switch be-
tween these two flavors without further notice, at-
tention needs to be paid to verifying, for each im-
plementation, that this transition has little impact on
parameters’ values and on forecasts’ accuracy.
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In this paper, we perform a comprehensive explora-
tion and classify and map the different diffusion pat-
terns over the p, g space. The exploration is theoretic
and is not limited to specific empiric cases. We refer
to the different flavors (continuous vs. discrete) and
highlight the differences in mapping, constraints and
classification. We also define the conditions that
need to be checked when switching between them.

1. Literature review

The diffusion of innovation model, known as the
Bass model, has several flavors and numerous ex-
tensions. In this paper we focus on the basic model
of Bass (1969), which has a simple analytic solution
and not to extensions that are usually solved numer-
ically. We brief the different basic models and high-
light the differences between them. We use these
models for mapping the patterns and constraints cat-
egories over the p, g space and show that each fla-
vor has a slightly different map.

The Bass (1969) presents the diffusion of innovation
dynamic equation:

1= (prg F0)(1-FO). O
This equation represents the innovation and imita-
tion influence on the remaining potential market.
The periodic sales, or the rate of cumulative sales
change, which is the derivative of the cumulative
adoption, are proportional to the multiplication of
the remaining market by the sum of innovation and
imitation influence. The analytic continuous time
solution that Bass presents to his equation is:

1= Pr
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The cumulative sales function, as well as its deriva-
tive or periodic sales function, can be outlined as a
graph where time is the X axis and sales, or sales
rate, are the Y axis. The shapes of both curves, the
cumulative and periodic sales, are determined by the
values of the model parameters p and ¢. Srinivasan
and Mason (1986) note that both p and ¢ must be
non-negative. Acemoglu and Ozdaglar (2009) note
that the levels of p and ¢ scale time, while the ratio
q/p determines the overall shape of the curve.

Bass (1969) refers to the effect of the g/p ratio or ¢,
p phase and differentiates between two categories.
He notes that when ¢/p > 1, i.e., p, g phase = 45°,
the product is successful and sales experience
growth and then decline due to saturation. When ¢/p
< 1, which represents an unsuccessful product, sales
will start at a certain level and keep declining. Bass
(1969) also presents the influence of (p + ¢) values,
between 0.3 and 0.9, on the growth rate. Sultan et al.
(1990) performed a meta-analysis of 213 applica-
tions of diffusion models from 15 articles published
between 1950 and 1980. They compare several pa-
rameters estimation methods (OLS, MLE, Bayesian
and non-linear least square) and also how the num-
ber of sampling points influences accuracy. They
found that the average p value is 0.03, while the av-
erage g value is 0.38. Van den Bulte (2002) ex-
plored how p and ¢ vary across products and coun-
tries, based on a database containing 1586 sets of p
and g parameters, from 113 papers published be-
tween January 1969 and May 2000. He explains that
the parameters p and ¢ provide information about
the speed of diffusion. A high value for p indicates
that the diffusion has a quick start, but also tapers
off quickly. A high value of ¢ indicates that the dif-
fusion is slow at first, but accelerates after a while.
He also notes that, when ¢ is larger than p, the cu-
mulative number of adopters follows the type of S-
curve often observed for radically innovative prod-
uct categories. When ¢ is smaller than p, the cumu-
lative number of adopters follows an inverse J-curve
often observed for less risky innovations such as
new grocery items, movies, and music CDs.

Lilien et al. (2000) formulate a discrete difference equ-
ation to model diffusion of innovation, used by many
previous and later of the Bass model extensions.

fi(n)=AF,(n) = F,(n+1)—F,(n) =
=X(n)-(p,+q, E,(m)-(1-F,(m)).

where F,(n) is the cumulative adoption and fy(n) is
the periodic sales at period n.

