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SECTION 3. General issues in management 

Wilson P.R. Malebye (South Africa), Solly M. Seeletse (South Africa), Mario A. Rivera (USA) 

Merit measures and validation in employee evaluation and selection 
Abstract 

Applicants for employment are usually compared subjectively in the selection process, and the selections made are 
typically not reliable, if only because they are seldom verifiable empirically. The present study describes a process of 
much more objective selection sequence, one that involves a quantitative/mathematical measure that may be used in 
selecting a candidate applying for a job, in a process then adds two other independent measures to validate the decision 
taken. The approach followed is a stepwise combination of SToR methods (Statistics and Operations Research, 
incorporating SAW, TOPSIS, and WP). In this analysis, SAW (simple additive weighting) is used in the first-cut selection 
process, and TOPSIS (technique for order preference by similarity to ideal solution) and WP (weighted product) are used 
to validate selections. A practical exercise was developed from an actual selection problem, part of a real-world 
recruitment task undertaken in an organization for which the authors consulted, and in which the human resources (HR) 
department wanted to check if their selection was justifiable, and demonstrably valid. The resulting analytical approach 
was clearly valid, consistent, reliable, and replicable, and convincing to that HR department, since it considered the 
determinations made by our system quite satisfactory, while theirs could not stand up to empirical testing or corroboration. 

Keywords: candidate selection, HRM, SToR, SW, TOPSIS, WP, MCDM, fuzzy-goal programming, person-job 
requirement fit, person-job environment fit, decisional complexity. 
JEL Classification: C61. 
 

Introduction 

The selection of applicants for available job 
opportunities is most often an ambiguous, even ‘fuzzy’ 
process incapable of validation (Amid, Ghodsypour 
and O’Brien, 2007). Customarily, the hiring decision 
involves an interview panel selecting one applicant for 
a position for which there are many applicants, with 
interviews sometimes augmented by personality or 
competency testing, an ‘in-basket’ job simulation task, 
and similar standard devices. A common practice is to 
consider the applicant with the highest qualifications 
(in their application, résumé, interview, and testing 
performances) to be the best candidate. Generally, 
merit refers to the highest qualifications set or the 
highest marks in the entire complex of on-paper traits, 
interview outcomes, and testing results. This approach 
assumes that the attributes used in deriving the 
germane selection criteria were chosen in ways that 
were commensurate with their relatively-assigned 
priority weights. 

Another dimension to merit-based selection is the 
rigor of the candidate’s pertinent experience. A 
candidate with experience and training denoting the 
ability to work under severe conditions (such as high 
stress, or in the face of highly-complex and diverse 
tasks) tends to be more effective in difficult work 
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environments, better able to handle difficult tasks. In 
selecting candidates, it is sensible to assume that one 
who can perform difficult tasks can be trusted to 
perform these best in similarly difficult 
circumstances. However, these often intangible traits 
are difficult to measure accurately and consistently, 
which adds to the complexities associated with 
recruitment and selection efforts. 

In light of these vexing challenges, common as they 
are in Human Resource Management (HRM), the 
authors developed a multi-faceted and multi-
attribute decision procedure that entails assigning 
and assessing various role and task attributes 
serving as criteria for selection. The challenge then 
involves determining how these criteria can be 
applied and evaluated rigorously, so as to select the 
best-suited candidate from a competitive pool. 

Different job attributes are not equally weighted, but 
rather variable in consequence of assigned rank. In any 
given hiring situation, some attributes are regarded as 
more important than others, in a hierarchy of candidate 
traits with differential weighting consistent with the 
multiple ranking criteria involved. Candidate selection 
can therefore be approached as a multiple-criteria 
decision making problem that is variously affected by 
quantitative and qualitative factors and entails trade-
offs among conflicting criteria. Multi-Attribute, Multi-
Objective, or, relatedly, Multiple-Criteria Decision 
Making (MCDM) techniques can be used to help 
managers systematically evaluate a set of alternative 
candidates. As Wang, Hang and Dismukes (2004) 
remind us, in real-life contexts weighting and ranking 
differences depend on the perceived importance of the 
criteria involved, a concern to which we will return in 
the concluding sections of this study. 
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Consequently, we have developed a Multiple-
Criteria Decision Making (MCDM) system to aid in 
employee recruitment and selection. This system 
requires the careful articulation of quantitative and 
qualitative decision criteria, with explication of the 
choice of relevant attributes, the prioritization and 
weighting of these attributes, and the specification 
of evaluative rules (for instance, selectors for tied or 
very close final rankings). Candidate selection 
involving an MCDM system is typically affected by 
manifold conflicting factors corresponding to 
desired candidate attributes, attributes whose 
relative ranking depends on the prior determination 
of variables to be assessed. These factors invariably 
lead to combinatorial complexity, in both the 
specification of selection criteria and in the 
evaluation entailed by the final ranking of 
candidates, even under static conditions, with 
complexity increasing exponentially when 
conditions or preference mechanisms change 
(Jadidi, Hong, Firouzi, Yusuff and Zulkifli, 2008). 

