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AAymeric Kalife (France), Saad Mouti (France), Lihang Wang (France) 

Financial risk management and the rational lapse strategy in  
life insurance policies 

Abstract 

Over the past decade, Variable Annuities have experienced tremendous growth accounting for half of the life insurance 
industry, as unit-linked products offering both participation in equity market and guarantees at key life moments (re-
tirement, death). The recent Quantitative Impact Study (QIS 5) of the Solvency II framework showed that lapse risk is 
the most important risk among life underwriting risks for Variable Annuities, as illustrated by solvency issues experi-
enced by the policyholder run in the late 1980’s. Thus research on lapse rates is crucial to a proper calibration of regu-
latory standard models and internal risk models. 

Usually the lapse behavior has been modeled by historical or backward looking statistical regressions which have em-

pirically underestimated the risk due to the scarcity of extreme scenario samples and the inability to dynamically ex-

trapolate the observed behavior to various market conditions. In contrast, a “rational” lapse strategy valuation is a pru-

dent forward looking approach where policyholders lapse in a way that maximizes the net present value of the future 

cash-flows, depending on key drivers. Empirically consistent with herd behavior as experienced in the last financial 

crisis, this approach is illustrated on a GMAB VA product using two alternatives numerical schemes (PDE and Monte 

Carlo). 

However, as policyholders cannot be expected to lapse all at the same time, this rational lapse framework is slightly 

amended by introducing a proportion of lapses among the contract still active, which translates into the notion of “rea-

sonable” lapse more consistent with empirics. 

Keywords: GMAB, Variable Annuity, rational lapse strategy, stochastic interest, PDE, ADI, high-dimensional  
regression. 
 

Introduction1 

The VA product, a popular retirement savings 
vehicle in the US, is starting to emerge as a viable 
option in other markets, including Europe and 
Asia. The GMAB riders written on VAs (also 
known as Maturity Guarantees, see [6]) provide 
policyholders a guaranteed amount at a fixed ex-
piration date, so this kind of products have some 
similar properties as long-term vanilla puts. One 
important attractiveness of GMAB products is 
that this guarantee gives policyholders the ability 
to protect their retirement investments against 
downside market risk by allowing the policyhold-
er to receive the greater of the account value and 
the benefit base at the maturity. The benefit base 
can either step up to the high-water mark of the 
account value at the end of each policy year (an-
nual ratchet), or can roll up with a fixed percent-
age (the roll-up rate, e.g. 2%), regardless of the 
market conditions. Thanks to these new product 
characteristics, the guarantee not only protects 
policyholders against investment losses, but also 
allows customers taking advantage of upside gain 
from the market. In exchange for this benefit, the 
policyholder pays a charge fee each year. 

The recent Quantitative Impact Study (QIS 5) of 

the Solvency II framework showed that lapse risk 
is the most important risk among life underwriting 
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risks for Variable Annuities, as illustrated by sol-
vency issues experienced by the policyholder run 
in the late 1980’s. Thus research on lapse rates is 
crucial to a proper calibration of regulatory stand-

ard models and internal risk models. 

The dynamic behavior is essentially a selection 
process of the policyholders against the VA writ-
er, where an increase leaves fewer insured to ul-
timately make a claim on the guarantees but re-
duces the fees the insurer can collect. The general 

pattern is that more policies will lapse when the 
capital market is up, and fewer policies will lapse 
when the capital market is down. 

♦ In an up market, the value of the minimum 
guarantee diminishes as the account value is 

likely to exceed the minimum guarantee values. 
As such, surrendering the policy does not create 
much loss to the policyholder. 

♦ On the other hand, a down market can result in 
the surrender value being less than the guarantee 

value causing the policy to be in-the-money. If 
the policyholder surrounds at this time then he 
or she can only get the reduced surrender value, 
forfeiting the added value from the guarantee 
rider. The result is that there is strong incentive 
for the policyholder to keep the in-the-money 
VA contract in force. 

As the lapse assumption may impact significantly 

the profitability of GMAB riders, a rigorous model-
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ing framework of the lapse rate is necessary for both 

pricing and hedging purpose. During the last dec-

ade, the literature on pricing and risk management 

of these guarantees has been evolving. 

♦ Tradionnally the lapse behavior has been mod-
eled by historical or backward looking statistical 

regressions which have empirically underesti-
mated the risk due to the scarcity of extreme 

scenario samples for these new products and the 

inability to dynamically extrapolate the ob-

served behavior to various market conditions. 

♦ In contrast, a “rational” lapse strategy valuation 
is a prudent forward looking approach where 
policyholders lapse in a way that maximizes the 
net present value of the future cashflows, de-
pending on key drivers. This reflects a potential 
extreme policyholder behavior, as experienced 
in the last market crash, with an initial immedi-
ate and sustained fall in lapses right after the 
crash, before an abrupt recovery consistent with 
the interest rates. In contrast, dynamic lapses 
modeling are usually unable to provide such 
empirical dynamics. 

 
Fig. 1. Impact of market shocks on the accumulated lapse percentage in the case of dynamic and rational lapses for a 

GMWB 

 
This approach is illustrated on a GMAB VA product 
using two alternatives numerical schemes (PDE and 
Monte Carlo), as the valuation of a Bermudan-style 
contingent claim for the insurer, where the contin-
gency is closely related to equity market conditions 
and the interest rate level (see [15]). 

The price evaluated by this approach can be inter-
preted as the fair value of the policy if all policy-
holders use the same rational lapse strategy, which 
is similar with the optimal early-exercise strategy of 
Bermudan options. However, as policyholders can-
not be expected to lapse all at the same time, this 
rational lapse framework is slightly amended by 
introducing a proportion of lapses among the con-
tract still active, which translates into the notion of 
“reasonable” lapse more consistent with empirics. 
Note that this is only an interpretation, and that the 
critical aim is to make sure the lapse risk can be 
hedged no matter which strategy the holders use. 

The remainder of this paper is organized as follows. 