3)

We use the notation p, and ¢, for the discrete time
model parameters to distinguish them from the p, ¢
parameters of the continuous time form. The X(n)
function can capture many factors the original Bass
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model ignores such as advertisement of price
changes. When X(n) = 1, it converges back to the
original Bass model. For example, Bass et al. (1994)
propose including the influence of advertisement of
price changes by using:

=14 P =D ﬂm{ow} @
Pr(n—1) A(n-1)

When o coefficient captures the percentage increase
in diffusion speed resulting from a 1% decrease in
price, Pr(n) is the price in period n, f coefficient
captures the percentage increase in diffusion speed
resulting from a 1% increase in advertising and A(n)
is advertising in period n. The main advantage of the
discrete model is that it can be solved numerically,
in cases where there is no analytic solution. While
Bass (1969) presents an analytic general solution for
the continuous time differential equation (1), neither
he nor others propose an analytic solution for the
discrete time difference equation (3). Bass (1969)
does refer implicitly to the discrete model by pro-
viding an insight that the likelihood of a purchase at
time ¢, P(n) is calculated by:

__fum _
Pim) = Foo et Fy(n). )

While many researchers switch between the discrete
model, based on a difference equation (3), and the
continuous time model, based on the differential
equation (1), the transition is not trivial. Van den
Bulte and Lilien (1997) show that OLS or NLS es-
timations of the continuous Bass model parameters
using discrete time data are biased and that they
change systematically as one extends the number of
observations. An analytic discrete time solution for
the Bass continuous time differential equation (1),
developed by Satoh (2001), is:

1_[1—<ps+qs>jz
1+(p,+q,)

1-(p. + 2
Hqs( (p, qS)J
p,\1+(p, +q,)

F(n)= (6)

However, this solution does not solve the difference
equation (3). Satoh (2001) notes that the relation
between his discrete time Bass model parameters p;
and ¢, and the corresponding continuous time Bass
model parameters p and ¢ is:

1 1=e?" po=k-p

k -2(p+q) qs:k.q‘

= 7
p+q l+e 2

Table 1 compares the Bass solution (2) for typical
values p = 0.01, ¢ = 0.3, Satoh solution (6) for the
corresponding parameters values ps = 0.0097, gs =



0.2907 and a numeric solution for the Lilien equation
(3) that has minimal RMSE with them with p, =
0.0138, g, = 0.2865. While the parameters values and
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forecasts of all three flavors are very close, we still
notice that, while Satoh solutions perfectly match
Bass, Lilien solution is very close but not identical.

Table 1. A comparison between Bass, Satoh and Lilien solution

t Bass Ft) Satoh F(n) Lilien Fo(n)
0 0 0 0

1 0.011588 0.011588 0.013808
2 0.026960 0.026960 0.031327
3 0.047166 0.047166 0.053396
4 0.073399 0.073399 0.080948
5 0.106923 0.106923 0.114953
6 0.148907 0.148907 0.156323
7 0.200171 0.200171 0.205758
8 0.260871 0.260871 0.263546
9 0.330179 0.330179 0.329323
10 0.406107 0.406107 0.401864
11 0.485607 0.485607 0.478990
12 0.565000 0.565000 0.557684
13 0.640625 0.640625 0.634465
14 0.709486 0.709486 0.705958
15 0.769662 0.769662 0.769491
16 0.820388 0.820388 0.823493
17 0.861864 0.861864 0.867574
18 0.894941 0.894941 0.902319
19 0.920798 0.920798 0.928920
20 0.940698 0.940698 0.948819

The cumulative sales of Satoh (2001) from (6) per-
fectly match the continuous time Bass sales solution
from (2) for t =0, 1, 2...n. Satoh (2001) compares se-
veral methods for estimating the discrete time Bass
model parameters for nine data sets, and concludes
that, for most cases, when the time interval is small
enough, the exact solution of the discrete Bass model
provides a very good approximation of the solution of
the conventional Bass model. He also proves that,
when using the transformation (7) to p and ¢, a solu-
tion of the discrete Bass model (6) provides identical
values to the solution of the continuous model (2). For
two cases (out of nine) where the estimated value of
the p parameter is negative, he notes that the wrong
sign indicates that the data are not appropriate for the
Bass model.