Since there is almost always a combination of tacit 
(implicit) and specifiable (explicit) qualifications 
connected to any actual job, some of which likely 
pull against one another in actual practice, there is 
bound to be irreducible vagueness and ambiguity 
involved. The difficulty of selection problems 
cannot readily be resolved by deterministic models, 
since these problems lack sharp demarcation. In 
these cases, fuzzy logic and fuzzy set theory can be 
an effective tool to handle uncertainty and help 
solve the selection problems associated with lack of 
specifiability (Erol, William and Ferrel, 2003; Holt, 
1998; Morlacchi, 1997). Fuzzy goal programming 
has been used successfully in various studies for 
selection problems with multiple sourcing that 
involved many objectives (Choo and Wedley, 2004; 
Golec and Kahya, 2007; Kumar, Vart and Shankar, 
2004; Laing and Wang, 1992; Lazarevic, 2001; 
Lovrich, 2000; Royes, Bastos and Royes, 2003; 
Sakawa, 2002; Wang, Liou and Hung, 2006; 
Yaakob and Kawata, 1999). Even before utilization 
of fuzzy-goal programming in HRM contexts, there 
were efforts at developing more adaptive screening 
tools tailored to person-job environment fit rather 
than the rigid expectations of mere person-job 

requirement fit, for instance when recruiting 
professionals with experience in the disability 
services field (Wong et al., 1992). 

Related to the use of MCDM and MODM in 
selection processes, is multiple-attribute decision 
making. MADM, SAW, TOPSIS and WP are 
effective methods which may be used in tandem to 
handle complex screening tasks in ways that are 
both rigorous and capable of validation (Hwang and 

Yoon, 1987). Ideally, the methods to be 
implemented should assign a rational (empirically 
defensible) set of weights to desired position-
attributes, in calculating merit-based scores, 
pursuant to a normative process of selection of the 
best candidate for the job. 

1. Aim of the study 

The authors formulated the research problem as the 
empirically-defensible articulation of multitiered 
attributes for prospective hires, along with 
corresponding evaluative criteria, so as to select a 
best-fit candidate using one empirical method and 
then validate the process by using two other empirical 
measures, independently applied. Ranking candidates 
on the basis of multiply-weighted selection criteria 
runs counter to the practice of using mean scores on 
the premise of equally-important job-related 
attributes. Instead, the relative importance of 
attributes is acknowledged in our system by its 
reliance on differential weights for various attributes, 
weights that depend on clearly-delineated though also 
carefully adapted evaluative criteria. 

2. Decision making 

Making rational decisions in selecting an ‘ideal’ 
candidate among applicants in a competitive and 
HR recruitment environment is important. Since 
ideal solutions rarely obtain, it is equally important 
to approximate a well-delineated ideal as much as 
possible. As already suggested, multi-attribute 
decisional analysis best comports to the complex 
criteria involved in employment searches, in 
generating the best alternative among a set of 
feasible alternatives (Cascio, Outtz, Zedeck and 
Goldstein, 1991; Chen, 2000; Wang and Lee, 2007; 
Wei and Chen, 2009). This class of techniques 
requires that decision makers provide qualitative 
and/or quantitative assessment baselines for 
determining the potential contribution to job 
performance of each factor-linked selection 
criterion, as well as the entirety of selection criteria 
in combination, all tied closely to the overall 
objective(s) of the particular hire (Rosanas and 
Cugueró, 2012). Consequently, MCDM refers 
herein to screening, prioritizing, ranking, and 
selecting from a set of decisional alternatives (also 
referred to as ‘‘candidates’’ or ‘‘actions’’) under 
variable, independent, incommensurate, or 
conflicting criteria (Fenton and Wang, 2006; 
Jenkins and Van Kerm, 2006). 

Such indeterminate decisional tasks will often result 
in uncertain, imprecise, indefinite, and subjective 
decisions, in a decision-making process that can 
easily become intractable. In other words, decision-
making often occurs in a fuzzy-logic context where 
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the information available to the solution of an 
insufficiently specified problem is wholly imprecise 
or uncertain. In this regard, the application of fuzzy 
set theory to multi-criteria evaluation methods 
(MCEMs, a rubric inclusive of MCDM and MDOM), 
under the framework of utility theory, has been 
shown effective (Chen, Lin and Huang, 2006; Kuo, 
Tzeng and Huang, 2007). Also indicating the use of 
both fuzzy-set and MCEM methods, and generally of 
stochastic methods, in the development of feasible 
solutions, is the randomness of engendered 
possibilities, since the outcome of a specific hire 
based on a particular complex of associated traits or 
attributes cannot be anticipated with certainty.  

The overall utility of decisional alternatives with 
respect to all selection criteria is often represented by a 
fuzzy number, cast as a fuzzy utility, often (as in our 
instance) in connection with fuzzy MCEMs (Hazelrigg, 
1996; Iyer and Krishnamurty, 1998; Keeney and 
Raiffa, 1976; Steuer, 1989). Wang and Lee (2007) 
indicate that the ranking of alternatives is then to be 
based on the comparison of their corresponding fuzzy 
utilities (Cf. Golec and Kahya, 2007). 