Firstly, in section 1 the GMAB policy is explained 
in full details. Section 2 introduces the modeling 
framework to evaluate the liability of GMAB poli-
cies in no-lapse assumption. The rational lapse strat-

egy and critical lapse boundaries are studied in sec-
tion 3. Section 4 addresses the pooling of lapse 
risks. In section 5 we implement two numerical 
methods, the PDE approach and the high-

dimensional regression method (Monte Carlo, see 
[14]) to calculate the no-arbitrage price of GMABs 
in the Hull-White interest rate model. Numerical 
results of these two methods are shown in section 5 
The final section concludes the paper. 

11. Description of the contract 

In practice, most GMAB policies are purchased in a 
lump sum. We assume that a single premium is paid 
at inception of the contract and denoted by Ǎ(0) = 
100$ the initial account value at time zero after the 

upfront fees have been paid. The account value is 
invested in a portfolio consisting mainly of equities 
and bonds. At the end of each policy year ti, the 
insurer deduct a charge fee с Ǎ(ti) on the account 

value, where c = 2% is the annual charge rate. The 

life time of the policy is T= 10 years if there is nei-
ther early termination nor rollover. 

For a contract that is held until the maturity, there is 
a guaranteed minimum return paid to the policy-
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holder. We represent this guarantee to the policy-
holder as B, which is called the benefit base for in-
surers. In other words, at the maturity, the policy-
holder has the right to receive a cash payment equal 
to either Ǎ(T) or to the benefit base B. Consequent-
ly, at maturity, the value of the policy is  
max (Ǎ(T), B). 

 

Fig. 2. The illustration of the account value over time com-

pared with the US 10-year note 

This payoff can be decomposed to the sum of the 
account value Ǎ(T) and a vanilla put (B ‒ Ǎ(T))+

 

(the strike level is B). The benefit base В is fixed 
at inception, which is equal to Ǎ(0)(1+ r )T, where 
r  is the roll-up rate. In most cases, r  is approx-
imately equal to the yield of zero-coupon bonds 
maturing at T. 

We assume that one GMAB policy is purchased in 
2000 and hold until 2010, and the account value is 
invested in S&P 500 at inception. The roll-up rate is 
set at 6.67%, which is equal to the yield of US 10-
year notes in January 2000. All other parameters are 
the same as those mentioned above. Figure 2 plots 
the account value Ǎ(t) over time. By comparing the 
net return of 10-year bonds with that of the roll-up 
GMAB rider, we can see that the roll-up benefit 
base can not only protect policyholders from catas-
trophes in stock market, but also from risks of the 
persistent decrease of the interest rate1. 

2. Valuation of a GMAB with zero lapse 

Firstly we establish the general modeling framework 
to evaluate the liability of GMAB with zero lapse 
(European GMAB). From now on, we let 

( , , = ( ) , )t t TΩ F QF F denote a complete filtered 

probability space supporting two independent stand-
ard one dimensional Brownian motions W and W┴

. 

Here T > 0 is a fixed time horizon. We assume that 

the filtration F  is the completion of the rough filtra-
tion generated by (W, W

┴), so that any martingale              

                                                   
1 In fact, the US 10-year bond yield was 6.67% in January 2000, while it 

was 3.61% ten years later. 

( , F )-martingale can be represented as a stochas-

tic integral with respect to (W, W┴). 

During the last decade the literature on pricing Vari-
able Annuities has evolved, but many evaluation 
approaches proposed (e.g. [5], [30]) are still based 
on the assumption of deterministic interest rates. 
Such an assumption is harmless in most situations 
since the interest-rates variability is usually negligi-
ble when compared to the variability observed in 
equity markets. While pricing a long-maturity secu-
rities such as VA guarantees, however, the volatile 
feature of interest rates can have stronger impacts on 
the liability of GMAB. In such case it is therefore 
advisable to use stochastic interest rate models. 

In this paper, we assume that the short term interest 
rate r = (r(t))t≥0 is driven by the one factor Hull and 
White model, and the underlying asset S = (S(t)) t≥0 

in which the account value is invested follows a 
Black and Scholes type dynamics, namely: 

1
2 2

( ) = ( ) ( ) ( ) ( )

( ) = ( ( ) ( )) ( ) .

:= (1 )

r

dS t r t S t dt S t dW t

dr t a t r t dt dZ t

Z W W

σ
θ σ

ρ ρ⊥

+⎧
⎪⎪ − +⎨
⎪

− +⎪⎩

    
(1)

 

Here, a and σr are positive constants, θ is a deter-
ministic Lebesgue-integrable function, σ is the in-
stantaneous volatility of the asset return, and ρ is the 
correlation2 between the account value and the in-
terest rate. Note that the above financial market is 
complete whenever S and a zero-coupon bond with 

maturity T can be freely traded, and that  is the 

only martingale (risk neutral) measure. 

For the account value, a charge fee is deducted at a 
rate с continuously, where с = ‒log(l ‒ с ). This 

means that Ǎ(t) evolves according to 

dǍ(t) = (r(t) – c))Ǎ(t)dt + σǍ(t)dW(t).    (2) 

Since (r, Ǎ) is a Markov process, the European-style 
liability LE

 of a single GMAB rider can be identified 

to a deterministic liability function 
E

 by: 

( ) : ( , ( ), ( )) = [ max( ( ), ) | ] =

[ ( ( ) ( ( )) ) | ]

E E T

t t

T

t t

L t t r t A t D A T B

D A T B A T
+

= + −

E

E

Q

Q

F

F

  (3) 

where 2

1

t

tD  represents the stochastic discount factor 

between t1 and t2. 

22

1
1

:= exp( ( ) ) .
tt

t
t

D r s ds−∫  

                                                   
2 For VAs, the correlation is often negative, as most portfolio contains 

fixed income assets, such as bonds. 
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Equation (3) shows that the European-style liability 
of GMAB riders can be considered as the sum of a 
forward contract of the account value ending at T 
and a vanilla put with the maturity T and the strike 
level B. In the Hull-White interest rate model, this 
liability value can be easily calculated analytically. 