2. Mapping the Bass model parameters

We perform the mapping separately for each fla-
vor of the Bass model. First, we develop a formu-
la of the periodic sales inflection points’ times,
for the continuous time form, and classify the dif-
fusion patterns according to the number of inflec-
tion point and whether there is peak. Second, we
map each category classified to a sub-region of
the positive p and g values of the Euclidean space.
Then, we extend the map to include regions where
either p or ¢ is negative, which add some insight
about seeding and about market saturation. For
the discrete time model, equation (3), which is

more restricted, we remap the p, ¢ space. The map
is similar but has additional constraints about the
absolute values of p, g and their sum. We redo the
mapping for the Satoh model which is a discrete
time solution (6, 7) for the continuous time mode
of equation (1, 3).

2.1. Mapping the Bass model parameters ratio
space. Bass (1969) and Van den Bulte (2002) distin-
guish between cases where g > p, and periodic sales
have a peak after launch, to cases where g < p and pe-
riodic sales keep declining since launch. The periodic
sales peak time, as calculated by Bass (1969), is:

z*:[ ! }h{i). (8)
p+al \p

From (8), we see that when g > p, the peak time is
positive. When ¢ < p, peak time is negative, thus,
sales keep declining since launch time (¢ = 0). There
are no sales before product launch.

The inflection points’ times (see Appendix A) are
calculated as:

h{QJ ~In(2++3)

(2 ++/3
p n(+\/_)(9)

pPtq Ptq

Result 1: the time between the inflection points
and between them to peak depends only on (p +
¢) and not on (p/q).

t =t*t
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Since sales begin at # = 0, when the inflection points
or peak times are negative, the periodic, or non-
cumulative, sales curve does not include them. Fi-

o

gure 1 presents the p, g space four regions (A to D)
and periodic sales curves. We use the approximation
2+ \/g =3.73 for convenience.

p=0.1, =0.04

o \ ' /\
/ \ ——p-0.08, g=0.01

4%

2%/

non-cumulative adoption

Fig. 1. p, q space four regions and periodic sales curves

The parameters p and ¢ are usually considered to be
constrained to positive values. In some researches (i.e.,
Srinivasan and Mason, 1986; Rafi and Akthar, 2011),
p or g (but not both) may be 0. Bass (1969) states ex-
plicitly that, when estimating the value of ¢ through
regression of other methods, it must be positive in or-
der for the model to make sense. Jiang et al. (2006)
mention that non-positive values of p are not plausible.

Chandrasekaran and Telli’s (2008) empirical study,
mentioned by Boyle (2010), summarizes many diffu-
sions of innovation cases and concludes that the mean
value of the coefficient of innovation, p, for a new
product lies globally between and 0.03 and
there are differences between markets. The mean val-
ue of the coefficient of innovation for a new product
is 0.001 for developed countries and 0.0003 for de-
veloping countries The coefficient of innovation, ¢,
is higher for European countries than for the United
States The mean value of the coefficient of imitation
for a new product lies globally between 0.38 and 0.53
and there are differences between developed coun-
tries and developing economies, as well as difference
between industrial and consumer markets. Industri-
al/medical innovations have a higher coefficient of
imitation than consumer durables and other innova-
tions The mean value of the coefficient of imitation
for a new product is 0.51 for developed countries and
0.56 for developing countries. In most of the empiric
researches (i.e., Bass, 1969; Sultan et al., 1990;
Chandrasekaran and Tellis, 2008), almost all prod-
ucts, usually durables, reside in region A. Ainslie et
al. (2005) research new movies diffusion. They dis-
tinguish between Blockbuster-type movies with aver-
age p = 0.38, g = 0.044, which, according to our
mapping, reside in region D, and Sleeper-type movies
with average p = 0.155, g = 0.474, which, according
to our mapping, reside in region B.