The general concepts of domination structures and 
non-dominated solutions play an important role in 
describing decision problems and decision makers’ 
revealed preferences in MCDM, for instance in 
resource-constrained allocation models (Yu, 1985; 
Ellis and Kim, 2005). Olson (1986) confirms that 
various multi-tiered analytical approaches have been 
developed in consequence, as decision aids. 
However, their efficacy as such is not always 
evident, and seldom demonstrable. MCDM-based 
solutions do not necessarily optimize all of the 
objective functions under scrutiny. Consequently, 
the Pareto-optimal (or Pareto-efficient) solution 
concept has been introduced into multi-criteria 
modelling, and we have adapted it to our own 
system in its application to the case at hand. There 
usually exist a number of Pareto-optimal solutions; 
when specified, these may be considered as 
candidates for a final decision or resolution. A 
remaining issue, however, is how decision makers 
might decide a best resolution from a set of Pareto-
optimal solutions (Korhonen and Wallenius, 1988; 
Korhonen, Wallenius, and Zionts, 1981). 

2.1. A note on Pareto solutions. Pareto solutions 
are reliable because they resist extraneous 
influences – in other words, they are robust 
(Messac, 2000; Messac and Hattis, 1996; Messac 
and Chen, 2000; Messac and Sundararaj, 2000a; 
2000b). Recent advances in design methodology 
attempt to incorporate robustness into design 
decisions: robustness analysis may be carried out by 
ascertaining whether a prescriptive decision changes 

when a datum, or data, or ensuing evaluation is 
removed from a modelling set. To ensure robustness 
in this regard, we constructed new data sets 
consisting of one observation less than the total in the 
original baseline, so that reliability could be sustained 
under modelling variations (Taguchi, 1993). 

The advancement of robust design methods in 
statistics has focused on the improvement of the 
efficiency of Taguchi’s experimentation strategy 
and the modification of the signal-to-noise ratio as 
the pertinent design criterion (Box, 1988; Nair, 
1992), for instance in nonlinear, programming-based, 
problem-solving methods (Chen, Allen, Mistree and 
Tsui, 1996; Parkinson, Sorensen and Pourhassan, 
1993; Sundaresan, Ishii and Houser, 1993). A 
comprehensive review of robust optimization 
methods developed by the engineering design 
community is provided in Messac and Sundararaj 
(2000a; 2000b) and Zeleny (1973). We also note in 
this connection that a general robust design procedure 
was developed by Chen Allen, Mistree, and Tsui 
(1996) to improve the feasibility and reliability of 
design solutions (Cf. Doltsinis and Kang, 2004). 

A common way to address trade-offs among multiple 
objectives in MCDM is known as the weighted-sum 
method, in which a single objective is specified so as 
to optimize the weighted sums of several objectives. 
However, using this method for multi-criteria 
optimization has inherent drawbacks, particularly its 
failure to satisfy assumptions of convexity and 
uneven distribution of data points; these drawbacks 
are discussed in Das and Dennis (1997). In 
consequence, Chen Allen, Mistree, and Tsui (1996) 
have applied a combination of multi-criteria 
mathematical programming (MCMP) methods and 
principles of decision analysis to address the multiple 
aims of robust design. A major element of their 
approach is the use of evaluative synthesis in 
fashioning a compounded compromise objective. 
Studies by Parkinson, Sorensen and Pourhassan 
(1993), Yu (1973), Zeleny (1973), and others have 
considered so-called Compromise Programming, 
whose basic idea is to reach a Pareto-ideal solution in 
which each individual attribute under consideration 
would achieve its optimum value. If attributes are in 
conflict, then the analyst would seek a solution 
closest to the ideal solution desired by decision 
makers (Chen, Allen, Mistree and Tsui, 1996). 

Brunsson, Ellmerer, Schaupp, Trajanoski and Jobst 
(1998) developed and tested a rule-based MADM 
system to screen officer personnel records in the 
first phase of a board review procedure. In testing 
the system, an experiment involving mock officer 
personnel records demonstrated that the underlying 
method was successful at record selection for actual 
incumbents. To the same end, Drigas, Kouremenos, 
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Vrettaros and Kouremenos (2004) present fuzzy-
logic techniques they have used to assess enterprise 
profile data in the evaluation of certain job 
candidates; their study combines three methods 
(SAW, TOPSIS, WP) in a multi-criteria 
mathematical programming (MCMP) technique in 
which any one of these methods can be used as the 
selection approach and the other two as validating 
methods. The solution is ideal if all three methods 
combined in sequence yield selections of the same set 
of candidates in the same order (Drigas et al., 2004). 
We have adapted this methodology in our own study. 

