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SECTION 1. Macroeconomic processes and regional economies 
management 

Maria Russolillo (Italy) 

Tackling non-communicable diseases by a forecasting model  

for critical illness cover 

Abstract 

Non-communicable diseases are the most frequent causes of death in most countries in the Americas, the Eastern 
Mediterranean, Europe, South-East Asia, and the Western Pacific. In the African Region, there are still more deaths 
from infectious diseases than NCDs. WHO projections show that NCDs will be responsible for a significantly 
increased total number of deaths in the next decade (WHO, 2014). In this context, the market of illness insurance is 
strongly being developed, allowing policyholders to reduce the financial impact of diseases. Indeed, critical illness 
insurance typically provides a payment of a lump sum in the event of the person insured suffering a condition covered 
under the policy. In other words, the insured receives a fixed sum on the diagnosis of a specified list of critical 
illnesses. The contract terms may also be structured to pay out regular income cash-flows on the policyholder. 
In general, since the policy face amount has to be paid on diagnosis, the incidence rates or diagnosis rates have to be 
accurately estimated. The research is here developed around the following focal and original points: 

 the estimation of the diagnosis rates by means of an analysis by cause of death for obtaining cause-specific diagnosis 
rates: in particular, the author modelі the probability of death by cause as a proxy of the estimate of the diagnosis rates; 

 the cause-specific death rates are modelled by a stratified stochastic model for avoiding the durable problem in 
literature of the dependence among different causes of death; 

 a fair valuation framework is adopted for pricing a specific product of critical illness insurance. 

The analysis is completed by empirical findings.  

Keywords: critical illness, diagnosis rates, Lee-Carter model, stratified sampling. 
JEL Classification: C02, G22, J11. 
 

Introduction 

Today, non-communicable diseases (NCDs) like 
cancers, cardiovascular diseases, chronic respiratory 
diseases, and diabetes, are the major killers in most 
of the countries. Despite real-life case studies 
around us, and the oft-repeated reports and statistics 
being flung our way, many continue to be ill-
prepared for illness when it strikes us or our family 
members, especially on major illnesses. When 
calamities strike, we fall back on savings and 
personal finances to fund treatment needs. Costs for 
treatment vary widely depending on location, tests, 
procedures and hospital. It takes several years to 
make up for what patients lose in terms of monetary 
loss if they dip into personal savings to cover 
expenses. According to the World Health 
Organization statistic (WHO, 2014), there is a 10% 
of probability that a person between 30 and 70 years 
could die of any of the four non-communicable 
diseases in Italy. Getting a critical illness insurance 
cover, then, seems to be an obvious choice. But few 
people opt for health insurance, and of that barely a 
fraction gets the additional critical illness cover. 
Basic healthcare insurance does not cover critical 
illness, and even if it did, the amount is too small to 

                                                      
 Maria Russolillo, 2016. 
Maria Russolillo, Ph.D., Associate Professor, Department of Economics 
and Statistics, University of Salerno, Campus Fisciano, Italy. 

cover any major medical treatment. Critical illness is a 
very important pure health cover and should be 
included in a person’s portfolio to guard one from any 
such eventualities. Underwriting a critical illness 
coverage allows the insured to receive a lump payment 
which can be used to pay any ongoing financial 
commitments such as a mortgage, loans, in event of 
critical illness. Furthermore, the coverage can be used 
for any specialist medical treatment, upon diagnosis of 
any critical illness outlined in the policy. 

For the insurance company management perspective, 

it is essential to avoid mismatch between the actual 

settled claims with expected diagnosed claims, by 

accurately evaluating the diagnosis rates, in order to 

measure the actual future outflows. 

In the critical illness insurance, the claims that it 

expects to be settled in the years arise from 

diagnoses. In other words, they are tightly related to 

the diagnosis rates. 

When a critical illness claim is incurred, the insurer 
has to settle the payment. In this order of ideas, it is 
very relevant to determine the diagnosis rates. The 
aim of the paper is to propose a methodology for 
deriving the diagnosis rates by resorting to an 
analysis by cause. The layout of the paper is the 
following. Section 1 describes the critical illness 
market. In Section 2, we describe the Lee-Carter 
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model in its Poisson version; in Section 3, we 
propose the adjusted stratified Lee-Carter model; 
Section 4 shows the details of a typical contract of 
critical illness insurance; in Section 5, some 
numerical results are presented. Concluding remarks 
are offered in Final Section. 