2.2. Can the innovation coefficient value be zero
or negative? At a first look it seems impossible
since diffusion cannot start. Srinivasan and Mason
(1986) claim p must be positive and g must be non-
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negative. Rafi and Akthar (2011) allow also that p = 0.
They explain that there are two special cases of the
Bass diffusion model. (a) When ¢ = 0, the Bass
model reduces to the Exponential distribution, (b)
when p = 0, the Bass model reduces to a special case
of the Gamma/shifted Gompertz distribution. In
fact, when using seeding, as in Jain et al. (1995),
diffusion can start when p + gF (0) > 0. If p value

is negative, but a marketer uses seeding strategy
with seed size of F(0) > ‘ p‘ /q, then, diffusion can

mathematically start. The interpretation of a nega-
tive p value does not necessarily mean that the
product is useless. There can be cases when there
are price or effort barriers to adoption when very
few others have already adopted. However, when
others adopt the benefits from the product increase,
due to externalities or uncertainty reduction, the
product becomes more and more plausible for many
potential customers. Katz and Shapiro (1985) men-
tion that there are barriers to foreign automobile
manufacturers, where sales are often retarded. These
barriers are due to reluctance of customers and their
concern regarding less experience and thinner ser-
vice for new or less popular brands. As the brand
gains popularity, the barriers are lowered and the
drive to adopt it increases. Oren and Smith (1981)
claim that a major problem facing a producer inte-
rested in introducing a good network is the ability to
attain a critical mass. Once the critical mass is
reached, the initial structural inertia is overcome and
the network experiences growth. They propose a
method for finding the optimal price (for profit max-
imization) and calculating the critical mass, or seed
size, required to start the market. Their method is
based on the demand curve, considering networks
effect and cost structure. Farrell and Saloner (1986)
and Economides (1996) applied and tested this me-
thod on several empiric cases. In such cases, seeding
is used not only for accelerating diffusion, as in Jain
et al. (1995), but is a precondition for starting the
diffusion. Interestingly, Jain et al. (1995) do not re-



fer to such cases and check seeding effect only for
positive values of p and g. The cases where seeding
can overcome the barriers to adoption, expressed by

the negative value of p, are when ¢ > | p| . When this

condition is not fulfilled, the barriers to adoption
cannot be overcome by seeding. Note that, when the
interest rate is low, diffusion acceleration does not
justify the expenses and sales loss of seeding. With
negative p that can be overcome with seeding, the
justification for it is inherent. When interest rate is
low and there is no incentive for acceleration, we
will keep the seeding size close to its minimal limit
(F, ~|p|/q)- Note that, when the ratio |p|/q is
higher, the seed that is required to start the market is
larger.

Cumulative adoption and peak time with seeding,
according to Jain et al. (1995), are applied (only
when ¢ value is positive) also for negative p and
equal:

_rA-F) o (Pt

1
+ gF,
F(t) = p+qr, :
p +qF,
pre 1 94=F) (10)
P+q p+4qF,

Without seeding, when F, = 0, equation (10) re-
duces back to (2, 8). With negative p and when the
seed size is close to its minimal limit ( F, = |p|/q),

we always have a periodic sales peak. Furthermore,
since (9) applies also for negative p, the condition
for having two inflection points is:

M>2+\/§‘

(11)
p+qkF,

Condition (11) is always fulfilled when seed size is
close to its minimal limit | p| / g for any g/p ratio.

Figure 2 presents two curves of negative p and two
curves of their corresponding (absolute value) posi-
tive p. While the positive p curves may have a sin-
gle or two inflection points, its corresponding curve
has two inflection points in both cases. Note that,
when p value is negative, seeding is essential and
the diffusion is much slower. Due to the require-
ment that the seed F ~ |p|/q is less than 100% of

the potential market, the corresponding positive p
diffusion curve belongs to either region A or B and
there is always a periodic sales peak.

Result 2: The assumption of positive p can be re-
leased. In such cases, seeding of at least | p| / q is

Innovative Marketing, Volume 12, Issue 1, 2016

essential for starting the market. It represents a
market where initial critical mass is required to
start the diffusion.