2.2. Weighting techniques. While all job criteria 
specified in any particular instance are by definition 
important, some are necessarily more important than 
others. Numeric weights may be assigned to different 
criteria and so used to calculate performance scores, 
in identifying a leading candidate according to the 
decision-set criteria determined for the specific 
exercise. Greater weights indicate relatively higher 
importance in what becomes a rank-ordering of 
multiple selection criteria. 

Several studies (Albayrak and Erensal, 2004; 
Iwamura and Lin, 1998; Labib, Williams and 
O’Connor, 1998; Lai, 1995; Vaidya and Kumar, 
2006) have determined the global priority weights for 
different management decision alternatives aimed at 
the improvement of HR performance outcomes. A 
detailed review of various applications in varied 
settings is provided by Vaidya and Kumar (2006). In 

setting weights, 1w  is the weight of the most 

important attribute, 2w  is the weight of the second 

most important attribute and so on, down to mw , the 

weight assigned to the least important attribute. The 
two vital properties of greatest significance to these 
weights can be shown as follows: 

♦ 10  iw  and 

♦ 1
1




m

i

iw . 

2.3. Objective assignment of weights. The entropy 

approach to weighting (Hung and Chen, 2009) may 
be used to establish comparatively objective values in 
a decision system. An entropy value is a measure of 
the degree of uncertainty in a system, so that entropy 
weighting is intended to remove uncertainty, such as 
that introduced by human bias (Hwang and Yoon, 
1987; Atkins and De Paula, 2006; Baierlein, 2003; 
Deng, Yeh and Willis, 2000). 

Let ,
ln

1

n
k   where “ ln ” denotes the natural 

logarithm to the base ‘e’. The entropy measure je  

(Baierlein, 2003; Deng, Yeh and Willis, 2000; 
Golan, Judge and Miller, 1996; Jungermann, 2006; 
Rosenfeld, 1994; Sethna, 2011; Zeleny, 1982) may 
be determined by: 





n

i

ijijj ppke
1

ln , j  = 1, 2, . .   ., .m             (1) 

The degree of divergence 
jd , signifying the 

inherent contrast of focal attribute 
jX , also bound 

by 0 and 1 (Deng, Yeh and Willis, 2000; Zeleny, 
1982), is defined as: 

jj ed  1 , j  = 1, 2, .   .   ., .m                            (2) 

The weights ranging between 0 and 1, derived 
from entropy from the degree of divergence for 
each attribute, are given by Deng, Yeh, and Willis 
(2000) as: 





n

k

k

j

j

d

d
w

1

, j  = 1, 2, .   .   ., .m                          (3) 

3. SToW 

SToW shall denote SAW, TOPSIS and WP 
operations in this sequential order. In this study, 
simple additive weighting (SAW), weighted product 
and the techniques for order preference by similarity 
to ideal solution (TOPSIS) are used in MCDM to 
model a process of selecting a suitable applicant for 
a high-level appointment, as specified further in 
sections that follow. 

3.1. Study setting. This study 
considers nAAA ,...,, 21 , a set of n possible or 
alternative candidates competing for specified job 
opportunities, based on mSSS ,...,, 21 , a set of m 
attributes (which could alternatively be considered 
decisional objectives or selection criteria). The 
environment of the selection process consists of 
entries ijx  that reflect the occurrence of attributes 

obtaining for candidate iA  under attribute Sj as 

follows. Consider the following matrix (Table 1): 

Table 1. Matrix of attributes 

























nmnn

m

m

n

m

xxx

xxx

xxx

A

A

A

SSS

...
.

.

.

.

.

.

.

.

.

.

.

.
...

...

.

.

.

...

21

22221

11211

2

1

21

                (5) 
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The decision matrix obtained from this setting is as 
follows: 

Table 2. Decision matrix 



























nmnn

m

m

xxx

xxx

xxx

...
.

.

.

.

.

.

.

.

.

.

.

.
...

...

21

22221

11211

D

                            

(6) 

Let 


 


n

i

m

j

ij

ij

ij

x

x
p

1 1

, mi .,..,2,1 ; nj .,..,2,1             (7) 

Then define the mn   performance matrix 
 ijpP . The decision matrix obtained from this 

setting is: 

Table 3. Performance matrix 



























nmnn

m

m

ppp

ppp

ppp

...
.

.

.

.

.

.

.

.

.

.

.

.
...

...

21

22221

11211

P                                (8) 

3.2. Simple additive weighting. SAW is an 
authoritative MADM mathematical method used to 
perform pragmatic operations, applicable to many 
multivariate settings including modelling carried out 
in managerial contexts (Dawes, 1990). Attributes 
are assigned to some level of importance. Relative 
weights are assigned in direct proportion to the level 
of importance given for each attribute. To compare 
alternative candidates for employment in our case 
study, an evaluation score is calculated as follows:  

Consider the m-vector of weights given by the 

column vector  Tmwww ...21 . 
Define the transformation 

   TnvvvV ...: 211  PX , a n -column 

vector, where: 





m

j

ijji pwv
1

, i  = 1, 2, .   .   ., n .                      (9) 

These values are the SAW scores to be compared. 
They are arranged from largest to smallest, then 
used to rank-order the corresponding candidates and 
to select the leading candidate. 