However, it does not always exist some closed for-
mula of the liability value, especially when the ear-
ly-lapse premiums are taken into account. Thus in 
practice, we need to use some numerical methods, 
such as PDE or Monte-Carlo based algorithms to 
evaluate the policies. For GMAB riders, it is some-
times more convenient to price the liability under 

the so-called forward measure 
T

 (see [21]) rather 

than the risk-neutral measure  (see [20]). Because 

in 
T

, we can reduce the number of dimensions of 

the liability evaluation problem (3) from three to 
two and the pricing process can be significantly 
accelerated. 

To facilitate the following study, we evaluate the 

GMAB riders in the forward measure .T
 Firstly, 

we introduce the forward value of Ǎ(t) at T observed 

at date t, denote by ( ) = ( ) /T T

t
F t A t Z  where 

T

tZ  is 

the price of a zero-coup bond maturing at T. Apply-
ing Ito’s lemma to FT(t), we get the dynamics of the 
forward account value: 

2 2( )
= ( ( ) ( ) )

( )

( ) ( ) ( ),

T

r rT

r

dF t
B u B u c dt

F t

dW t B u dZ t

ν ρνσ

σ ν

+ − +

+ +

 

where и = T ‒ t is the time to maturity and the func-
tion Br(u) = (1 ‒ e-au

)/a. By doing the following 

transformations of the Brownian motions from  

to 
T

: 

( ) ( ) ( )

( ) ( ) ( )

T

r

T

r

dZ t dZ t B u dt

dW t dW t B u dt

ν

ρν

→ −

→ −
                              (4) 

we have that, under 
T

, the dynamics of FT(t) can 

be written as: 

( ) = ( ) ( ) ( )

( ) ( ) ( ) =

( ) ( ) ( )

T T T T

T T

r

T T T

u

dF t cF t dt F t dW t

B u F t dZ t

cF t dt F t dW t

σ

ν

ω

− + +

+

= − +

               (5) 

where 2 2 2 2= ( ) 2 ( )u Br u Br uω σ ν ρσν+ +  and TW  is 

a Brownian motion in 
T

. The results above allow 

us to simplify the pricing problem of GMAB riders. 
Instead of computing the liability under risk-neutral 

measure  (as in (3)), we evaluate the forward 

liability ( , )E t f in 
T

: 

( , ( ), ( ))
( , ( )) := =

[ ( ) ( ( )) | ]

E
E T

T

t

T T T

t

t r t A t
t F t

Z

F T B F T
+

= + −E
Q

F

                        (6) 

Equation (5) and (6) show that the European-style 

forward liability E  can be evaluated by the follow-
ing analytical formula: 

2 1

1,2

( , ( )) = ( ) ( ) ( ) ( ),

log( ( ) / )
=

2

E T cu T cu T

T

t F t e F t BN d e F t N d

F t B cu
d

− −
+ − − −

− Γ
±

Γ

(7) 

where 
2

0
=

T t

s dsω
−

Γ ∫ and N(·) is the cumulative 

distribution function of the standard normal distribu-
tion. 

3. Valuation a GMAB with rational lapse as-

sumption 

In the previous section, we have formulated the 
pricing issue of GMAB riders under the no-lapse 
assumption. If policyholders are not allowed to 
lapse contracts before maturity, the liability of 
GMAB riders can be calculated analytically by (7). 
However, in practice we can not assume the lapse 
rate to be zero or some other constant, as we ob-
serve that the lapse rate does change significantly in 
different market conditions (equity market and in-
terest rate level) and this fluctuation of lapse rate 
has notable impacts on the liability value and insur-
er’s hedging strategy. 

As explained in the introduction, we consider the 
pricing problem of liabilities with lapse options as 
the valuation of a Bermudan-style contingent claim 
(see [12]). Because the rational lapse strategy dis-
cussed here are similar with the optimal early-
exercise strategy of classic Bermudan options. We 
assume that the policyholder can lapse the contract 
at the end of each policy year, noted as ti, i = 1,2,..., 
T. According to the definition, we have 

{ }( , ( ), ( )) max( ( ), ) ( , ( ), ( )) sup ( ) 1 max( ( ), ) |i

i i i

B B T

i i i i i T i t
i

T r T A T A T B t r t A t ess D A D A T Bτ
τ ττ τ∈ =

⎡ ⎤= − − − = +⎣ ⎦E
Q

F      (8)

where iT  is the set of all stopping times taking val-

ues in {ti, ti+1,…T} and τi denotes the stopping time 
of the rational lapse strategy since time ti. 

According to the assumption, the policyholder is 

not authorized to lapse the contract between two 

purchase anniversaries ti and ti+1, so the process 
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L
B
 of the liability should evolve in the same way 

as LE
 for ti ≤ t < ti+1. Applying the fact that r(t) 

and Ǎ(t) are all Markov processes, we have 

1

1 1 1

, ( , ( ), ( )) =

[ ( , ( ), ( )) | ].

B

i i i

i B

i i i i t
i

i n t r t A t

D t r t A t+

+ + +

∀

= − − −Q
FE

                (9) 

Similarly with Bermudan-style options, at discrete 
time points ti, the policyholder is supposed to com-
pare the account value with the value of the liability 
to decide whether lapse or not. If the account value 
is bigger than the liability, policyholders surrender 
the contract and get back Ǎ(ti). Otherwise, they con-
tinue to hold the policy. That is to say, at time ti, the 
Bermudan-style liability should evolve as following 

( , ( ), ( ))

max( ( ), ( , ( ), ( )))

B

i i i

B

i i i i

t r t A t

A t t r t A t

− − − =

=

   (10) 

Equation (10) reflects the fact that the liability be-
fore the annuity payment is equal to the greater of 

the current account value ( )iA t−  and the value of 

continuation. To simplify the pricing process of the 
Bermudan-style liability, we can calculate the ex-

pectations under the forward measure 
T  instead of 

the risk neutral measure . That is to say, we write 

(10) as 

1 1

( , ( ), ( ))
( , ( )) :

max( ( ), ( , ( )))

max( ( ), ( , ( )) ,
i

B
B T i i i

i i T

i

T B T

i i i

TT B T

i i i t

t r t A t
t F t

Z

F t t F t

F t t F t F
+ +

− − −
− − = =

= =

⎡ ⎤= − −⎣ ⎦
Q

E

         (11) 

where the boundary condition at maturity is 

( , ( )) ( ) ( ( ))B T T T
T F T F T B F T

+
= + −              (12) 