1. The critical illness market 

The 20th century witnessed a high decline in the 
mortality level of populations, namely, in more 
developed countries. The positive evolution of 
mortality implied a substantial increase in the life 
expectancy, stimulated, in the first times, by the 
infant and youth mortality reduction and, in the last 
years, also by the reduction in the mortality rates of 
the old generations. The increasing survival in 
higher ages associated to the smaller number of 
births implies more and more aged populations. A 
higher longevity has direct impact on the costs of 
the social security public systems and on the health 
care expenditures for individuals, families, seniors, 
and small businesses. 

The critical illness market, in particular, in UK, 
growth up to 1999 was followed by a plateau in 2000 
and 2001. Sales peaked in 2002, when over one 
million accelerated critical illness policies were sold 
(CMI, 2010). According to the 2012 U.S. Critical 
Illness Insurance Market Survey (GenRe, 2012), 
participants report $147.5 million in new premium 
sales for the year 2011. Critical illness insurance 
typically provides the insured a fixed sum on the 
diagnosis of a specified list of critical illnesses. In 
particular, in our research, we propose to express the 
diagnosis rates for the specific illness by estimating 
the cause-specific mortality probabilities. 

According to the WHO, a “right” detection of the 
causes of death is vital for forecasting more 
accurately mortality. Booth and Tickle (2008) 
provide an overview of mortality projection by 
cause of death. Girosi and King (2008) proposed a 
Bayesian model to use information on causes of 
death to estimate more accurately mortality. 
Furthermore, the U.S. Social Security 
Administration carries out projections by cause of 
death, as described in “Board of Trustees of the 
Federal Old-age and Survivors Insurance and 
Disability Trust Funds Report” by Social Security 
and Medicare Boards of Trustees (2009). 

There are two types of critical illness covers (from 
herein, CIC): acceleration of death benefits and 
standalone. Experience suggests that the products 
under accelerated CIC, where the benefit is provided 
upon death or diagnosis of a critical illness, whichever 
occurs first, is more popular than standalone. The 
insurance of accelerated critical illness (CI) risk is 

often in the actuarial practise aligned with the 
associated mortality risk. The reason for this is, 
essentially, a practical one, because there may be 
insufficient opportunity to acquire the medical 
evidence that allows the critical illness claim 
definition. Consequently, as the death is believed to 
occur shortly after a critical illness event, the insurer, 
generally, insists on insuring the associated mortality 
risk on the same basis. In these terms, the diagnosis 
rates for the specific illness can be measured by the 
cause-specific mortality probabilities. 

2. The model 

Mortality forecasts are used in a wide variety of 
academic fields, and for global and national health 
policy making, medical and pharmaceutical 
research, and social security and retirement 
planning. In the last decades, several mortality 
forecasting methodologies have been developed: 

Biomedical Process‐based, Expert-based, Structural 
Modeling (Explanatory or Econometric), 
Decomposition and Disaggregation, Trend 
Modeling (Extrapolation). As it is known, 
Extrapolation methods fail to account for future 
structural change. Anyway, there are many 
justifications for using Extrapolation methods, as, 
for example, the complexity and stability of 
historical trends. Extrapolation may be the most 
reliable approach in terms of forecast accuracy. As 
Keyfitz said: “…we cannot afford to be ashamed of 
extrapolating the observed regularities of the past” 

(Keyfitz, 1982). But there is a trade‐off between 
model fit and forecast accuracy: in-sample errors 
may not be a good guide to forecast errors.  

Extrapolation methods have had significant 
development in the last few years: the basic Lee-
Carter model (LC from now on) has been extended 
and, among its extensions, we can remember, for 
example, the log-bilinear Poisson version (Renshaw 
and Haberman, 2003a,b,c), the age-period-cohort 
version (Renshaw & Haberman, 2006) or the 
stratified LC model (Butt and Haberman, 2010, etc.). 

In order to develop forecasts of future mortality rates, 
it is necessary to transform the raw or crude mortality 
data into appropriate mortality rates, probabilities and 
other metrics suitable for valuation and risk 
management. To this aim, the LC model is one of the 
most popular theoretical frameworks. It belongs to the 
extrapolative stochastic methods assuming that the 
observed historical trends of human mortality 
improvement will persist into the future. 

In the LC modelling approach, the age effects are 
assumed to be constant in time, and the time-variant 
period effects are projected forward using 
autoregressive time series models. Thus, the period 
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factors are extrapolated in time by a stochastic 
ARIMA process (e.g., random walk with drift) in 
order to make forecasts of the future force of 
mortality and, implicitly, future life expectancy. 