3.3. TOPSIS. TOPSIS, as described by Hwang 
and Yoon (1987), is a method for classical 
MCDM with the underlying logic of defining the 
ideal solution sought (or the positive ideal 
solution, PIS) and its obverse, the negative ideal 
solution (NIS). The PIS maximizes the benefit 
criteria and minimizes the cost criteria, whereas, 
conversely, the NIS maximizes the cost criteria 
and minimizes the benefit criteria (Wang and 
Chang, 2007; Wang and Lee, 2007). Thus, the PIS 
consists of all of the best values attainable from 
extant decisional criteria, whereas the NIS 
consists of all the worst attainable values. The 
optimal alternative is positioned at the shortest 
distance from the PIS and the farthest distance 
from the NIS. The procedure used in this case 
now follows. 

3.4. Formulation of the TOPSIS solution. Let J = 
[benefit attributes] and I = [cost attributes]. Various 
sources (Steuer, 1989; Seo, Sakawa, 1988; Yoon 

and Hwang, 1995) present the MADM problem as: 

optimize {f1(x), f2(x), . . ., fm(x)} such that 

x   X = {x: gh(x) [≤, =, ≥] 0; h = 1, 2, . . ., k} 

where 

fj(x) = benefit objective for maximization, j   J, 

fi(x) = cost objective for minimization, i   I.      
(10) 

Hwang and Liu (1993) provide reference points of 
PIS and NIS respectively as: 

)(max* xff j
Xx

t 
  for all j   J, 

)(min xf i
Xx

  for all i   I.                                    (11) 

and 

)(min^ xff j
Xx

t 
  for all j   J, 

)(max xf i
Xx

  for all i   I.                                    (12) 

where mt .,..,2,1 . 

Further, Hwang, Lai and Liu (1993) define the PIS 
as the solution of an equation (10) consisting of the 
individual best feasible solutions given by 

 **
2

*
1 ...* mffff , and the NIS as the 

solution of equation (11), given by 

 ^^
2

^
1 ...^ mffff . 

TOPSIS procedure 

Step 1: Define  
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 
 


n

i

m

j

ij

ij

ij

x

x
p

1 1

, i  1, 2, . . .,m; j  1, 2, . . ., n    (13) 





n

i

ijiji ppke
1

ln , nj .,..,2,1                         (14) 

1
.

l n
k

n


                                                      
(15)

 

jj ed  1 , nj .,..,2,1                           (16) 





m

k

k

j

j

d

d
w

1

, nj .,..,2,1                             (17) 

Step 2: In line with Yoon and Hwang (1995), define: 


 


n

k

m

p

kp

ij

ij

x

x
r

1 1

22 )(

, i  1, 2, . . .,m; j  1, 2, . . ., n 

(18) 

Step 3: Calculate: 

ijjij rwv  , i  1, 2, . . .,m; j  1, 2, . . ., n            (19) 

Step 4: Identify the PIS and NIS. The PIS and NIS, 
denoted by A* and A^ respectively, obtain as 
follows. 

The PIS is: 

 **
2

*
1

* ... mfffA  .                           (20) 

The NIS is: 

 ^^
2

^
1

^ ... mfffA  .                         (21) 

These steps lead to calculation of distance 
(separation) measures. 

Step 5: Calculate the separation measure. In this 
step the concept of the n-dimensional Euclidean 
distance is used to measure the separation distances 
of each alternative to the PIS and NIS. The 
corresponding formulae are as follows. 

The PIS is given by: 





m

j

jiji fvS
1

2*)( , i  = 1, 2,  .   ., m.               (22) 

The NIS is given by: 





m

j

jiji fVs
1

2^)( , i  = 1, 2,  .   .  ., m.                (23) 

Step 6: Calculate similarities to (separation from) 

the PIS; the similarity measure used is *
iC , which is 

defined by: 

ii

i
i

sS

s
C


* ; i  = 1, 2,  .   .  ., m.                       (24) 

With properties 

♦ 10 *  iC                                                     (25) 

♦ 0* iC  when Ai = A^                                    (26) 

♦ 1* iC  when Ai = A*                                    (27) 

Step 7: Rank-order preferences – define the 
preference order. Choose an alternative with 

maximum *
iC  or rank alternatives according to *

iC , 

in descending order. 

3.4. Weighted product. In developing a merit score 
in evaluating a candidate using a WP, the starting 
point is to obtain a vector of values indicating scores 
associated with the attributes or criteria or 
objectives associated with a decision problem (Yoon 
and Hwang, 1995). 

Consider the weights  1 2 . . .
T

mw w w  ; the 

thi  WP score is then defined by: 

 



m

j

w

ij

w

i
jxp

1

, i  = 1, 2, .   .   ., .n                      (28) 

These values are the WP scores to be compared so 
as to select the leading candidate for the job. 