Another important issue related with the evaluation 
problem of the Bermudan-style liability is the de-
termination of the rational lapse strategy to be fol-
lowed. As the benefit base В is fixed atinception, 

according to (11) and (12), we have that B
 (t, f) is 

a convex, nondecreasing function of f. In addition, it 

is also a positive function on ( , ) [0, ) [0, ),t f T∈ × ∞  

for ( , ) ( , ) 0.B Et f t f> > Finally, for the charge 

fee с > 0, (11) and (12) also imply that 

lim( ( , )) 0.B

i
f

f t f
→∞

− > It follows from the previous 

arguments that, for each 0 1{ ,..., ,..., }i nt t t t
+

∈ , there 

exist a real number f*(ti−), 

*

*

0 ( ) ( , ) (not lapse),

( ) ( , ) (lapse).

B

i i

B

i i

f f t t f f

f f t t f f

≤ ≤ − ⇒ − >

≥ − ⇒ − =

    (13) 

In this paper, f
*(ti−) is referred to as the “critical 

forward account value” since the policy should be 
lapsed as soon as the forward account value increas-
es to this level at time ti. As it is shown by (13), 
thanks to the change of measure, the critical bound-
ary here depends only on the forward account value, 
rather than on both the interest rate and the account 
value level. However, it is not always possible to do 
this kind of simplifications when we evaluate Ber-
mudan-style options, because sometimes the intrin-

sic payoff (such as f for ( , )B t f ) is not a linear 

function of the underlying (e.g. American vanilla 
options). 

The objective now is to evaluate the liability B
 

and the critical surface f* of a single GMAB rider. 
Although many analytical approximations exist in 
academy literatures (see [30]), most of them are not 
sufficiently precise due to the long maturity proper-
ty. In the present paper, we propose two numerical 
methods: PDE and Monte Carlo schemes (see Ap-
pendix C for the description of the numerical 
schemes and numerical tests for the results), to cal-

culate both the Bermudan-style liability B and the 
critical lapse surface. As we have mentioned at the 
beginning, the PDE method is precise for low-
dimensional problems (< 3), while the Monte Carlo 
is more efficient when there are more than three 
dimensions in the pricing problem (e.g. multi-asset 
account value or stochastic volatility models). 

4. Life insurance policy pool 

The analysis above is focused on the rational lapse 

strategy and the no-arbitrage value of a single 

GMAB policy. The liability
B

, which takes into 

account the lapse risks, allows the insurer to hedge 

the uncertain customer behavior no matter what the 
lapse strategy of the policyholder is. But in practice, 

the insurers often need to estimate the lapse risks of 

a pool of life insurance policies, and in this case, the 

lapse strategy can be represented by the frequency 

p(ti) of the policies that are early terminated at time 
ti (see [1]). Actually, the common sense and experi-

ence tells us that not all policyholders will lapse the 

contract at the same time, so we need to slightly 

change the function p(ti) to estimate the real lapse 

rate of a policy pool. 

For a pool of GMAB policies, we denote by p (ti) 

the proportion of lapses at date ti among the con-

tracts still active in the pool. According to  

the rational lapse strategy, we can express p (ti) as a 

deterministic function f of the forward account value 

F
T(ti) that is 

*{ ( ) ( )}
( ( )) =T

i TF t f t
i i

f F t
−

1 . This lapse 

function implies that once F
T(ti) touches f

*(ti−), all 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 4, Issue 2, 2013 

 40

policyholders lapse the contract and otherwise every-

body hold the policy. 

Inspired by the mortgage prepayment models (see [2]) 
and evaluation approaches of surrender options for 
other life insurance products (see [1]), we assume that 
/ is a nondecreasing piece-wise linear function of the 
variable FT(ti). When FT(ti) < f

*(ti−), the lapse rate is 
not zero due to policyholders’ personal circumstances 
(including liquidity and death), which is independent 
of financial considerations. These “irrational” lapses 
are analogues to noneconomic prepayment on low-rate 
mortgages. While when FT(ti) ≥ f

*(ti−), some rational 
lapses never occur, and a reasonable specification of p 

(ti) may be illustrated as that in Figure 3. 

Fig. 3. Comparing the rational lapse function with the 

reasonable lapse function 

The four parameters F1, F2, Pmin and Pmax are deter-
mined by insurers according to some empirical tests. 
To be consistent with the rational lapse assumption, F1 

should be very close to f
*(ti), and Pmax should be set 

high enough (normally ≥ 50%). Under the reasonable 
lapse assumption, once the critical lapse level and the 
reasonable lapse function are determined, the GMAB 
liability can be simply evaluated as an European-style 
option (see [1]). However, it is worthy to mention that, 
unlike the rational lapse approach, the reasonable lapse 
assumption makes the insurer partially exposed to the 
risk of lapses in the future. 

55. Numerical tests 

In this section, we use two numerical methods (PDE 
and Monte Carlo) introduced above to evaluate the 
Bermudan-style liability of one standard GMAB 
policy. Our final results show not only the consistency 
between these two methods, but also the efficiency and 
precision of both methods. In addition, the option 
value of GMAB (defined later), the forward delta and 
the “critical boundary” found by these two methods 
are also compared. 

For the tested policy, The account value is supposed to 
evolve according to Hull-White model, where the 
principle model inputs are listed in Table 1.  

Table 1. Hull-White model inputs 

σ  r0 θ a σr ρ 

.2   0.02   0.02   0.03   0.01   0  

The initial equilibrium short-rate curve θ(t) is 
supposed to be flat (θ constant) and the short rate at 
inception is denoted by r0 All other parameters of 
product properties will be clarified later. 

For simplicity, we also assume that the policyholder is 
alive at the maturity of GMAB policies. Although we 
are focused on the liability of a single policy in the 
following numerical tests, the methodology we 
propose here can be easily extended to evaluate a 
GMAB policy pool by adding up policies of different 
maturities with a proper weight indicated by mortality 
rate assumptions.  