In its original formulation, the LC model is 
expressed as:  

 log ,xt x x t xtm                                        (1) 

where the logarithm of a time series of age-specific 
death rates mxt is expressed as the sum of age-
specific parameters, αx indicating the age-specific 
pattern of mortality and a component given by the 
product of a time varying parameter κt, reflecting the 
general level of mortality and the parameter βx, 
measuring the sensitivity of mortality at each age to 
changes in the general level of mortality.  

In this paper, we resort to an alternative model 
version: the so-called log-bilinear Poisson version of 
the Lee-Carter model (Renshaw and Haberman, 
2003c), which is based on an iterative method 
applied to the deviance function. This approach 
assumes that the age and period-specific number of 
deaths Dxt are independent realizations from a 
Poisson distribution with parameter: 

  expxt xt xtE D e   where xt x x t     . 

Because the predictor ηxt is non-linear in the 
parameters, it cannot be implemented as a GLM. 
However, adapting the iterative fitting method due 
to Goodman (1979), as described in Brouhns et al. 
(2002), it is possible to optimize the Poisson 
likelihood by monitoring the associated deviance 
(Renshaw and Haberman, 2003c). 

3. The adjusted model 

In this Section, we introduce a significant handling to 
the stratified Lee-Carter model (from herein, SLC) 
proposed by Butt and Haberman (2010). It allows for 
taking into account the valuable information by the 
main causes of death improving the forecasting 
performance. Simultaneously, the methodology we 
present overcomes the problem of dependence 
between causes, which represent competing risks. 

In particular, the key points which enhance the 
powerfulness of the model concern the stratified 
probabilistic sampling and the multivariate random 
walk. The first one allows for determining the 
weight of the cause of death, according to the 
proportional allocation scheme. It is consistent with 
the heterogeneity of the population under 
consideration. In other words, the effectiveness of 
the sampling is increased by the organization in 
homogenous groups. The second one captures the 
correlation between the subpopulations composed 
by the different causes of death. 

The longevity phenomenon is explored by age, period 
and cause of death, where the extra variate 
h = 1, 2,…, H corresponds to the h – th subpopulation 
identified by h – th cause of death which denotes the 
stratum h – th. In practise, the whole region of interest 
is split into H disjoint subset, the so-called strata: 

1

.
H

h

h

Z Z


  

The following notation is introduced: 

1,2,..., hi N  size of the h – th stratum, 

1

H

h

h

N N


  size of the population, 

h
h

N
n

N
  size of the h – th sample,  

h
h

h

n
f

N
  sampling ratio in the h – th stratum. 

In order to quantify the differences in the mortality 
experience of population subgroups differentiated 
by an additional measurable covariate (other than 
age and period), this model assumes a direct 
additive effect of an observable factor on the log 
mortality rates across all ages and calendar time 
periods. In this way, the classical Lee-Carter 
relationship, when it is introduced a Poisson error 
structure, becomes the following:  

 log ,xth x h x t xt hd B K                           (2) 

where dxth represents number of deaths, αx is referred 
to the whole population, while αh measures the 
relative differences between the age-specific 
mortality profiles on the log scale of the population 
subgroups defined by the extra variate (Butt et al., 
2010). The model here assumes that mortality rates 
for h populations are driven by a common stochastic 
factor. In other words, the trend of changes in 
mortality is the same for each subpopulation, that is, 
the time-varying index of the whole population Kt, 
as the sensitivity of mortality at each age to changes 
in the general level of mortality expressed by Bx. 
To estimate the parameter values, it is necessary to 
compose a matrix so built: 

 
1

ln ,
H

h xth xh

h

f m 


                                          (3) 

where fh is the stratified sampling ratio, mxth represents 
the central mortality rates for each cause of death h and 

xh x h     characterized by the sum of specific 

parameters, respectively, for the whole population and 
for the subpopulation related to the cause of death h. 
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The fitting of the parameters is obtained by optimizing 
the Poisson likelihood of the associated deviance of 
the residuals of the matrix in formula (3). 

To capture the correlation between the 
subpopulations subdivided by cause of death, the Kt 
follows a multivariate random walk with drift: 

1 ,t t tK d K     

 1 2, ,..., ,t t t tHK k k k  

 1 2, ,..., ,
T

Hd d d d  

 0, .t N    

In this contribution, we propose a variant of the SLC 
model, in order to obtain accurate survival 
projections, capturing the heterogeneity in mortality 
trend given by different causes of death.  