8% ——

=—p=0.01, q=0.3
p=0.1, q=0.2

6% +——

. M
w 1A

0 20 10 . 60 80 100
time

non-cumulative adoption |

Fig. 2. Comparing positive and negative p values

Another question about the p, ¢ parameters range
is whether ¢ can be negative. Moldovan and Golden-
berg (2004) incorporate negative word-of-mouth
(WOM) effect on diffusion models. However, they
refer to a mix of both positive and negative WOM of
adoption support and resistance with an overall posi-
tive effect. We claim that diffusion can progress even
with overall negative ¢ value. A negative g does not
necessarily mean that adopters are disappointed and
unpleased with their purchase. It can fit a case where
the benefit from a product declines as more people
adopt. For example, for a certain demand level for
train commute, reserved tickets may be sold to those
who would like to guarantee a seat. Those who do not
buy a reserved ticked may have to commute while
standing. As more reserved tickets are sold, the over-
load in the non-reserved train car is reduced, and the
likelihood to find a free seat at the non-reserved train
car increases, thus, reducing the incentive to buy a re-
served ticket. Another example is taking a training
course that qualifies PC technicians or mobile applica-
tion programmers or a foreign language translation.
When there are few PC technicians or other rare skill,
their salaries are high. As knowledge becomes more
common, the worth, and the salaries to those who have
the required skill, decline. Negative externalities ef-
fects, where more users make a product less valuable,
are mentioned by Naglerw (2011) who explains that
they are usually caused by congestion that occurs due
to overuse. While non-cumulative sales curve with
negative ¢ is similar to those with ¢ = 0, the cumula-

tive presents a more interesting feature. When p > |q

’

the market will reach 100% of its potential at the long
range, as for a regular positive value of ¢g. However, if

p<lq
based on (2), is F(I)TPACI

that the market will saturate at an equilibrium level
p / |q| of its potential. Figure 3 presents both cumula-

, the long range forecast for cumulative sales,

, which means
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tive and non-cumulative sales curve of cases with posi-
tive and negative g values. The effect of the p/|q|

ratio is presented too. The negative ¢ creates a damp-
ing effect that contradicts the drive to adopt. The
damping effect strengthens as cumulative adoption
increases and, when p = F(t)- |q| , the drive to adopt

Non-cumulative adoption

is balanced by the ¢ damping effect. The saturation
level is a stable equilibrium and if the cumulative
adoption starts at a higher level, or even 100%, it will
decline (i.e., negative non-cumulative adoption) to
p/ |q| . This is demonstrated by the broken line curves

in Figure 3.

Cumulative adoption

12%

p=0.1, g=-0.2

p=0.08, q=-0.01 ———

adoption(%)

Fig. 3. Comparing cumulative and non-cumulative adoption with positive and negative g

Result 3: The assumption of positive ¢ can be re-
leased when p is positive. At both, the periodic
sales will experience steady decline, while, cumu-
lative adoption asymptotically approaches its
equilibrium. The equilibrium may be 100% of
the potential market, as in a “regular” diffusion,

when p > |q| . The equilibrium is p/|q| , which is
a portion of the potential market, when p < |q| .

When p + ¢ = 0, Bass solution (2) is undefined, al-
though the discrete time (3) can still be applied. For
this case, the Bass equation is:

dF (¢
ro =29 (1-Fo)y. (12)
dt
The solution for this case is:
1
F(t)=1- . (13)
p-t+1

A summary map of the combinations we discussed
is presented in Figure 4.

It presents the classic (positive p and ¢g) Bass model
p — q space regions, but in a greater details (four
region rather than two). The map also presents re-

gions with negative p or ¢ values that were consi-
dered to be out-of-scope in previous researches.

T oo

S

- ———

et 2

Fig. 4. Extended p — ¢ space map

We summarize all seven regions of ¢/p that deter-
mine the existence of these points on the non-
cumulative sales in Table 2.