5.1. Bermudan-style GMAB liability. Firstly, we 
calculate the liability of a standard GMAB policy. The 
principle product parameters are listed in Table 2, 
where the charge fees rate is c = 2%, the maturity is 10 
years and the benefit base, fixed at inception, is 100$ 
for one policy. For simplicity, we assume that the 
policyholders are allowed to lapse the contract only at 
one specific date of each policy year.  

Table 2. Product parameters of the GMAB policy 

c B T 
Lapse date 
frequency  

%  100$   10 years   1/year  

Figure 4 shows the forward Bermudan GMAB liability 

( , )B
t f  computed by the PDE scheme for different 

forward account values through time. In addition, the 
intrinsic value of GMAB policies, which is equal to 
the instantaneous forward account value, is also 
recorded in Figure 4. It is worthy to mention that at the 
dates when lapses are allowed, once we have 

( , ) =B
t f f  for f big enough, policyholders should 

lapse the contract immediately. This phenomena is 
consistent with our intuitive, as the higher the account 
value is, the less the GMAB guarantees worth and the 
more likely that policyholders lapse the contract and 
get back the intrinsic value immediately. 

 

Fig. 4. The forward Bermudan liability (
B

) of a standard 

GMAB policy for different forward account values and time 

points, compared with the intrinsic value at all exercisable dates 
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To be further protected from potential lapse waves 
or other financial risks, the insurers can charge the 
policyholders an up-front fee, which is equal to 

0 0 0( (0, ) )T BZ f f−  (the difference between the 

liability and the asset), to make sure the balance 
sheet is in equilibrium at inception (see [15]). 

Figure 5 shows the early lapse premium (the 

difference between B  and E ) calculated by the 
PDE Scheme. In this figure, we observe that the 
Bermudan liability is almost equal to the European-
style liability when the account value falls to very 
low levels. Because in this case, the probability that 
policyholders lapse the contract before the maturity 
is extremely small. While when the forward account 
value increases to very high levels, the early lapse 
premium grows almost linearly with f. This is due to 

the fact that when * ( )f f t , ( , ) =B t f f  and 

( )( , )E c T tt f e f− −≈ . Finally we observe that, like 

other Bermudan contingent claims, the early lapse 
premium of GMAB policies reduces gradually to 0 
at the expiration date.  

 

Fig. 5. The forward early lapse premium (
B E−− ) of a 

standard GMAB policy for different forward account values 
and time points 

5.2. Option value of the GMAB policy. Firstly, we 
define the forward option value, denoted as 

( , )Bp t f , of the Bermudan-style GMAB policy, 

( , ) := ( , ) .B B
p t f t f f−                                    (14) 

The notation 
Bp  implies that the option value has 

many similar properties as a vanilla put1 (see 

Appendix B). In fact, ( , )Bp t f  can be simply 

interpreted as the difference between the liability 

( , )B t f  and the asset f  of GMAB policy issuers. 

That is to say, ( , )Bp t f  is the option that the insurers 

should replicate in practice. 

                                                   
1 For European GMAB policies, we know that the option value is in fact 

a vanilla put (see (7)). 

In Figure 6, we provide the numerical results obtained 

by the PDE scheme for different forward account 

values and different dates from the inception to the 

expiration of the policy. In this figure, we observe that 

the forward option value ( , )Bp t f  evolves similarly 

as a vanilla put (see Appendix B). In addition, when 
the forward account value is significantly higher than 

the critical lapse boundary, the option value becomes 

negative between two discrete exercisable dates. This 

is due to the charge fees that policyholders are obliged 

to pay to insurers. 

 

Fig. 6. The forward option value ( p ) of a standard GMAB 

policy for different forward account values and dates from the 

inception to the expiration of the policy 

Figure 7 compares the numerical results of (0, )B
p f  

computed by two methods: PDE and Monte Carlo. For 

the Monte Carlo method used here, we simulate 

10,000 scenarios with the step length of 0.1 year. To 

evaluate ( , )Bp t f  in this example, the average 

computing time of Monte Carlo method is about 1 to 2 
seconds. Figure 6 shows that the prices calculated by 

Monte Carlo- 1S  method is consistent with the results 

of PDE method. 

 

Fig. 7. Comparing the numerical results of the option value 

(0, )p f  computed by two different methods:  

PDE and Monte Carlo 

We also compare the numerical results of the 

forward delta of the option value computed by PDE 
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and Monte Carlo-S1 in Figure 8. We observe that 

the forward delta jumps up to 0 very quickly when f 

approaches to the critical boundary. This is easy to 

understand, as in this case all policyholders are 
supposed to lapse the contract and the insurers have 

no more need to hedge their liabilities. Fortunately, 

this difficulty of hedging lapse risks near the critical 

boundary can be partly overcome by diversifying 

the portfolio of GMAB policies (e.g. different 
maturities and benefit base levels). 

 

Fig. 8. The forward delta of ( , )p t f  of a standard GMAB 

policy for different forward account values and dates from 

the inception to the expiration of the policy 

 Fig. 9. Comparing the numerical results of the forward 

detla of the option value computed by two different 

methods: PDE and Monte Carlo-S1 
     

Figure 10 compares the critical lapse boundary for 
different discrete dates computed by the two 
methods introduced above. We observe that the 
numerical results of Monte Carlo method becomes

more and more instable from the expiration to the 
inception of the policy. This is because of the 
accumulation of pricing errors caused by linear 
regressions backward through time. 

 

Fig. 10. Comparing the critical lapse boundary computed by 

two methods: PDE and Monte Carlo 

In summary, we find that in our specific example 
here, the PDE method is faster and more precise, 
especially for f nearing the critical boundary, than 
Monte-Carlo based methods. In addition, this 
method can calculate the price and other important 
Greeks for different f and t at the same time. 
However, compared with the PDE method, the 
Monte Carlo method is much more flexible and 
easier to be implemented. Moreover, unlike PDE 
based methods, the Monte Carlo method can be 
extended to other high-dimensional problems, such 
as path-dependent payoffs, stochastic volatility 
models or basket account values (see [14], [15]).  