In this framework, we determine the cause-specific 
death probabilities qh, where the index h denotes a 
specific cause which approximates the diagnosis 
rate for that cause. 

4. The critical illness insurance 

According to Swiss Re Term & Health Watch (2008), 
the critical illness insurance has largely developed. In 
2007, sales for a particular contractual option, the so-
called Accelerated Critical Illness, accounted for over 
90% of all critical illness plans taken up in the UK. 

The critical illness cover pays a lump sum amount 
or critical illness benefit in the event of the life 
assured getting diagnosed with any of the critical 
illnesses covered by the policy during the period of 
coverage. The policy contract guarantees a benefit 
only on diagnosis of a pre-determined list. The 
number of diseases named in the contract varies 
from insurer to insurer, but cancer, stroke, 
coronary artery bypass, major organ failure, 
paralysis, etc, are, generally, covered. 

Generally, the benefit payment is due only if the life 
assured survives a certain period after being 
diagnosed with the critical illness. 

There are two main contractual options: the 
Standalone Cover and the Accelerated Cover.  

In the first case, the critical illness cover is separated 
from the life cover. Standalone Illness Cover 
guarantees a predetermined lump sum if the assured 
is diagnosed with a specified illness during the term 
of the policy. 

In the second one, if the death of the person named 
on the policy occurred or the assured is diagnosed 
with a specified illness indicated in the contract, the 
Accelerated Illness Cover provides a lump sum 

payment. Nevertheless, if the assured is diagnosed 
with a specified illness, the insurer pays over the 
critical illness benefit. Furthermore, in case the 
assured recovers from the illness and dies during the 
contract period, the life company pays out the 
remaining life cover benefit. We consider a critical 
illness cover. 

Let us indicate by kx the healthy curtate future 

lifetime of the insured aged x at issue. 

The cash flow scheme related to the policy at time 

s  is the following, in the case of anticipated annual 

premiums: 

/ , 1 0 1

0 ,

1 1

m x s x

s x

s x

P       k s       s m

X                 k s             s m

B F       s k s     s n

    
  
      

 

with 1,2,...,s n  01 nP  and 0 1X P  

where / , 1m x sP   is the premium amount payable up to 

time m, and Bs is the critical illness benefit equal to 

the facial amount F. 

In light of a fair valuation of the policy (as in 

Coppola et al., 2009), the critical illness cover 

stochastic flow of the portfolio fs at time s, s  t by a 

trading strategy can be expressed as follows: 

0 / ,1m xf c P   if s = 0, 

/ , 1 ,u

s m x s s s sf P Y B Y    if s = 1, 2,..., n 

where ys is the number of healthy assured among the 

survivors or briefly we call healthy survivors at time s;
u

sY is the number of unhealthy assured among the 

survivors or briefly we call unhealthy survivors at 

time s, in particular, having 
u

s s sY Y y  , in which 

Ys is the number of the healthy and unhealthy 

survivors at time s. 

We formulate the stochastic provision at time t in its 

fair value form, replicating the stochastic flow Fs at 

time s as in the below mathematical representation: 

 

    

/ , 1

1

1

/

, / ,

n
u

t t t m x s s s s

s t

s s s t

V E L E P y B y

B Y Y v t s


 



       
  


(4) 

where Lt is the stochastic loss in t of the portfolio of 

c contracts in-force and  is represented by the 

filtration t   , containing the information flow 

at time t. On the basis of the conditional expectation 

calculus, we can write: 
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 

/ , 1 -

1

, / ,

n
h

m x s t x s t x t s x

s t

t

P  c  p   p B cq    

E v t s

 
 

   

  


         (5) 

where tpx is the survival probability of assured aged 

x up to time t, 
h

xq  is the h – th death or diagnosis of 

a critical illness rate of assured aged x, whichever 
occurs first, and v(t,s) is the stochastic present value 
at time t of one monetary unit at time s. 

5. Numerical analysis 

This Section is devoted to obtain mortality projections 
and to measure their impact on the solvency of a 
particular insurance product, the critical illness cover, 
according to different alternatives: 

 the aggregation of the causes of death or all-
causes death rates in the Poisson Lee-Carter 
setting (aggregated scheme); 

 the decomposition of the causes of death or 
specific-causes death rates in the Poisson Lee-
Carter setting (decomposed scheme); 

 the ASLC (adjusted stratified Lee-Carter) model 
(stratified scheme). 

