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The predictive power of volatility models: evidence from  

the ETF market 

Abstract 

This study uses exchange-traded fund (ETF) data to investigate the ability of the time-series volatility model, the 
implied volatility model, and the intraday return volatility model to forecast return volatility. Among various ETFs, we 
adopt NASDAQ 100 Index Tracking Stock (QQQ) as the sample because it has corresponding volatility index (VIX) 
issued which is necessary. The results show that all volatility models applied in this study can reliably forecast 
volatility. The Glosten-Jagannathan-Runkle GARCH model is superior to the GARCH model, implying that the return 
volatility of QQQ is asymmetric. Among the added incremental information, QQQ Volatility Index (QQV) of the 
American Stock Exchange has better ability in forecasting the return volatility of QQQ, followed by the NASDAQ 
Volatility Index (VXN) of the Chicago Board Options Exchange, and then by the intraday return volatility. The 
probable reason is that the turnover of QQQ options is higher than that of the NASDAQ 100 Index Options (NDX) and 
causes QQV to contain substantially more information than VXN and to predict volatility better. We also find the 
predictive power of the time-series GARCH model is weaker than that of the volatility model with QQV embedded as 
incremental information. Since QQQ, as an ETF, has diversified its non-systematic risks, the GARCH model using 
non-systematic risk information to predict volatility is inevitably worse than that using implied volatility. Identical 
results are achieved when examining out-of-sample forecasting performance. 

Keywords: volatility model, implied volatility, volatility index, incremental information. 
JEL Classification: G14, G17. 
 

Introduction  

Developing a feasible volatility model to assist with 
describing and predicting the volatility of returns on 
financial assets has long been a focus of research. 
This is because volatility underpins the risks, 
pricing, and allocation of assets. Among the various 
incremental informational variables embedded in 
volatility models, it is widely believed that if the 
options market is informationally efficient, implied 
volatility extracted from options prices is the 
optimal predictor of future volatility (implied 
volatility hypothesis). However, the empirical 
evidence on whether options prices or historical data 
in time-series models contains much more 
information about future volatility is mixed.  

Lamoureux and Lastrapes (1993) track 10 individual 
stock options to test several volatility models. Their 
results reject the orthogonality restriction that the 
forecast from time-series models should not have 
predictive power on top of implied volatility and are 
thus inconsistent with the implied volatility 
hypothesis. Such contradiction motivates a lot of 
subsequent studies to explore the performance of 
implied volatility using different data and more 
complete methods.  

According to Rubenstein (1994), fundamental 
structural change occurred in options markets after 
the US market crash of October 1987. Options 
prices contain much more valuable information than 
other asset prices since then. Relevant studies, e.g. 
Day and Lewis (1992), Christensen and Prabhala 
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(1998), Fleming (1998), and Mayhew and Stivers 
(2003), among others, find that options with higher 
trading volume provide more information on future 
volatility. To improve the predictive ability of time-
series volatility models, studies also include high-
frequency data in the models. A key finding is that 
if the research samples consist of individual stocks, 
indices, or options with high trading volume or high 
frequency data, the volatility models using these 
samples gain informational superiority over those 
models that use only historical return data 
(Andersen and Bollerslev, 1998; Andersen, 
Bollerslev, Diebold and Ebens, 2001; Mayhew and 
Stivers, 2003).  

Past studies focus their attention on individual 
stocks or composite indices while testing the 
implied volatility hypothesis. Exchange-traded fund 
(ETF), as a highly innovative and convenient 
instrument for spot index trading, has become the 
highlight of market transactions. Yet few studies 
target the ETF market to investigate the 
predictability of volatilities extracted from various 
models. To address the literature gap, this paper 
aims to explore the performance of various volatility 
models using ETF data. Among various ETFs, we 
adopt an ETF that has corresponding options issued 
as sample in order that the implied volatility can be 
calculated. Moreover, two types of options 
correspond to the ETF: one is based on the 
underlying index the ETF track, and the other is 
based on the ETF itself. This study thus chooses an 
ETF that has both types of options issued in order to 
explore implied volatility of which type can better 
predict the return volatility. Finally, since ETF, as a 
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fund tracking some index, has diversified its non-
systematic risks, we  are interested in investigating 
whether time-series volatility models which include 
only non-systematic risk information, e.g. the 
generalized autoregressive conditional hetero-
scedasticity (GARCH) model, can provide all 
relevant information on future volatility of ETFs. 