Table 3 presents examples for the values of p and ¢
at each region and whether there are peak and in-
flection points, as well as a need for seeding and
saturation level.

Table 2. The seven regions of ¢/p, boundaries, peak, inflection points and equilibrium

Region Lower(l;/zund of Upperc;gund of Lowoefr ;/Zase Uppoefr (;)/gase inﬂggtr;ze‘; gi];w . Peak exists (Esg?tzhrgi:grr?)
A 2+4/3 75° 90° 2 Yes 100%
B 1 2443 45° 75° 1 Yes 100%
C 2-43 1 15° 45° 1 No 100%
D 0 2-43 0° 15° 0 No 100%
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Table 2 (cont.). The seven regions of ¢/p, boundaries, peak, inflection points and equilibrium

Region Lower;/:und of Upper;/;und of Low;afr (%ase Upp:fr qp/Zase inﬂgg{irg)t:]e; (())i]; . Peak exists (ESC]aLtlﬂlrbartlil;r:)
E -1 90° 135° 2 Yes 100%
F -1 0 -45° 0° 0 No 100%
G -1 -90° -45° 0 No p/lgl

Table 3. Examples of different parameters sets that belong to different regions of p — g space and their properties

Region A B C D E F G
p - qphase 75°-90° 5°- ° 5°- ° o ° o ° -45°-0° -90°-45°
Peak yes yes no no yes no no
Inflection points 2 1 1 0 2 0 0
Minimal seed 0 0 0 0 Ipl/q 0 0
Saturation 100% 100% 100% 100% 100% 100% pligl
p -0.1 0.1
q 0.2 0.2
qp 2 2

Note that most empiric studies (Sultan et al., 1990;
Lilien et al., 2000; Chandrasekaran and Tellis, 2008)
found that most successful product p — g values re-
side in region A. Still, with proper marketing ac-
tions, products at region E can succeed as well.
Products in region G can succeed as well, but will
be adopted only by a portion of the potential market.

3. Mapping the discrete time Bass model
parameters space

When referring to the discrete time diffusion equa-
tion (3), formulated by Lilien et al. (2000), and to
the likelihood of purchased (5), mentioned by Bass
(1969), it adds some boundaries not only to the p/g
ratio, as presented above, but also to parameters ab-
solute values.

When referring to regions A to D, where p and ¢ are
non-negative, and seeding in optional, we can as-
sume that at launch F(0) = 0, thus, the probability of
purchase at time n = 0, according to (5), is P(0) =
pa- Since P(n) represents a probability, one can imp-
ly that the value of p, is bounded between [0:1]. Af-
ter a long time the whole market adopts
F,(n) =1, thus, P(n) =p, +q,. We can
imply that the value of p,+¢, is also bounded in the
range [0:1]. Indeed, Noratikah and Ismail (2013) do
mention that the values of p,; and g, are bounded in
the range of [0:1]. While the parameters p and ¢, of
the continuous Bass model represent a rate and,
thus, can vary to any positive number, the parame-
ters of the discrete time Bass model (p, and g,) are
bounded in the range of [0:1] and also their sum.
For regions F and G, where p is positive, but ¢ is
negative, the likelihood probability at launch P(0) =
pq and with no seeding F,(1) = p,, purchase likelih-
ood , see (5), during the following period is:

n—»0 n—»0

P0)=p,+q,-E0=p,+q, - p,=p, (1+q,). (14)

It means that, since p, is positive and P(1) is a
probability, limited to [0:1], the value of g, must
be higher than —1. For region E, where p, is nega-
tive, seeding is essential. The values of g, , as well
as p, +¢q,, must be positive. For region E, we do
not have further limitations regarding the individual
values of p,andq,. There may be cases where the
absolute values of p, and ¢, are higher than 1, but
their sum p, + g, is between 0 and 1.

Figure 5 presents the p, — g, space mapping of the

discrete model (3). Note that it includes a sub-area
of the continuous model (1) map (see Figure 4).