CConclusion 

In this paper, we introduce a framework to evaluate 
the liability of GMAB polices under rational lapse 

assumption. We study in full details not only the 

financial sensitivities, but also the rational lapse 

strategy of GMAB products in the stochastic interest 

rate model. Two numerical methods, the PDE and 
Monte Carlo, are implemented to price the policy 

and also to determine the critical lapse boundary. 

Moreover, we find a semi-analytical formula to 

approximate the lapse premium of the GMAB. 

Inspired by the rational lapse assumption, we finally 
introduce the reasonable lapse assumption to help 

insurers to measure the lapse risks of a policy pool.
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AAppendix A. American-style GMAB 

To the best of our knowledge, there is no closed formula to evaluate the Bermudan-style liability ( , )B t f . However, 

we can use some semi-closed formulas to approximate the liability if we assume that the policyholders can lapse the 

contract at any time. In this case, we denote the GMAB liability as ( , )B t f , which is in fact an American-style 

contingent claim.  

In the past twenty years, many analytical approaches for evaluating American-style options in the Black-Scholes model 
are published, such as [8], [18], [10], [16], etc. However, most of them are not flexible for different payoff functions. In 

this paper, we find that the BAW and JZ approaches (see [8] and [18]) can be extended to estimate ( , )B t f  in the one 

factor Hull-White model. Numerical tests show that these two approximations are efficient and precise for GMAB 
policies with 20 years maturity. 
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Firstly, we show how the BAW method can be applied directly to estimate the American-style liability ( , )B t f . It is 

obvious that ( , )B t f  is the solution of (29),  

2 2 2

2
= 0

2

A A A

T t
w f

cf
t f f

−∂ ∂ ∂
− +

∂ ∂ ∂
  (15) 

and is subject to the boundary conditions ( , ) = max( , ( , ))A At f f t f−  for 0 ≤ t ≤ T. The key insight of BAW 

approximation (see [8]) is that if both American options and European options are solutions of (29), then the early 

exercise premium ψ(t, f) of GMAB policies, which is equal to ( , ) ( , )A Et f t f− , is also a solution of (29). Defining  

τ = T ‒ t and changing the variable of ψ from t to τ, we have that ψ(t, f) is the solution of the following equation,  

2
2 2

2

1
= 0.

2
cf f

f f
τ

ψ ψ ψ
ω

τ
∂ ∂ ∂

− − +
∂ ∂ ∂

  (16) 

In practice, it is very difficult to find the solution of (16) analytically. So the authors of [8] developed an approximation 
method to estimate ψ(t, f).  

According to the BAW method, the early exercise premium can be approximated by the function 

( , ) = ( ) ( , )f h u h fψ τ τ , where h(τ) = 1 ‒ e-gτ (numerical tests show that = log( ) /T

tg Z τ−  could be a good choice) 

and u(h, f) is a function to determine. Replacing ψ(t, f) by ( , )fψ τ  in (16) and neglecting the term /u h∂ ∂ , we have:  

2
2 2

2

1
= 0.

1 2

g

g

ge u u
u cf f

e f f

τ

ττ ω
−

−

∂ ∂
− − +

− ∂ ∂
  (17) 

The general solution u(h, f) of (17) is: 

1 2
1 2( , ) = ,  u h f A f A f

λ λ
+  

where 
2 2 2 2

1,2 2

2 ( 2 ) 8 / ( )
= .

2

g
c c ge h

τ
τ τ τ

τ

ω ω ω τ
λ

ω

−
+ ± + +  

As λ2 < 0 while the early exercise premium is worthless when the asset price drops to zero, the coefficient A2 must be 
zero. Thus when f < f* (t) at time t, the American-style liability can be approximated by:  

1
1( , ) ( , ) ( ) .A Et f t f h A f

λτ≈ +   (18) 

It remains the coefficient A1 and the critical forward account value f* (t) to find. In fact, (13) implies that at f* (t), 

( , )B t f  is equal to the forward account value, that is  

* * * 1
1( ) = ( , ( )) ( ) ( )Ef t t f t h A f t

λτ+    (19) 

and the slope of the exercisable value, which is the forward account value, is set equal to the slope of ( , )B t f  at f* (t), 

that is,  

1* 1
* 1 1= ( )

( , )
1 = | ( ) ( ) .

E

f f t

t f
h A f t

f

λτ λ −∂
+

∂
   (20) 

Solving (19) and (20) by the algorithm of Newton-Raphson (see [8]), we can find both f* (t), and A1 at time t. 

The numerical tests show that the pricing error of BAW method is tiny if the forward account value f is not too small. 
However, when the GMAB policies are deep in the money, the BAW approximation becomes less precise. To improve 
the precision in this case, we extend the method developed by Ju and Zhong (JZ method, see [18]) to our specific 

evaluation problem here. In fact, the authors of [18] proposed to add a perturbation term to the function ( , )fψ τ  to 

improve the precision of the early exercise premium. This corrected function, denoted by 
jψ , is defined as:  

( , ) := (1 ( , )) ( , ) = (1 ( , )) ( ) ( , ),
j

f h f f h f h u h fψ τ ε ψ τ ε τ+ +   (21) 

where ε(h, f) is a function to determine. Replacing ψ  by 
jψ  in (16) and applying (17), we obtain an equation for  

ε (h, f) at time 0,  
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2
2 2 2 2

2

1
(1 ) ( ) = 0.

2

h u h u
u f cfu f u

h h f f f
τ τ

ε ε ε
ε ω ω

τ τ
∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

  (22) 

After a series of approximations (see [18]), we get the corrected approximation to the American-style liability 

( , )B t f :  

1
2 *

( , ) ( , ) ( ) ,
1 ( )

A E d f
t f t f

bx cx f t

λ≈ +
− −

   (23) 

where *= log( / ( ))x f f t  and a, b, c and d are four parameters to be determined by (22). Figure 10 compares the 

American liability 
A

 computed by (18) and (23) with the numerical results of PDE scheme, which is considered as 
the benchmarks here. We observe that the approximation methods are precise for a wide range of initial account values. 