American Stock Exchange (AMEX) issued a 
volatility index (VIX) based on NASDAQ 100 
Index Tracking Stock (QQQ) options on January 27, 
2001. This VIX, known as the AMEX QQQ 
Volatility Index (QQV), is thus an index for the 
implied volatility of QQQ options. On the other 
hand, the underlying index that the QQQ tracks, i.e. 
the NASDAQ 100 Index, has corresponding 
NASDAQ 100 Index Options (NDX) issued. 
Chicago Board Options Exchange (CBOE) also 
compiles a volatility index, known as the CBOE 
NASDAQ Volatility Index (VXN), to represent the 
implied volatility of NDX. Therefore, the tracker 
fund, QQQ, conform to the sample selection 
standard of this study that an ETF has two types of 
options issued at the same time. Moreover, 
according to the evidence of past literature, studies 
using actively traded commodities as samples can 
achieve consistent and meaningful results. The ETF 
QQQ, on this point, has extremely high trading 
volumes compared to any other stock, e.g. on 
September 14, 2007, the trading volume of QQQ on 
the NASDAQ1 reached US$99,801,165, ranking the 
second highest. We thus adopt QQQ as the sample 
to investigate the predictive power of volatility 
models and to explore implied volatility extracted 
from which type of options can better predict the 
return volatility. The results contribute to the 
thorough understanding of the predictive power of 
various volatility indices. 

We begin the analysis by comparing the ability of 
two time series models, the GARCH and Glosten-
Jagannathan-Runkle GARCH (GJR-GARCH)2 
models, to explain return volatility. Next, we 
introduce different volatility indices into models and 
compare their incremental information effects. 
Further, we observe whether 5-minute intraday 
returns provide better information for the volatility 
of the underlying asset returns than the lags of daily 
return volatility. The results show that all volatility 
models applied in this paper have forecasting 
ability. The GJR-GARCH model is superior to the 
GARCH model, which implies that the return 
volatility of QQQ is asymmetric. In terms of 
incremental information from volatility indices, the 
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model embedding QQV is better than that 
incorporating VXN. Finally, we find that since ETF 
has diversified its non-systematic risks, the time 
series model using the lag of the error term to 
predict ETF volatility is inevitably worse than that 
using implied volatility.  

This article proceeds as follows. Section 1 reviews 
the literature. Sections 2 and 3 describe the research 
models and methodology, respectively. Section 4 
presents the empirical results. The last section 
presents the conclusions. 

1. Literature review 

The literature regarding the volatility of stock 
returns usually assumes stock returns stochastic 
and normally distributed and assumes the variance 
of stock returns constant. The assumption of 
constant variance, however, is called into question 
by many researchers. Fama (1965) considers the 
distribution of stock prices leptokurtic and fat-
tailed and the changes in prices of stock not 
independent. If a larger volatility appears in a 
particular period, another larger volatility will 
follow in a subsequent period, known as volatility 
clustering. Therefore, the return volatility should 
not be a constant. Morgan (1976) finds the 
variance of stock returns varying over time and 
demonstrates the heteroscedasticity of return 
volatility on stock time series. 

To consider the heteroscedasticity of volatility, Engle 
(1982) develops the autoregressive conditional 
heteroscedasticity (ARCH) model. The model 
defines the distribution of conditional error terms as 
a normal distribution and lets the conditional 
variance have a linear relationship with the square 
of past error terms. Engle (1982) finds that the 
ARCH model not only improves the predictive 
performance of the ordinary least square method, 
but also acquires a more accurate forecast of 
variance. Bollerslev (1986) adds conditional variance 
to the ARCH model, extending the ARCH model to 
the GARCH model. The GARCH model makes the 
lag structure of the conditional variance more flexible 
and reasonable. Considering that the return volatility 
varies over time, Domowitz and Hakkio (1985) use 
the ARCH model to fit the time-varying variance and 
tested the existence of time-varying risk premium. 
Such a model is the so-called ARCH-Mean model. 
Bollerslev, Engle and Wooldridge (1988) extend the 
ARCH-Mean model to the GARCH-Mean model. 

Black (1976), Christie (1982), and Schwert (1990) 
indicate that the distribution of return volatilities 
was asymmetric. They demonstrate that negative 
return shocks have larger effects on return 
volatilities than positive return shocks. They also 
point out that the asymmetry of volatility could be 
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explained by the financial leverage effect. In other 
words, negative return shocks make stock prices 
decline, making the debt/equity ratio rise and 
resulting in increased future return volatility on 
stocks. On the contrary, a positive return shock will 
decrease the volatility. Therefore, in order to 
describe precisely the asymmetry of return 
volatility, asymmetric models based on the GARCH 
model are subsequently proposed, e.g. asymmetric 
GARCH (AGARCH) of Engle (1990), exponential 
GARCH (EGARCH) of Nelson (1991), threshold 
GARCH (TGARCH) of Zakoian (1994), and GJR 
model of Glosten, Jagannathan and Runkle (1993).  

Some studies have demonstrated the implied 
volatility hypothesis to be true. There is a school of 
opinion attributes the result to the fact that while 
estimating time-series volatility models, these 
studies use only closing price data of stocks in their 
computation. For instance, Latane and Rendleman 
(1976) and Schmalensee and Trippi (1978) find that 
the power of implied volatility is superior to that of 
historical volatility on forecasting realized volatility. 
Chiras and Manaster (1978) show that if dividend 
yields are incorporated, the predictive power of 
implied volatility is no longer significantly better 
than that of historical volatility. 