4. Data analysis 

4.1. Data source. Data were supplied by a Human 
Resources official seeking selection of a suitable 
applicant for a deputy director position in a district 
of Pretoria city. The data consisted of a matrix of 
values corresponding to marks awarded in 
accordance to various selection criteria during 
employment interviews, also including assessments 
of each candidate’s curriculum vitae and his or her 
verifiable credentials. Further specification of 
settings is withheld for privacy reasons in 
consideration of research ethics. 

4.2. Data format. The data considered appear in a 
matrix format. The rows contained candidate 
identities (disguised for anonymity), while the 
columns defined the multiple criteria that were used 
in the comparison of candidates and ultimate 
selection of the best-suited candidate. 

4.3. Statistical packages. SPSS and STATA were 
used to perform the statistical operations entailed in 
modelling, as previously described. The results 
obtained were consistent. 
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5. Results 

As previously noted, a real HRM exercise was 
utilized in this study. The criteria used were: 

1X  = important qualification(s); 

2X  = relevant experience; 

3X  = self-expressed suitability for the position; 

4X  = capability to use existing policies to raise 

performance standards; 

5X  = understanding of roles required by the position; 

6X  = human relations competencies, principally 

regarding stakeholder relations; 

7X  = financial management skills/proficiency; 

8X  = self-sufficiency (independence and initiative). 

Initial data for assigning fitness scores corresponding 
to the various selection criteria were generated from 
curriculum vitae reviews and communications with 
the references given by candidates. Each criterion 
was scored on a scale of 1 to 10, where ‘1’ is the 
worst possible performance fit and ‘10’ the best 
possible performance fit. The authors suggest that the 
outlier scores of 1 and 10 should be avoided as much 
as possible, since, logically, no candidate is likely to 
be either completely unsuited or perfectly suited to 
the position, at least on the basis of résumé reviews 
and reference checks. 

The ranking based on scores obtained for the 
different candidates for the executive post in 
question were as follows: 

Post: Deputy-director position 

District: Undisclosed, Gauteng Province 

Five candidates: 
521 .,.,., CCC  

Actual scores are provided in Table 4: 

Table 4. Scores obtained 

  Criteria 

  X1 X2 X3 X4 X5 X6 X7 X8 

C
a

n
d

id
a

te
s
 

C1 5 8 4 4 6 6 5 3 

C2 6 7 8 5 3 8 6 5 

C3 4 8 5 7 9 8 8 2 

C4 9 9 4 6 4 4 5 3 

C5 8 8 7 5 2 6 5 2 

The decision matrix therefore, is 

Table 5. Decision matrix 

























25625788

35446499

28897584

56835876

35664485

D
 

Performance matrix 

The performance scores (goodness-of-fit 
calculations) are found using 

 
 


n

i

m

j

ij

ij

ij

x

x
p

1 1

 

Then the performance matrix is: 

Table 6. Performance matrix 

 0.022 0.035 0.018 0.018 0.026 0.026 0.022 0.013 

 0.026 0.031 0.035 0.022 0.013 0.035 0.026 0.022 

P = 0.018 0.035 0.022 0.031 0.040 0.035 0.035 0.009 

 0.040 0.040 0.018 0.026 0.018 0.018 0.022 0.013 

 0.035 0.035 0.031 0.022 0.009 0.026 0.022 0.009 

Calculation of weights 

Deng, Yeh and Willis (2000) propose the use of 
entropy (as previously defined) to derive attribute 
weights. Entropy depends on “facts” presented in 
the data, and the degree of divergence dj is 
calculated from the various entropies. Weights are 
then calculated from the value dj. Hence, these 
weights are considered to be objective, as previously 
discussed, i.e., limiting or eliminating human bias 
and resulting uncertainty. 

Entropy values determination 

As previously considered, entropy is an uncertainty-
reduction method for determining the attribute 
weights with relative objectivity. Entropy values 





n

i

ijijj ppke
1

ln  are: 

Table 7. Entropy values 

j  je  

1 0.3089 

2 0.3659 

3 0.2806 

4 0.2750 

5 0.2448 

6 0.3101 

7 0.2896 

8 0.1751 

Degrees of divergence 

Degrees of divergence jj ed  1  are: 

Table 8. Degrees of divergence 

j  jd  

1 0.6911 

2 0.6341 
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Table 8 (cont.). Degrees of divergence 

j  jd  

3 0.7914 

4 0.7250 

5 0.7552 

6 0.6899 

7 0.7104 

8 0.8249 

Weights 

The entropy derived weights 





n

k

k

j

j

d

d
w

1

 are: 

Table 9. Weights 

j  jw  

1 0.1202 

2 0.1103 

3 0.1251 

4 0.1261 

5 0.1313 

6 0.1200 

7 0.1236 

8 0.1435 

Calculation of SAW values 

Step 1: Method used 

The initial selection method used is the weighted 
average, deriving the SAW scores: 

1

.
m

w

i j ij

j

a w x


  

Table 10. SAW scores 

i 1 2 3 4 5 

w

ia  5.044 5.937 6.288 5.385 5.237 

The leading three candidates in order of merit were 
tentatively found to be C3, C2, and C4, consistent 
with these scores. 