In addition, we find an empirical relationship between the Bermudan GMAB liabilities and the American ones, which 
can be simply written as  

(0, ) (0, ) ( (0, ) (0, )) ,B A A E t
f f f f

T

Δ
≈ − −   (24) 

where T is the maturity and Δt is the interval between two exercisable dates of Bermudan GMAB liabilities. Figure 11 
verifies the empirical approximation (24) by the numerical results of PDE scheme. In fact, our numerical tests show 
that (24) is also applicable for other long-term Bermudan contingent claims (e.g. vanilla puts with maturities  
longer than 5 years). 

Fig. 11. Comparing the liability calculated by two 

approximation methods with the numerical results of PDE 

 

Fig. 12. Comparing the empirical approximation methods 

with the numerical results of PDE 

Appendix B. Option value of GMAB policies 

The forward option value ( , )Bp t f  of GMAB policies, defined by (14), is what the insurers should replicate in 

practice once they write GMAB contracts. According to the definition, we can decompose ( , )Bp t f  into two parts:  

( , ) = ( , ) = [ ( , ) ] (1 )B B B c cp t f t f f t f e f e fτ τ− −− − − −   (25) 

For simplicity, we define ( , ) = ( , )B B cq t f t f e fτ−− . Applying (11), it is easy to verify that ( , ( ))B T

i iq t F t− −  

evolves as  

( )
( , ( )) = max((1 ) ( ),  ( , ( )))

c T tB T T B Ti
i i i i iq t F t e F t q t F t

− −− − − =

( )

1 1= max((1 ) ( ),  [ ( , ( )) | ])
Tc T t T B Ti

i i i ti
e F t q t F t
− −

+ +
− − −E

Q
F  (26) 

and at the maturity, we have ( , ( )) = ( ( ))B T Tq T F T B F T +− . Therefore, we can interpret ( , )Bq t f  as a Bermudan put 

option with the exercisable value (1 )ce fτ−−  at dates ti. Some insurers call ( , )Bq t f  as the forward value of claims, 

and (1 )ce fτ−−  as the forward value of charges, for this term is in fact the expectation of forward charge fees insurers 

can receive if the policyholder holds the contract to the maturity. According to (25), the forward option value ( , )Bp t f  

is equal to the difference between the forward value of claims and the forward value of charges. 
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AAppendix C. Numerical schemes  

It follows from the definition of the forward Bermudan-style liability ( )BL t  with an optimal stopping time 

1 2{ , , , }t t Tτ ∈ , that the process of the forward liability ( )BL t  satisfies the backward programming equation, for 0 ≤ 

ti ≤ T  

1( ) = max{ ( ), [ ( ) | ]}
TB T B

i i i ti
L t F t L t

+ −− −E
Q

F   (27) 

and at the maturity, we have ( ) = max( , ( ))B TL T B F T .  

Thanks to the martingale property of 
BL  on the interval ˆ[ , )it τ , we have for 0 ≤ ti ≤ T,  

ˆ{ = }
ˆ( ) = [ ( ) max( , ( )) | ]

TB T T

i i T t
i i

L t F B F Tττ− +E 1Q
F   (28) 

where the optimal stopping time îτ  is defined as: ˆ := inf{ : ( ) = ( )}B T

i j i j jt t L t F tτ − − . 

To the best of our knowledge, it is difficult to find precise analytical formulas to evaluate the Bermudan-style 
contingent claims in practice. In this paper, we extend the traditional semi-analytical methods (see [8] [18]) to estimate 

the spot Bermudian-style liability ( , )B t f  of GMAB polices (see Appendix A). However, the approximation method 

introduced here is not as flexible as numerical approaches, especially for high dimensional problems. Thus in most 

cases, we need to use numerical methods, such as PDE and Monte Carlo, to calculate the Bermudan liability ( , )B t f . 

1. PDE scheme
1
. In this paper, we transform the evaluation problem (11) of Bermudan-style liability ( , )B t f  into a 

free-boundary partial differential equation, for which ( , )B t f  is the solution. For GMAB policies, the Bermudan-style 

liability ( , )B t f  is represented as a function of two variables: the time t  and the forward account value f . Applying 

Itô’s lemma and the martingale representation theorem together, we know that the liability ( , )B t f  is the solution of a 

one dimensional PDE. By adding the free-boundary constraint implied by equation (11) to this PDE, we have  

2 2 2

2
= 0

2

B B B

T tw f
cf

t f f

−∂ ∂ ∂
− +

∂ ∂ ∂
  (29) 

on 
1{( , ) : < , > 0}i it f t t t f− , subject to the boundary conditions at time points 

10 < <i nt t
+

  

( , ) = max( , ( , ))B B

i it f f t f−   (30) 

 and at the maturity T, we have  

( , ) = max( , ).B T f f B   (31) 

On each of the intervals [ti-1, ti), the PDE (29) can be calculated numerically by using the Crank-Nicolson method (see 

[19]) for [0, )f F∈ , where F is the upside boundary of the numerical solution. While at discrete time points ti, the 

critical lapse surface f*(ti) can be easily found by the free-boundary constraint indicated in (30). On the boundary, we 
impose the zero-convexity conditions2:  

2

=0 =2
( , ) | = ; | = 0

B
B

f f Ft f B
f

∂
∂

. 

In fact, according to [4], the precision of the final solution is not very sensible to the error on boundaries if the solution 

domain of parabolic equation is large enough. So in most cases, the practitioner can choose other boundary conditions 
instead of those we propose here3. 

2. Monte-Carlo Scheme. The liability (0)BL  is estimated as the conditional expected value of the forward liability 

based on Monte-Carlo simulation. 