The evidence is mixed regarding the implied 
volatility hypothesis. Day and Lewis (1992) use data 
of options on S&P 100 index futures to compare the 
predictive powers of implied volatility, historical 
volatility, GARCH model, and EGARCH model. 
They demonstrate that the time series models might 
provide substantially more information than the 
implied volatility model. Lamoureux and Lastrapes 
(1993) exploit data of 10 stock options on CBOE 
and obtain a conclusion identical to that of Day and 
Lewis (1992). Canina and Figlewski (1993) adopt a 
data sample drawn from the set of weekly settlement 
prices of all call options on the S&P 100 Index from 
1983 to 1987. They find implied volatility to be a 
biased and inefficient estimator and incapable of 
gathering the information the historical volatility 
contains. Becker, Clements and White (2007) and 
Becker and Clements (2008) also indicate that 
historical data subsume important information that 
is not incorporated in option prices, suggesting that 
implied volatility has poor performance on volatility 
forecasting. 

However, the implied volatility from the index 
option has been widely studied and totally different 
results are obtained. Jorion (1995) reports that 
implied volatility is superior to historical return 
volatility in terms of both predictive power and the 
extent of information content using the data of 
options on foreign currency futures. Christensen and 
Prabhala (1998) adopt the same S&P 100 Index 

options1 as those of Canina and Figlewski (1993) as 
their sample and acquire exactly the opposite 
results. They find that not only the predictive power 
of implied volatility is superior to that of historical 
volatility, but also the implied volatility incorporates 
substantially more information on future volatility. 
Christensen and Hansen (2002) further include both 
in-the-money and out-of-the-money options on the 
S&P 100 Index to construct a trade weighted average 
of implied volatilities. They also incorporate the data 
of the put option. Their results are identical to those of 
Christensen and Prabhala (1998). In recent studies, the 
empirical evidence from Becker, Clements and 
McClelland (2009) and Frijns, Tallau and Tourani-
Rad (2010) documents that the implied volatilities 
from index options can capture most of the relevant 
information in the historical data. 

Some studies attempt to uncover the predictive 
information from intraday data to forecast return 
volatility. Andersen and Bollerslev (1998) use tick 
data to compare the predictive powers of ARCH and 
stochastic volatility models over volatility. They 
find that both models provide superior volatility 
forecasts and the use of the high-frequency data 
contributes to the accuracy of volatility measurements. 
Andersen, Bollerslev, Diebold and Labys (2001) 
believe that the five-minute horizon of intraday data 
is short enough to make the estimated realized 
volatilities free from measurement error. Moreover, 
Andersen, Bollerslev, Diebold and Ebens (2001) 
focus on intraday data for 30 stocks in the Dow 
Jones Industrial Average to observe the distributions 
of realized volatilities. They find that the 
distributions of realized volatilities are highly right-
skewed, implying asymmetry of return volatilities. 
Blair, Poon and Taylor (2001) choose the S&P 100 
Index as the underlying to evaluate the predictive 
power of return volatilities. They incorporate implied 
volatilities and 5-minute high frequency data to 
compare their information content in the GJR model. 
They find that high frequency return data are able to 
enhance the adaptive and predictive abilities of 
models, but that the implied VIX of the S&P 100 
Index options provides the most accurate forecasts. 

Engle and Ng (1993) using the Japanese stock return 
to compare the EGARCH and GJR models find that 
the GJR is the best at parsimoniously capturing the 
asymmetric effect. Mayhew and Stivers (2003) 
expand their sample to cover 50 individual stocks, 
which are divided into three sub-samples by trading 
volume. They employ GARCH and GJR time series 
models, implied volatility model, and high-
frequency intraday return data to compare the 
forecasting power of incremental information over 
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return volatility. Their results indicate that the 
implied volatility reliably outperforms the GARCH 
model for both high and low trading volume stocks. 
In addition, the implied volatility of index options 
subsumes reliable incremental volatility information 
and the GARCH model can explain the returns of 
individual stocks without corresponding options 
issued. For those stocks that have insufficient 
volatility information content because of the 
lower liquidity of the corresponding options, the 
implied volatility of index options also provides 
superior incremental information about future 
firm-level volatility. Liu and Hung (2010) also 
investigate the performance of various volatility 
forecasts for the S&P100 stock index series. They 
compare the symmetric GARCH model with three 
different types of distributions against GJR-GARCH 
and EGARCH models. Their empirical results 
indicate that the GJR-GARCH model achieves the 
most accurate volatility forecasts. 