Step 2. Validation: TOPSIS and WP 

TOPSIS 

TOPSIS steps require solutions for the PIS and NIS 
before the index can be calculated. 

The best feasible individual solution for PIS is 

 * 9 9 8 7 9 8 8 5 .f   

The worst feasible individual solution for NIS is 

 ^ 4 7 4 4 2 4 5 2 .f   

Using the weights from Table 9, the distance 
measures from PIS are calculated using: 

 
1

22*

1

.
n

i j j ij

j

S w f x


 
  
 


 

The PIS values obtained are: 

Table 11. Candidates with their PIS scores 

C1 7.790965 

C2 5.291768 

C3 4.262969 

C4 6.779535 

C5 7.163008 

Distance measures from NIS are based on: 

 
1

22^

1

.
n

i j ij j

j

s w x f


 
  
 
  

The NIS values obtained are: 

Table 12. Candidates with their NIS scores 

C1 3.199898 

C2 5.699095 

C3 6.727894 

C4 4.211328 

C5 3.827855 

Then the TOPSIS index is calculated from: 

.i
i

i i

s
T

S s



 

The values obtained are as follows: 

Table 13. Candidates with their TOPSIS scores 

C1 0.29114 

C2 0.51853 

C3 0.61214 

C4 0.38317 

C5 0.34828 

The leading three candidates in the order of merit: 
C3, C2, C4. 

WP 

 
1

.
j

m
w

w

i ij

j

p x



 

Table 14. Candidates with their WP scores

 i  1 2 3 4 5 

w

ia  9.7474 9.9479 9.9556 9.7907 9.7020 

The leading three candidates are therefore in the 
following merit order: C3, C2, C4. 
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Remarks 

For the three methods applications, the candidates’ 
merit-based ordering is exactly the same. There may 
be cases where differences occur across methods, 
and then additional selectors are required to either 
eliminate or keep candidates in contention, until 
only the final, best-suited candidate remains. 

Step 3: Select candidate for appointment 

In this instance, the leading candidate is consistently 
chosen by all three methodological applications, and 
by follow-on selection decisional criteria, to be C3. 

6. Conclusion and recommendations 

6.1. Order of preference. The SAW scores derived 
from the data give the following order of preference:  

C3 C2 C4 C5 C1. 

The WP scores derived from the data give the 
following order of preference:  

C3 C2 C4 C1 C5. 

The TOPSIS scores derived from the data give the 
following order of preference: 

C3 C2 C4 C5 C1. 

The top three candidates are ranked on merit in the 
order C3, C2, C4 according to each and all of the 
three methods. The excluded alternatives, C1 and C5, 
were not in the top three in any of these instances. 
Note that the ordering of C1 and C5 varied under 
WP, but that variation was not at all consequential 
in the ranking of the top three candidates. In the 
consolidation of the three methods, the rank order of 
candidates is as follows: 

C3 C2 C4 C5 C1. 

The selected candidate, in terms of SToW, is 
therefore C3. 

6.2. Discussion. As indicated in the foregoing 
discussion, any one of these three methods can be 
taken as the initial means for selecting an applicant 
and the other two as validating methods. 
Application of the three methods consistently 
yielded the first three leading candidates in the same 
order – a validation test is that the top three 
candidates are consistently ranked in the same order 
of preference by all three methods. Hence, if one of 
these candidates is eliminated from of the top three 
by one of these methods, that candidate is lacking in 
one or more qualities identified with the task and 
role structures of the contested job. If a candidate 
consistently falls out of the top three tier by these 
several methods, that candidate should probably be 
eliminated from consideration, and without delay. 

The remaining two candidates would then be ranked 
anew as if they are the only ones available for the 
prospective appointment. The candidate to be 
appointed shall be the one who consistently outranks 
the other or others. 

If all three candidates are placed by all the methods 
in the top three tier, the one to be appointed is the 
one who consistently leads the other two. However, 
this device may not guarantee an optimal selection, 
as occurs in the scenario that follows. 

Alternate, hypothetical scenario 

A situation can be posited where the leading 
candidate somehow fails to place consistently as 
such, as the leading choice. An accessible example 
involves a situation where the leading candidates are 
placed as follows: 

SAW  : 1C  2C  3C  

TOPSIS : 2C  3C  1C  

WP  : 3C  1C  2C  

This is not a case where applications of the three 
methods serve to eliminate less suited applicants or 
to decide on the best-suited one. The next section 
considers such rare possibilities, in which the 
methods consistently determine the three leading 
candidates but fail to isolate the best-suited candidate. 

Suggestion in case of a complete tie 

This section discusses two methods for dealing with 
the possibility wherein the top three candidates do 
not lead to the final selection because of tied scores. 