The forward liability satisfies two conditions: 

                                                   
1 In this numerical test, the discrete time step of the PDE scheme is 0.01 year. 
2 This assumption is based on the fact that the gamma of the liability is small on the boundary. 
3 In the specific case here, the first or second order derivative boundary condition is preferred to the Dirichlet condition. As the latter could lead to 
significant errors on the boundary. 
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♦ the backward programming equation: 

1( ) = max{ ( ), [ ( ) | ]}

( ) = max( , ( ))

TB T B

i i i t
i

B T

L t F t L t

L T B F T

+ −
⎧ − −⎪
⎨
⎪⎩

E
Q

F
   (32) 

♦ the martingale property of B
L  on each [ , )it τ  traduced by: 

ˆ{ = }
ˆ( ) = [ ( ) max( , ( )) | ]

ˆ := inf{ : ( ) = ( )}

T
B T T

i i T ti i

B T

i j i j j

L t F B F T

t t L t F t

ττ

τ

⎧ − +⎪
⎨

− −⎪⎩

E 1Q
F

 (33) 

As pointed out in [14], these equations ((27) and (33)) lead to two algorithms, referred to as S1 and S2 hereafter. 

The first algorithm S1 computes the optimal stopping time to lapse in three steps: 

1. Simulate N discrete scenarios of the forward account value, denoted as ( )T k
F  (0 ≤ i ≤ n+1 and 0 < k ≤ N), accor-

ding to (5).  

2. Set the forward Bermudan-style liability at maturity for each scenario: ( )

[1]
( ) = ( )B k TL T F T .  

3. Apply (27) from tn to t0. For i = n to 0:  

( ) ( ) ( )

[1] [1] 1
if ( ) < : ( ) = ( ),

+
− − −T k B k B k

i i i
F t B L t L t  

         ( ) ( ) ( ) ( )

[1] [1] 1if ( ) : ( ) = max{ ( ), [ ( ) | ( )]}.
+

− − − − −E
T

T k B k T k B T k

i i i i iF t B L t F t L t F tQ  

From step 3 of scheme S1, we can identify the estimated rational lapse time 
( )

0

kτ  as the first time for the k-th scenario 

where the liability equals the account value. Once 
( )

0

kτ  is recorded for each path, we can estimate the Bermudan-style 

liability by scheme S2 where we regress the cash flows on a set of basis functions. 

This latest computes the corresponding liability following four steps: 

1. Simulation: Use the same N simulated scenarios as in S1.  

2. Initialization: Set the rational lapse time ( )

0 1=k

ntτ
+

, for 0 < k ≤ N.  

3. Backward induction: For i = n to 0, ( ) ( )

{( ) } 1 {( ) }
=k k

i k i cki i

iτ τ∈ + ∈
+1 1

L
L

. (where ( ) ( )

[1]
:= {( ) : ( ) = ( )}B k T k

i i i
k L t F t− −L  and 

( ) ( )

[1]
{( ) : ( ) > ( )}c B k T k

i i i
k L t F t− −L  its complement). 

4. Price estimator at 0: ( ) ( ) ( )

[2] 0 ( )=1 { = }
0

1
(0) := [ ( ) max( , ( ))]

NB T k k T k

kk T
L F B F T

N τ
τ +∑ 1 .  

In [14], the authors find the following relation with the two estimators 
[2]

BL  and 
[1]

BL  computed above:  

[2] [1]
[ (0)] (0) [ (0)].B B BL L LE E   (34) 

In the numerical tests in the section below, we calculate both 
[1]

BL (0) and 
[2]

BL (0) to construct confidence intervals of the 

[2] [1]
[ (0), (0)]B BL L  for the true value (0)BL . 

Appendix D. Linear regression vs. global polynomial regression 

We now introduce the scheme used to calculate the conditional expected value of continuation for scenarios such that 
FT(k)(ti‒) > B. Here we use the local linear regression approach proposed in [14] to calculate this value, as opposed to 
the global polynomial regression method developed in [27]. The reason for this is that the latter can lead to some 
instability in the regression process for high dimensional and long maturity problems (see [14]). 

For our specific problem, we have only one dimension: the forward account value FT. The idea is to use, at each time 

step ti, a set of functions dψ  having local hypercube supports Dl, where the space is cut into I regions, l=1 to I and 

{Dd} is a partition of ( ) ( )
{ =1, } { =1, }[ ( ), ( )]maxmin

T k T k
k N k Ni iF t F t . The index (·)(k) denotes the k-th simulated scenario. On 

each support Dl, we define a linear function 
lΨ  with 2 degrees of freedom, which are represented by a constant and FT. 
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Our goal now is to regress the future cash flow of liability on the function 
lΨ  to estimate the relevant conditional 

expectation. The two regression basis of 
lΨ , noted as 0 1( , )l lψ ψ , will be clarified later1. 

For simplicity, we define the function GN (ti, F
T (ti)) as the conditional expectation at time ti, we have:  

( ) ( ) ( )

[1] 1 1: ( , ( )) = [ ( , ( )) | ( )],
T

N k N T k B T T k

i i i i i iG G t F t L t F t F t
+ +

− − − − −QE  

where ( )N k

iF  is the conditional expectation associated with the k-th path at time ti. In the context of S1, the numerical 

procedure to calculate ( )N k

iG  reads as follows. 

Scheme SC : estimator of ( ) (0 )N k

iG i n  with regression: 

1. At time ti, realize a quick-sort of FT(k)(ti) for N scenarios and identify the support Dl of the functions 
lΨ  so that 

each support contains approximately the same number of scenarios.  

2. For each scenario 0 < k ≤ N, set the three regression basis of 
lΨ : 0 1( , )l lψ ψ , where 0( ) =1lψ ⋅ , 

1 ( ) ( )( ( )) = ( )T k T k

l i iF t F tψ − − .  

3. On each support Dl, regress ( )

[1] 1{ ( )}B k

i k N
L t

+
−  on 

lΨ . In other words, for l∀ , we calculate the coefficients 

0 1( , )l lα α  that minimize 
1( ) ( ) 2

[1] 1=1 =0
| ( ) ( ) |

N B k m m k

i l lk m
L t α ψ

+
− − ⋅∑ ∑ , and set 

1( ) ( )

=0
= ( ( ))N k m m T k

i l l im
G F tα ψ −∑ .  

                                                   
1 The two regression basis correspond to the constant and the forward account value. 
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