2. Empirical models 

The study uses the time-series volatility model, the 
implied volatility model, and the high-frequency 
intraday return volatility model to examine the 
predictive power of various volatilities. Among time-
series models, we adopt GARCH, a widely accepted 
property of volatility, as the basis of the model. 
According to the empirical evidence of Baillier and 
Bollerslev (1989), Bollerslev (1987), Engle and 
Bollerslev (1986), and Hsieh (1989), the existence 
of volatility clustering in speculative returns is 
ubiquitous. Many of these studies find that the simple 
GARCH (1, l) model provides a decent first 
approximation of the observed temporal dependencies 
in daily data. Thus, we adopt the GARCH (1, 1) 
model as our time-series volatility model. 

The model for return dynamics is set and estimated 
as follows: 

0 1 1t t tR R                                              (1) 

~ N(0, )t th                                                           (2) 
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20 1 2 1 1
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where Rt = ln(pt/pt-1), p is the spot price of 
underlying asset, ,  and  are parameters of the 
model,  is the error term, h is the function of 
generalized conditional return heteroscedasticity; 

Dt 1  is a dummy variable that takes a value of 1 if 
 

t-1 < 0, otherwise a value of zero; L indicates the lag 

operator, IV is implied volatility, 
2

5minR  is the sum 

of squared 5-minute intraday returns of the ETF and 
a proxy for realized volatility. By restricting 2, 3, 

4 and 5 in equation (3) to a value of zero, this 
specification nests the GARCH (1, 1) model: 
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Allowing for the asymmetric phenomenon of 
financial asset returns that GARCH (1, 1) is unable 
to describe, we restrict 3, 4 and 5 in equation (3) 
to a value of zero and thus turn this equation into the 
standard GJR-GARCH (1, 1) model: 

2
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t t

t
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This equation is divided into two subsets by the 
positive/negative of return errors. We can gauge, 
through the significance of 2, whether the 
explanatory ability of each error term of the two 
subsets is significantly different from each other. 
The significance of 2 indicates the asymmetry of 
volatilities. 

For purposes of discussing the predictive effects of 
implied volatility on stock-return volatility, we 
restrict 1, 2, 4 and 5 in equation (3) to a value of 
zero and thus turn the conditional heteroscedasticity 
model into a single-factor volatility model that 
considers only one factor, the implied volatility of 
the underlying: 

3

0 3 , 1 ,
t ETF t

h IV                                         (6) 

where IVETF is the implied variance from options on 
the ETF; the statistical significance of 3 reveals that 
the implied volatility has sufficient information 
content to predict return volatility. Restricting 2, 5 
and 2 in equation (3) to a value of zero, we get: 

2
3 20 1 1

3 , 1 4 , 1

11
t

t ETF t index t
h IV IV

L
   (7)

 

which is an equation for modeling GARCH, but 
incorporating two other variations to compare the 
effects of incremental information: IVETF is the 
implied volatility from options on the ETF, and 
IVindex is the implied volatility from options on the 
index. Mayhew and Stivers (2003) indicate that 
comparing the values of 3 and 4 can help assess 
which has better predictive power. That is to say, 
the significance of either coefficient implies that the 
respective variation has sufficient information 
content for volatility forecasting. 
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Andersen and Bollerslev (1998) believe that the 
incorporation of high frequency intraday data in a 
volatility model can enhance the model’s ability 
to explain return volatility. Therefore, we 
subsume both the intraday returns and implied 
volatilities to find out which has the more 
powerful incremental information. In accordance 
with Blair et al. (2001), we choose a 5-minute 
frequency to sieve returns from everyday trading 
data for the period 08:30 to 15:00 CST1, then 
square and sum these 5-minute returns to proxy 
for intraday return volatility; furthermore, in 
consideration of the overnight effect, the trading 
data after 15:00 of the previous day are also 
included to compute the intraday volatility of each 
day. This volatility model is as follows: 

22
5 5 , 130 1 1

3 , 1

1 2

,
1 1

min tt
t ETF t

R
h IV

L L
 

(8) 

where 
2

5minR  is the intraday volatility based on 5-

minute returns. If 5 is significant, then the information 
that intraday data contain has forecasting power. 

Mayhew and Stivers (2003) also apply the above 

model, but allow for lagged daily return shocks (
2

1t
) 

and lagged 5-minute sum of squared returns  
( 2

5min, 1t
R ) to have a different lagged decay structure. 

Thus, this specification enables one to compare 
volatility information from daily return shocks 
versus the intraday return volatility of different lags. 
According to evidence from Mayhew and Stivers 
(2003), return-shocks and intraday return volatility 
of older lags add essentially no explanatory power. 
Therefore, we restrict 2 to a value of zero and 
discuss only the power of intraday return volatility 
of lag 1 to explain daily return volatility while 
verifying the GARCH+V5 model, a GARCH (1, 1) 
model with intraday return volatility as its incremental 
information; that is, t  2 and older return-shock and 
intraday return volatility are not considered. Such an 
empirical method does not model the GJR asymmetry 
(Mayhew and Stivers, 2003). 