5.1. Mortality data for analysis. The population 
data are characterized by the Italian total population 
from 1950 up to 2006 from 0 up to 110 years, 
collected from Human Mortality Database. The 
death rates above age 100 have been aggregated in 
an open age group 100+ (aggregated scheme).  

Mortality experience is made up by the cross-
tabulated mortality rates (mu) and the central 
exposures (e) by individual ages (x) and calendar 
years (t) sequence classified by cause of death. In 
particular, the World Health Organization (WHO) 
taxonomy has been slightly modified by including 
some classes of similar features (decomposed and 
stratified schemes). 

In the case of the decomposed and stratified 
schemes, the mortality experience is cross-classified 
by an additional covariate, a sort of grouping factor, 
the cause of death, where the dataset is best 
represented by a three dimensional matrix (i.e., 
array). In other words, we use cross-classified data 
by age, period and factor g. 

Figure 1 shows the parameter values of the Poisson 
LC by considering the entire Italian total 
population. 

 

Fig. 1. Poisson Lee-Carter parameters’ model – aggregation by causes of death, Italian total population 

The αx’s clearly increase in x, reflecting higher 
mortality at older ages, as expected. The βx’s decrease 
with age, remaining positive. The kt’s exhibit a regular 

behavior. In Figure 2, we report the forecasted kt’s 
which represent the overall mortality index, used for 
calculating the central death rates mxt. 

 

Fig. 2. Poisson Lee-Carter forecasted kt – aggregation by causes of death, Italian total population 
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Table 1 shows the kt prediction intervals for 
h = 1,…, 20 periods ahead at level of 95%. 

Table 1. Confidence intervals for forecasted kt – 

aggregation by causes of death, Italian total 

population 

h year ahead Point forecast Lo 95 Hi 95 

2007 77.22736 81.96754 72.48718 

2008 81.13388 86.31559 75.95217 

2009 85.04041 90.81710 79.26372 

2010 88.94694 95.46257 82.43130 

2011 92.85346 100.23749 85.46943 

2012 96.75999 105.12692 88.39307 

2013 100.66652 110.11755 91.21549 

2014 104.57304 115.19837 93.94772 

2015 108.47957 120.36048 96.59866 

2016 112.38610 125.59675 99.17545 

2017 116.29263 130.90144 101.68381 

2018 120.19915 136.26988 104.12842 

2019 124.10568 141.69824 106.51312 

2020 128.01221 147.18329 108.84113 

2021 131.91873 152.72232 111.11515 

2022 135.82526 158.31300 113.33752 

2023 139.73179 163.95331 115.51026 

2024 143.63831 169.64148 117.63515 

2025 147.54484 175.37593 119.71375 

2026 151.45137 181.15524 121.74749 

The plots in Figure 3 illustrate the logarithm of 
death rates for different causes of death ranging 
from 1979 to 2003. 

 

Fig. 3. Log death rates – decomposition by causes of death, Italian total population 

In Figure 4, we can observe projected mortality obtained by the aforementioned decomposition. 

0 20 40 60

-1
2

-9
-7

Italy: infectious diseases death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
4

-1
0

-6

Italy: metabolic diseases death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
1

-8
-6

Italy:  diseases of the nervous system death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
0

-6
-2

Italy:  diseases of the circulatory system death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
2

-8

Italy:  congenital anomalies death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
6

-1
3

Italy:  drugs death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
2

-9
-6

Italy:  endocrine diseases death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
4

-1
0

Italy: diseases of the genitourinary system death rates  (1979-2003

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-9
-7

-5

Italy:  accidents death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
2

-8

Italy: diseases of the respiratory system death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
1

-9
-7

Italy:  diseases of blood death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
0

-6

Italy: malignant neoplasms death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te

0 20 40 60

-1
4

-1
1

-8

Italy: violence death rates  (1979-2003)

Age

L
o

g
 d

e
a

th
 r

a
te



Problems and Perspectives in Management, Volume 14, Issue 2, 2016 

14 

 

Fig. 4. Forecasted central death rates – decomposition by causes of death, Italian total population 
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mortality data. The plots illustrated in Figure 5 
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mortality profiles. 

 

Fig. 5. Artificial log death rates – ASLC model 
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The estimation of the evolution of kt by means the ASLC model is reported in Figure 6. 