{-1,-1)
Fig. 5. Discrete time p,- ¢, space map

Result 4. Discrete time model parameters p; — ¢,
space is more constrained compared with the p — ¢
space of the continuous time map. Its valid areas
reside in a sub-area of the continuous time map.
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4. Mapping the Satoh discrete time analytic
solution parameters space

The Satoh (2001) model is a discrete solution for the
continuous diffusion model (1). Its solution (6)
matches perfectly the Bass solution (2) when time is
an integer but it still follows the probability (5) restric-
tions. When referring to regions A to D, where p and ¢
are non-negative, we can directly imply from (7) that

both p, and ¢, are within the range of [0:1]. For re-

gions E to G, where p and g have opposite signs, there
may be cases where the absolute values of p, and g,
are higher than 1. Still, Satoh parameters still follow
the —1< p, +¢g, <1 constraint. Figure 6 presents the

relation between Satoh (2001) k and p, + ¢, parame-
ters to the Bass (1969) p + g . From (7) we see that the
p — ¢q phase of Bass and Satoh are identical
q, ! p, = p/ g so it maintains the same region.

do

Fig. 6. Relation of Satoh discrete parameters and continuous Bass parameters

Note that there is singularity when p, + g, = 0,
which applies also for p + ¢ = 0 and for p,; + g4 =
0, and also that, for regions E to G, the individual
absolute values of both p; and ¢g; may be much
higher than 1, while their sum is bounded by —1

and 1. Table 4 presents such three examples,
where both p, and ¢, have high absolute values
while their sum is 1. Note that, for region E also,
the parameters of the discrete model (3) can have
individual absolute value higher than 1.

Table 4. Examples of p,, p; and g,, g, that have absolute values higher than 1

Region E G F
Bass p -190 190 200
Bass q 200 -200 -190
Satoh k 0.1 0.1 0.1
Satoh ps -19 19 20
Satoh gs 20 -20 -19
Lillien pa -2 0.95 0.99
Lillien ga 3 -0.99 -0.95

The p — g space map of the Satoh (2001) is presented in Figure 7.

7/

/
$
i’

-~

Fig. 7. The p — ¢ space map of the Satoh (2001)
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Result 5. The Satoh pg, g5 space is similar to the
discrete time model parameters p;— ¢, space but
is less constrained compared in regions F and G.

5. Switching between continuous time
and discrete time forms

Many researchers, including Bass (1969), switch
between the continuous form (1) and the discrete
time form (3) without an explicit notice. While, in
many cases, the discrete time parameters and fore-
cast seem to be very close to those of the continuous
time, in some cases, the difference between the fore-
casts is significant. The major issue for maintaining
the properties of the curve, in the transition from con-
tinuous time to discrete time form, is the requirement
to have enough data points per time. The theory of
how many data points are required was outlined by
Shannon (1948) who provided a theoretic basis for
the sampling rate boundaries found by Nyquist. Ny-
quist (1928) determines that, when we are interested
in maintaining the information of the harmonies as a
signal, and being able to restore the original conti-
nuous time signal from its discrete time samples with
little distortion, we need at least two data points be-
tween successive curve peaks. In the context

||

I Il
I l

Innovative Marketing, Volume 12, Issue 1, 2016

of the Bass model curve, we need to consider how
many data points are between start (t = 0) and first
inflection point (when we have one), and between
inflection points and peak. These times are deter-
mined by p, g values. The distortion, or the RMSE
(Root Mean Square Error) of the continuous and
discrete time forecasts difference, is calculated for
each p, g coordinate as:

RMSE = \/1 : ni(F(i) ~F,())".
n

i=0

(15)

Where n is the number of periods from launch to
saturation and F, F, are the forecasts according to
the continuous (2, 10, 13) and discrete (3) forms
correspondingly, when the same parameters values

areused (p=p,:q9=4g,).