3. Methodology 

AMEX and CBOE began issuing QQQ options on 
March 3, 1999 and February 27, 2001, respectively. 
AMEX started to issue QQV on January 31, 2001. 
To ease the shocks that the issuances of QQQ 
options and QQV have created in the market, the 
data period begins at March 30, 2001, two months 
after the launch of QQV, and ends at June 30, 2003. 
A total of 27 trading months of the data period 
provide 563 daily observations. Daily data are used 
and high-frequency intraday price data of QQQ are 
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gathered to compute intraday 5-minute return 
volatility. In addition, due to the measurement errors 
of implied volatility based on option pricing theory 
and the smile effect exhibited by the implied 
volatility, we use two VIXs, QQV of QQQ options 
and VXN of NASDAQ 100 Index options, compiled 
with the Whaley (1993) method and by CBOE, to 
avoid the measurement errors. Options data are from 
the Prophnet Company in the United States and 
intraday data are from the Tickdata Company. 

Whaley (1993) uses the implied volatilities of eight 
near-the-money options to calculate an implied 
volatility index. There are four calls and four puts in 
his sample and pairs of nearest-the-money exercise 
prices are chosen to calculate a weighted average of 
eight implied volatilities. As such, the implied 
volatility of an at-the-money option with a constant 22 
trading days to expiry could be constructed. We also 
have an out-of-sample prediction period for comparing 
the forecasting ability of the empirical models. Since 
volatility index, however, is based on the at-the-money 
options with 22 trading days to expiry, here we allow 
an out-of-sample prediction period to have 22 trading 
days to expiry also to facilitate the comparison of the 
predictive performance. 

The numerical method of Berndt, Hall, Hall, and 
Hausman (1974) is applied to estimate the model 
parameters. The log-likelihood function value (Log-L) 
of Bollerslev and Wooldridge (1992) is used in 
order to compare the fit ability of the models. As 
regards the issue of comparing the incremental 
information of various volatilities, the likelihood 
ratio (LR) tests are employed to execute tests. 
Finally, three test statistics, mean absolute error 
(MAE), root mean square error (RMSE), and mean 
absolute percentage error (MAPE), are computed to 
examine the predictive power of the models while 
comparing the out-of-sample forecast performance. 

4. Empirical results 

If a time series is non-stationary, the execution of a 
regression will cause spurious regression. We use an 
augmented Dickey-Fuller (ADF) test to test the 
stationary of the data series. In addition, we perform 
normality, stability, autocorrelation, and hetero-
scedasticity tests on variations. 

Table 1 presents the descriptive statistics for QQQ. 
Observing the skewness and kurtosis coefficients, 
we find that the distribution of QQQ price returns is 
both right-skewed and leptokurtic. The Jarque-Bera 
test also indicates that the distribution is not normal. 
The results evidence the fat-tailed characteristic of 
QQQ price returns and thus using ARCH or 
GARCH to describe the heteroscedasticity of price 
returns appears correct. 
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Table 1. Basic statistics of QQQ returns 

Statistic variables Statistic values 

Sample size 584 

Mean 0.081 

Standard deviation  2.713 

Maximum 10.163 

Minimum -8.888 

Skewness coefficient 0.119 

Kurtosis coefficient 3.767 

Jarque-Bera test value 13.903** 

Note: *, **, and *** indicate significance at the 10%, 5%, and 
1% levels, respectively. 

The results of the stability1, heteroscedasticity, and 
autocorrelation tests are reported in Table 2. The 
result of the unit root test shows that both daily price 
returns and intraday price returns reject the 
existence of unit root, indicating their stationary. 
The Q statistic test of Ljung and Box (1978) shows 
that the Q statistic is statistically significant in lag 6, 
12, 18, 24, and 30 of the square of residual terms, 
indicating the existence of heteroscedasticity in 
residual variance. Furthermore, the results of the 
ARCH-LM test (Engle, 1982) show the significance 
of the LM statistic and thus demonstrate the 
heteroscedasticity of price return residuals. Observing 
the autocorrelation of residuals, while setting the 
number of lag term 40, the correlation coefficients of 
lag 2, 11, 13, 29, and 33 are statistically significant, 
demonstrating the autocorrelation of return residuals. 

Table 2. Statistical test of QQQ 

ADF’s unit root test 

Intercept and trend included Only intercept included 

Data type Lag Test statistic Lag Test statistic 

Price return 1 -18.627*** 1 -18.605*** 

Intraday return 4 -11.515*** 4 -11.455*** 

Ljung and Box Q test for 
heteroscedasticity 

Autocorrelation test 

Q(lag) Statistic Lag Correlation

Q(6) 77.329*** 2 -0.095305** 

Q(12) 142.203*** 11 -0.081555** 

Q(18) 174.801*** 13 0.089302** 

Q(24) 196.592*** 29 0.098872** 

Q(30) 237.402*** 33 -0.086684** 

ARCH-LM test   

T  R2 statistic 52.60911***   

Note: ADF unit root test uses AIC rule to choose the best lag term. 
ARCH-LM is the ARCH (6) statistic; *, **, and *** indicate 
significance at the 10%, 5%, and 1% levels, respectively. 