 

Fig. 6. Poisson Lee-Carter adjusted kt – ASLC, Italian total population 

We note that the sub grouping of the dataset can be 
carried out by more than one additional covariate, 

where covariate is represented by a, b, c, d, e, f as 
reported in Table 2. 

Table 2. Measure of αh, ASLC model 

Measure of αh 

BASE a b c d e f 

0  0.5176268  1.1997733  -0.7470632  2.4947570  0.4841734  0.4037400  

 

Fig. 7. Poisson Lee-Carter forecasted kt –- ASLC, Italian total population 

Figure 7 shows the forecasted kt by implementing 
the ASLC model. Table 3 shows the kt prediction 
intervals for h periods ahead at level of 95% in the 
case of ASLC. 

Table 3. Confidence intervals for forecasted kt – 
ASLC, Italian total population 

h year ahead Point forecast Lo 95 Hi 95 

2007 26.79760 31.63181 21.96338 

2008 27.96818 32.98668 22.94967 

2009 29.13876 34.38667 23.89085 

2010 30.30934 35.83250 24.78618 

2011 31.47992 37.32369 25.63615 

2012 32.65050 38.85885 26.44215 

2013 33.82108 40.43601 27.20616 

2014 34.99166 42.05287 27.93045 

2015 36.16224 43.70704 28.61745 

2016 37.33282 45.39614 29.26951 

2017 38.50340 47.11794 29.88887 

2018 39.67399 48.87036 30.47761 

2019 40.84457 50.65153 31.03760 

2020 42.01515 52.45976 31.57053 

2021 43.18573 54.29354 32.07791 

2022 44.35631 56.15153 32.56108 

2023 45.52689 58.03255 33.02123 

2024 46.69747 59.93553 33.45941 

2025 47.86805 61.85952 33.87658 

2026 49.03863 63.80369 34.27357 

We calculate the impact of the different kind of 

projections on the temporal profile of the 

mathematical provision of the insurance company 

balance-sheet. We take into account a critical illness 

cover issued at 2012, with maturity 2022 (10 years). 

The contract is characterized by a unitary amount 

and a benefit equal to 100.  
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Fig. 8. Mathematical provision critical illness cover, 10 years – Poisson LC aggregation by causes of death 

 

Fig. 9. Mathematical provision critical illness cover, 10 years – Poisson LC decomposition by cause (circulator system) 

 

Fig. 10. Mathematical provision critical illness cover, 10 years – Poisson LC ASLC 

The difference between ASLC and aggregation is 
significant. 

Conclusions 

Many demographers consider the causes of death as 
the key factors needed in mortality modelling 
(Gutterman et al., 1998; Tabeau et al., 1999). 
Systematic changes in causes of death represent 
common trends in longevity which should be included 
in mortality risk models. Nevertheless, the mortality 
has, generally, been analyzed by using extrapolative 
models neglecting the influence of the causes of death, 
in an aggregate projection setting. In order to take into 
account important insights on underlying socio-
economic factors provided by causes of death, many 
authors try to model cause-specific mortality models  
 

(Foreman et al., 2012). However, there are evidences 

that the decomposition by cause of death leads to 

conservative forecasts. In particular, model parameters 

for causes of death are often less stable in respect of 

aggregate mortality model, as remarked by Wilmoth 

(1995). Furthermore, the disaggregation by cause of 

death involves problems associated with the lack of 

independence among causes (Booth et al., 2008) and 

difficulty related to the coding of the data on the basis 

of different international rules. Especially, the issue of 

independence contradicts the presence of multiple 

causes which, instead, should require to incorporate 

the interrelations under consideration in the theoretical 

models. Over the last decades, to surmount this issue, 

an independence assumption has been postulated. 
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In this context, we proposed a forecasting model we 
called adjusted stratified Lee-Carter model which 
assumes a direct additive effect of an observable 
factor, i.e., the cause of death, on the log mortality 
rates across all ages and calendar time periods.  

The main advantages of our proposal are the 
following: 

 it includes the dependence between cause of death 
representing competing risks throughout the 
differentiation of the population in subgroups by 
an additional measurable covariate; 

 by stratifying, it allows for leading an aggregate 
analysis on the population, avoiding the 
problem of instable estimates connected to the 
decomposition by cause of death; 

 it is based on a model like Lee and Carter type 
structure belonging to a trend modelling class, 
so that it preserves their main prerogatives, as 
the most reliable in terms of forecast 
accuracy. 

Further extension of the research will be performed 
in terms of the impact on different kind of insurance 
portfolios. 
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