Possibility 1: Remove the criterion found to be of 

least importance 

This possibility requires elimination of the criterion 
with the least entropy weight, as it has least 
importance by definition; this allows for keeping the 
original weights unchanged. Then calculate SAW, 
TOPSIS and WP with the remaining criteria for the 
top three candidates. 

Possibility 2: Use ranks to derive weights 

In this case a reflexive method of ranking is used to 
derive relative weights. The given criteria are 
ranked by the users (managers, decision makers) 
from best (ranked 1) to worst (ranked k). The 
respective weights are then calculated from the 
ranks using: 





m

j

i

j

i
w

1

, , 2,..., .i n                                 (28) 
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Using the mathematical result on the denominator, 
the calculation of weights will be: 

 
2

.
1 / 2

i

i
w

m m


  
                                          (29) 

Then calculate the SAW, TOPSIS and WP for the 
three candidates, rate them again, and re-assign 
rank, which is determined thereby on the basis of 
merit. 

Remarks 

The calculation of the measures of fit for the just-
described ranking objective does not have to be 
limited to three top candidates; rather, it can be 
applied to all candidates preliminarily found to be 
suitable for the job. However, one may be best 
served by keeping previously eliminated candidates 
from reconsideration even if they possess some 
desirable traits lacking among the top three. While 
reopening the candidate pool may be advisable in 
some instances, in most others the utility of 
previously eliminated candidates is to winnow out 
the least desirable candidate among the top three. 
Put differently, this device should sharpen and 
facilitate the ultimate selection decision, not lead to 
indecision at this late stage. 

In general, this study recommends empirical 
methods such as MCDM, SAW, TOPSIS, and WP 
for use in merit selection for employment. 
Incorporating entropy weighting reduces uncertainty 
and ambiguity, for instance as these relate to 
personal bias, producing relatively if not absolutely 
objective selective criteria.  

Future research 

Research is needed to explore and revise NIS and 
PIS such that their mathematical properties can 
make them independent and comparable selection 
criteria. It would also be worthwhile to identify 
other methods that use NIS and PIS in such a way as 
to lend greater consistency to selection processes. 
Extensive research synthesis could well inform the 
further development of the combined methodologies 
used in this study. 

While the authors strove to reduce bias and 
uncertainty in this applied exercise, we remained 
aware that there are real threats to validity and 
consistency in real-world settings. There are many 
qualitative considerations that influence item-level 
ranking differences across candidates, especially 
since these judgments are usually made by 
managers and not researchers. These influences 
include, among many other factors, inconsistent 
perspectives among managers involved in job 
specification and selection, insufficient inter-rater 

reliability in the application of selection criteria, and 
decision makers’ difficulty in addressing close 
candidate assessments. We dwelt on this last 
difficulty in the closing alternative scenario: Here 
decision makers were bound to be stymied, if only 
because they lacked overarching and specifiable 
decisional criteria. Questions then suggest 
themselves for further development of our research: 
What are the tie-breakers to be in such instances of 
undecidable, close assessments? Are they to be 
prescribed competencies, role considerations, or 
other job factors or managerial demands? Should 
decision makers fall back on interview or testing 
results in instances like these? 

It is well known that there is overreliance on 
interviewing in HR practice, and that behavioral 
interviews are notoriously unreliable (Barclay, 
2001). The inadequacy of personality inventories 
and in-basket performance tests (and tests in 
general) is also widely acknowledged in the field 
(Barrick, Mount and Judge, 2001; Capraro and 
Capraro, 2002). These HRM standbys cannot 
plausibly serve to break an impasse when empirical 
methods fail to produce a clear standout candidate in 
a selection sequence. The question then becomes: 
What are the ultimate decisional criteria to be, and 
can they be adequately specified, so as to be 
effective when difficult choices are involved? 

In proposing and using a MCDM system, the 
authors did not lose sight of the challenges involved 
in implementing complex decision criteria. These 
same challenges would indicate directions for future 
research: What are the truly relevant selection 
attributes in a given instance, and how are these to 
be selected? What are the relationships among 
selected attributes, and what is to be done when 
these conflict with one another? How do we 
structure attributes within a dynamic, evolving, and 
therefore changeable complex of values? How do 
we aggregate essential attributes in an overarching 
evaluation? In specifying utility functions, how do 
we map from lower level attribute item values to a 
higher level aggregate value set? Finally, can we 
provide for the often fungible quality of candidate 
qualifications. For example, how do we weigh 
experience against education, or substitute elements 
of one for another, especially if decision makers 
need to alter their relative weights when faced by 
actual candidates? 

In proposing and testing empirical methods for 
employee selection, the authors never intended for 
these to substitute for quality judgments on the part 
of decision makers. In acknowledging the 
importance of judgment, however, we return to the 
original dilemma that drove the development and 
application of our methodological system. If 
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decision makers cannot sufficiently specify their 
criteria for a particular choice, and if they cannot 
control for human bias, where then may balance be 

found between decision systems and managerial 
judgment? These questions, once again, suggest 
research directions following on our study. 
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