Table 3 presents the empirical results of the 
GARCH, GJR-GARCH and QQV volatility models. 
The coefficient 2 of GJR-GARCH is statistically 
significant, revealing the asymmetry of QQQ return 
volatility. Comparing the GARCH, GJR-GARCH, 
and QQV models, the Log-L value of the QQV 
model is the highest, showing that this model has 
the best predictive power over other return volatility 
models. Further, we use LR statistics to compare the 
incremental information effects of GARCH and 
GJR-GARCH models with QQV added and find 
that both LR values of the two models are 
statistically significant, demonstrating that adding 
QQV into the models can enhance the ability to 
forecast future return volatility. Therefore, QQV has 
incremental information for predicting the return 
volatility of QQQ. Comparing the Log-L values of 
these two models, the GJR-GARCH model with 
QQV embedded provides better predictive power 
than the GARCH model with QQV embedded. 
Nevertheless, the Log-L values of these two models 
are about the same. The coefficient of QQV, 3, is 
statistically significant only when it is embedded in 
a GARCH model.  

Table 3. GARCH, GJR-GARCH and the conditional variance models  
with incremental information QQV1 

Model: 
0 1 1 ,

t t t
R R  ~ (0, ),

t t
N h

22
5 5 , 12 20 1 2 1 1

3 , 1 4 , 1

1 2
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1 1
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R+ D
h IV IV

L L
 

where Rt = ln(pt/pt-1), p is the spot price of an underlying asset, ,  and  are parameters of the model,  is the error term, h is the 

function of generalized conditional return heteroscedasticity; Dt 1  is a dummy variable that takes on a value of 1 if t-1 < 0, 

otherwise it takes on a value of 0; L indicates the lag operator; IVETF is QQV, an implied volatility for QQQ options; IVindex is VXN, an 

implied volatility for NASDAQ 100 Index options; 
2

5minR  is the sum of squared 5-minute intraday returns and proxy for intraday volatility. 

Coefficient 
Model

GARCH GJR-GARCH QQV GARCH + QQV GJR-GARCH + QQV

0 × 10-4 
0.538 
(0.97)

0.346 
(-1.08)

-4.384*** 
(-6.12)

-2.852*** 
(-1.78)

-0.234* 
(-1.22)

1
0.048*** 
(2.82)

-0.017* 
(-1.48)

-0.022 
(-0.66) 

-0.015 
(-0.93)

2
0.084*** 
(3.49)

0.097** 
(2.89)

3   
0.056*** 
(11.19)

0.034* 
(1.62)

0.003 
(1.32)

                                                      
1 We use the Akaike’s Information Criterion (AIC) rule, recommended by Engle and Yoo (1987), to choose the best lag term. 
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Table 3 (cont.). GARCH, GJR-GARCH and the conditional variance models  
with incremental information QQV 

Coefficient 
Model

GARCH GJR-GARCH QQV GARCH + QQV GJR-GARCH + QQV

4   

5   

1
0.943*** 
(44.52)

968*** 
(72.25)

0.449* 
(1.18)

0.918*** 
(20.51)

2   

Log-L 1831.3 1835.9 1842.1 1848.6 1849.5

LR 17.25*** 13.55***

Note: Values in parentheses are t statistics calculated with Bollerslov-Wooldrige robust standard errors; *, **, and *** indicate 
significance at the 10%, 5%, and 1% levels, respectively. 

QQQ is an ETF tracking NASDAQ-100 Index. 
Table 4 shows a very high correlation between QQV 
and VXN. The correlation coefficient of the two 
VIX is as high as 0.9847. Figure 1 displays the 
movements of the QQV, VXN, and QQQ prices. 
Also, evident from this figure is the high correlation 
between QQV and VXN. In light of Mayhew and 
Stivers (2003), the implied volatility subsumes 
reliable information content about the return 
volatility of the underlying. Therefore, we further 
observe whether VXN, a VIX based on the NASDAQ 
 

100 Index, also subsumes information about the 
price return volatility of QQQ and compare VXN 
with QQV. 

Table 4. Correlation coefficients matrix of QQQ 
price returns, QQV and VXN 

 QQQ QQV VXN 

QQQ 1 0.0800 0.0650 

QQV 0.0800 1 0.9847 

VXN 0.0650 0.9847 1 

Note: The data period starts from 2001/03/31 to 2003/06/30. 
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Fig. 1. The dynamics of QQQ prices, QQV and VXN 