Figure 8 presents how the distortion (RMSE) varies
across the p, g space. The distortion at the green
areas is between 0 and 0.015. At the yellow areas, it
is between 0.015 and 0.07. The distortion at red
areas is more than 0.07 and up to a maximum of
0.154. The map was generated with 0.01 steps of p
and ¢ values.

Fig. 8. Distortion (RMSE) p — q space map

In almost all empiric cases, the values of p, g reside
in the low distortion (green) areas where a transition
between the continuous and discrete time forms is
seamless and causes insignificant distortion. There
are some other cases, where the values of p, g reside
in the yellow areas with minor impact. In the rare
cases, where the values of p, g reside in the red
areas, a transition between the continuous and dis-
crete time causes a significant distortion and re-
quires careful adjustments.

Result 6: The transition between the continuous
time and discrete time form is justified, as in
most existing empiric researches, where p, ¢ val-
ues reside in regions with low distortion. In cases
where p, g values reside in high distortion re-

gions, such a transition would have a significant
impact on the forecasts.

Conclusion

In this paper, we explored the properties of diffusion
curve patterns and how they depend on the p, ¢ pa-
rameters values and p/g ratio. Rather than distin-
guishing between two regions, with or without peak,
as in previous research, we refer to four different
regions {A, B, C, D} that are categorized also by the
number of the inflection points. We also develop an
analytic formula for the inflection points’ times. We
also extend the common p — ¢ space to include re-
gions {E, F, G} with negative values of p or ¢ and
provide marketing intuition or insight to the mea-
ning of the negative values and to the market beha-
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vior. In region E, we define a new motivation for
seeding which, unlike previous research, is not used
only for accelerating the diffusion, but, in certain
conditions is essential for starting the market.
Another contribution of this paper is defining the
conditions to saturation below 100% (unlike pre-
vious concept that any product will finally cover the
entire market). We also highlight some differences

between discrete time and continuous time flavors
of diffusion models and the map of the regions,
where a switch between them is appropriate. Future
research may propose an intuition for the regions
that are still white in the p — g space maps and ex-
plore their properties. Another direction may be de-
veloping an analytic solution for the discrete time
diffusion difference equation.
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Appendix A: Inflection points calculations

e (Pra)t

2
(1 + q e-(p+q)‘fJ
p

For finding the inflection points, we need to find where the derivative equals 0.

Bass solution for the non-cumulative adoption rate is: ft)= (P+49)

The derivative is calculated using the formula:

dh(t) dg(t)
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When comparing the numerator to 0, since denominator is always positive, as Bass (1969) we can find the periodic
sales peak time ¢ .

)

For finding the inflection points, we need to calculate when the second derivative equals 0.

Changing variables for convenience

q
(p+q) —xn1-Lx
X(t)=e ok 2> . (p+q)’ (t)[ P (t)]
= :
u (1+qx j
(1)
p

. [ 1+2qX(t)J X*(z)-[1+qX(z)j —3(1+qX(t)J (qu‘(t)(—X(t)Jquz(t)j
(p+9q) p 14 p P P
p

(1+qX(t)j
p

@)=

Comparing the numerator to 0
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(—1+2—qX(t)J-X\(t)-(1+iX(t)] —3(1+1X(t)J -(iJX\(z) [ xn+Lx (t)J
p p p p p
(—1+—X(t)J (1+1X(t)) —3X(t)(1+1X(t)) -(ij{—nixu)j:

p p p p
[ 1+—X(t)j (1+—X(z)] 3X(t)-[iJ-[—l+iX(t)J
p p

ij X2(t) -4 ( JX(t)Jrl—
p

ln[qJ —In(2++/3)
p

X = =L 01 3)= ~(p+qy = ln(2i\/§)—ln[ij ==
q p

P+q
Since In(2++/3) +In(2=+/3) = 1In(2> =3) = 0 = In(2 £ +/3) = £In(2 + +/3)
The times of the inflection points are:
h{qj ~In2 £+/3)
s P :t*iln(2+\/§)
p+q p+q

Note that the inflection points are at equal distance from the peak.

40



	“Parametric analysis of the Bass model”