Table 5 presents the results of executing volatility 
models with VXN. All the coefficient 4s are 
statistically significant, indicating that the VIX of 
the NASDAQ-100 Index has predictive power over 
QQQ return volatility. This outcome is identical to 
that of Mayhew and Stivers (2003). Compared to 
Table 3, the Log-L value of the VXN model is 
1840.93, higher than that of the GARCH (1, 1) 
model, indicating that the power to predict return 
volatility in the VXN model is better than that of 
GARCH. Comparing the power to predict return 

volatility of the four models in Table 5, the GARCH 
model with both QQV and VXN has the strongest 
power and the most incremental information. If only 
comparing the extent to which two variations, QQV 
and VXN, affect return volatility, we find that the 
coefficients in model QQV + VXN are all 
statistically significant, 3 equals 0.031, 4 equals 
0.023, and 3 > 4, indicating that QQV’s marginal 
explanatory power for QQQ return volatility is 
higher than that of VXN. This outcome is identical 
to that in model GARCH + QQV + VXN. 
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Table 5. GARCH and the conditional variance model with incremental information QQV and VXN 

Model: 
0 1 1 ,

t t t
R R  ~ (0, ),

t t
N h

22
5 5 , 12 20 1 2 1 1

3 , 1 4 , 1

1 2

( )
,

1 1

min tt t
t ETF t index t

R+ D
h IV IV

L L
 

where Rt = ln(pt/pt-1), p is the spot price of an underlying asset, ,  and  are parameters of the model,  is the error term, h is the 

function of generalized conditional return heteroscedasticity; D t 1  is a dummy variable that takes on a value of 1 if t-1 < 0, 

otherwise it takes on a value of 0; L indicates the lag operator; IVETF is QQV, an implied volatility for QQQ options; IVindex is VXN, an 

implied volatility for NASDAQ 100 index options; 
2

5minR  is the sum of squared 5-minute intraday returns and proxy for intraday volatility. 

Coefficients 
Models 

VXN GARCH + VXN QQV + VXN GARCH + QQV + VXN

0 × 10-4 
15.293*** 

(9.61) 
-7.062** 
(-2.20) 

-5.947*** 
(-5.09) 

-8.715*** 
(-6.22) 

1  
-0.389 
(-1.27) 

 
-0.049** 
(-1.67) 

2     

3   
0.031*** 
(2.83) 

0.048*** 
(4.33) 

4 
0.015*** 
(11.61) 

0.067** 
(2.18) 

0.023* 
(1.58) 

0.029*** 
(2.96) 

5     

1  
0.232 
(0.38) 

 
0.269 
(0.92) 

2     

Log-L 1840.9 1849.9 1848.8 1851.1 

LR  18.51*** 10.83 19.72*** 

Note: Values in parentheses are t statistics calculated with Bollerslov-Wooldrige robust standard errors; *, **, and *** indicate 
significance at the 10%, 5%, and 1% levels, respectively. 

Finally, we incorporate intraday 5-minute return 
volatility data into the models to observe whether 
intraday information enhances the modeling and 
forecasting of the QQQ return volatility. Table 6 
shows that the coefficient 5 of the intraday 5-
minute return volatility (V5) model is statistically 
significant, revealing that intraday return volatility 
can predict the volatility of QQQ returns. Compared 
to that of the GARCH (1, 1) model in Table 3, the 
Log-L value of the V5 model is 1838.4 and is larger 
than that of the GARCH (1, 1) model, which uses 
daily data, indicating that using high-frequency data 
could indeed reduce noise1 from price returns and 
enhance the ability to forecast the volatility of 
returns. Compared to the QQV model in Table 3 and 
the VXN model in Table 5, the Log-L value of the 
V5 model is the smallest, showing that the V5 
model does not provide better information content 
than the QQV or VXN models. The model that has 
the highest Log-L value is the QQV model. 

Furthermore, we add the intraday return volatility 
variable information to the GARCH model. The 
coefficient 5 of GARCH + V5 in Table 6 is 
statistically significant  the coefficient 1 of the 
residual term is smaller than that of GARCH, and 1 
drops from 0.943 in GARCH to 0.645 in GARCH + 
V5, indicating that the model with extra volatility 
information on QQQ intraday returns has a better 

                                                      
1 Referring to Andersen and Bollerslev (1998). 

ability to forecast return volatility than GARCH. In 
terms of the incremental information effects of 
intraday returns, the LR statistic of the GARCH + V5 
model in Table 6 is 9.16 and is statistically 
significant, showing that intraday return volatility 
can indeed provide more information, increasing the 
ability of GARCH (1, 1) to forecast volatility. This 
outcome is identical to those of Blair et al. (2001), 
and Mayhew and Stivers (2003). 

Table 6. GARCH, ARCH and the conditional 
variance model with intraday incremental 

information 

Model: 
0 1 1 ,

t t t
R R  ~ (0, ),

t t
N h

 

2
20 1 2 1 1

3 , 1

1

2

5 5 , 12

4 , 1

2

( )

1

,
1

t t

t ETF t

min t

index t

+ D
h IV

L

R
IV

L

 

where Rt = ln(pt/pt-1), p is the spot price of an underlying asset, 
,  and  are parameters of the model,  is the error term, h is 

the function of generalized conditional return hetero-
scedasticity; D t 1  is a dummy variable that takes on a value of 

1 if t-1 < 0, otherwise it takes on a value of 0; L indicates the lag 
operator; IVETF is QQV, an implied volatility for QQQ options; 
IVindex is VXN, an implied volatility for NASDAQ 100 index 

options; 
2

5minR  is the sum of squared 5-minute intraday returns 

and proxy for intraday volatility. 

Coefficients 
Models 

V5 GARCH + V5 ARCH + QQV + V5 

0 × 10-4 
0.053 
(0.93) 

0.059** 
(1.19) 

-4.967*** 
(-6.90) 
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Table 6 (cont.). GARCH, ARCH and the conditional 
variance model with intraday incremental 

information 

Coefficients 
Models 

V5 GARCH + V5 ARCH + QQV + V5 

1  
0.01*** 
(2.36) 

0.015** 
(1.70) 

2    

3   
0.06*** 
(11.01) 

4    

5 
0.044** 
(1.32) 

0.055** 
(1.48) 

0.029** 
(2.06) 

1  
0.645*** 
(38.31) 

 

2 
0.946*** 
(46.01) 

  

Log-L 1838.4 1840.5 1850.1 

LR  9.16***  

Note: This paper discusses only the predictive power of lag 1 
return residuals and intraday returns (V5) over volatility of 
QQQ returns, and hence we restrict 2 to a value of zero. Values 
in parentheses are t-statistics calculated with Bollerslov-
Wooldrige robust standard errors; *, **, and *** indicate 
significance at the 10%, 5%, and 1% levels, respectively. 

Since Andersen and Bollerslev (1998) use intraday 
data to forecast future volatility and find that the 
ARCH model performs better, we incorporate QQV 
and V5 into the ARCH model and find that all 
coefficients are statistically significant. 3 is greater 
than 5, showing again that the ability of QQV to 
forecast the return volatility of QQQ is superior to 
that of intraday return volatility. 

Table 7 presents the comparison of the performance 
of various volatility models in out-of-sample 
forecasts. The results indicate that the error is 
smallest for the QQV model, demonstrating that 
using QQV to forecast QQQ return volatility has a 
smaller prediction error. 

Table 7. Predictive errors 

Performance index 
Models 

GARCH GJR-GARCH QQV VXN V5 

RMSE 0.563 0.587 0.418 0.441 0.452 

MAE 0.474 0.498 0.366 0.392 0.399 

MAPE 43.667 44.705 26.951 27.975 30.700 

Conclusion 

This paper investigates the ability of various return 
volatility models to forecast future return volatility 
of QQQ, an ETF with diversification advantages. 
We compare the time series volatility model, the 
implied volatility model, and the intraday return 

volatility model, in an effort to determine which has 
the best predictive power for the volatility in the 
ETF market. The evidence shows that all empirical 
volatility models considered in this study have 
predictive power to forecast volatility, but 
employing only a GARCH model to forecast 
volatility cannot subsume all information content. 
Previous studies demonstrate the asymmetry of 
return volatility. Thus, when describing the time-
varying process of return volatility, it is better to use 
models that consider this property. The empirical 
result that the GJR-GARCH model is superior to the 
GARCH model supports this viewpoint. 

Moreover, incremental information incorporated 
into the models all enhances the ability to forecast 
return volatility. QQV has the best power to predict 
the volatility of QQQ returns, VXN is in the second 
place, and intraday return volatility has the lowest 
predictive power. Since the trading volume of QQQ 
is far more than that of NDX, such results are identical 
to the conclusion of prior studies that the implied 
volatility of option with higher liquidity would have 
better predictive power or more information over 
return volatility than option with lower liquidity.  

Since ETFs are index funds that diversify almost all 
non-systematic risks, using lagged error terms as 
proxy variables that represent non-systematic risks 
to predict return volatility of ETFs would not 
subsume enough information content. The empirical 
results demonstrate this point of view. Incorporating 
other incremental information into a GARCH model 
could increase its ability to forecast future return 
volatility, indicating that there exist incremental 
information effects within a GARCH model. QQV 
is the most valuable among all such incremental 
information. 

One of the major shortcomings of this study is the 
usage of not so current data set. As a result of using 
old data set, the findings may be not so robust. 
Consequently, given that the authors of this study 
have limitations to more recent data and to enhance 
the robustness of the findings, a few directions for 
future research are recommended. First of all, since 
the current study analyzes old data set, future 
research can be set up to extend or investigate the 
topic of this study by using a more recent data set or 
data sets belonging to other countries. In addition, 
future research can look into incorporating other 
econometric techniques such as EGARCH or other 
asymmetric GARCH models (or regime-switching 
models) in order to provide more robust findings. 
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