
“Aggregation of an FX order book based on complex event processing”

AUTHORS
Barret Shao

Greg Frank

ARTICLE INFO

Barret Shao and Greg Frank (2012). Aggregation of an FX order book based on

complex event processing. Investment Management and Financial Innovations,

9(1)

RELEASED ON Friday, 30 March 2012

JOURNAL "Investment Management and Financial Innovations"

FOUNDER LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES

0

NUMBER OF FIGURES

0

NUMBER OF TABLES

0

© The author(s) 2024. This publication is an open access article.

businessperspectives.org

Investment Management and Financial Innovations, Volume 9, Issue 1, 2012

88

Barret Pengyuan Shao (USA), Greg Frank (USA)

Aggregation of an FX order book based on complex

event processing
Abstract

Aggregating liquidity across diverse trading venues into a single consolidated order book is important for financial
institutions that trade foreign exchange. But doing so poses several challenges, including stable latency performance
under spurious bursts in message rate. Complex event processing offers an approach to this problem that yields per-
formance and maintenance advantages over thread-based approaches.

Keywords: aggregate order book, foreign exchange rate, complex event processing.
JEL Classification: C61, F31.

Introduction ©

A centralized electronic exchange has a certain book to
record all quoted bid and ask prices and sizes. Without
considering the commission fee required by brokers,
the difference between optimal bid and ask price, or
spread, is a major part of the transaction cost for taking
market orders. Reducing the spread leads to lower
transaction cost. Unlike a centralized electronic ex-
change, various trading venues and brokers erase the
uniqueness of the order book in a centralized electron-
ic exchange. The interest of aggregating an order book
comes from the need to lower transaction cost, which
is very important for high frequency trading.

1. Aggregated order book for FX

1.1. Properties of FX trading. Foreign exchange
trading in the interbank market is quite different from
trading exchange-traded instruments such as equities
or futures. Instead of one central electronic exchange,
many different trading venues exist for the same cur-
rency, such as Reuters, Hotspot, Currenex, and single-
bank e-commerce platforms such as BARX. Financial
institutions are becoming increasingly interested in FX
trading and volumes are increasing in a market that is
already the largest in the world, with an estimated
volume of over $3 trillion per day just in spot FX.

1.1.1. Complication of trading environment. The FX

trading environment is much more complicated than

trading on centralized electronic exchanges such as

CME or NASDAQ. In addition to electronic clearing

networks that offer a standard limit order book, there

are single bank platforms that offer trading. Often-

times, each trading venue provides a unique quote

stream for investors with different spread and skew

characteristics depending on that customer’s credit

profile and style of trading. Different trading venues

mean that it is possible to have multiple simultaneous

quotes for the same instrument. The FX trader’s chal-

lenge is to trade with the venue that offers the most

attractive quote at that moment for that currency, when

© Barret Pengyuan Shao, Greg Frank, 2012.

consuming liquidity. When providing liquidity, the

challenge is to publish quotes on the specific venues

where counterparties are likely to deal in a particular

currency and price level at that moment.

1.1.2. 24-hour trading. FX is traded 24 hours per

day, in contrast to exchange traded instruments, that

are only offered during exchange opening hours.

The ability to trade FX 24 hours per day increases

the diversity of liquidity to FX traders.

1.2. Aggregated order book. Typically, sell-side
institutions have built their own aggregated FX order
book for their own use or as price offerings to their
customers. Buy-side institutions such as many hedge
funds are typically more interested in minimizing cost
and market impact by sourcing the best pricing for
their order, even if it has to be broken into parts and
routed to several venues, rather than paying the spread
offered by a single trading venue for every trade.
Transaction costs have been decreased in aggregate by
the increasing prevalence of high frequency algorithms
employed by buy-side firms. The largest components
of transaction cost are usually bid-ask spread and slip-
page due to market impact.

Due to the decentralized nature of interbank FX trad-
ing, different trading venues provide different bid and
ask prices for the same currency pair. Even though
some trade venues mostly may offer tighter spreads in
specific currency pairs than others, this is not always
the case. Liquidity characteristics and spreads vary
throughout the day for each trading venue and curren-
cy pair. The tightest spread and least concentrated
market impact can usually be obtained by using an
aggregated order book. For example, the following
graph is a snapshot of quotes from different trading
venues for the AUD/CAD. In this hypothetical exam-
ple, we see that even though HotSpot provides the
tightest spread, the optimal trade decision would be to
use the higher bid price from HotSpot when selling
AUD/CAD, and the lower ask price from Nomura
when buying. This combination would lower bid-ask
spread by 50% compared with trading on the venue
with the tightest spread.

Investment Management and Financial Innovations, Volume 9, Issue 1, 2012

89

Source: Bloomberg.

Fig. 1. Snapshot of different quotes for AUD/CAD

1.3. The challenge of aggregating an FX order

book. 1.3.1. Low latency. Reducing the latency of
high frequency trading requires a capital-intensive
infrastructure, including server hardware, colloca-
tion with trading counterparties, networking equip-
ment, and a trading platform. FX rates change in the
millisecond time range, requiring a high standard for
latency of message transfer and trade calculation. If
the latency is high, the delayed FX rates streaming
from trading venues or banks may be less competi-
tive and subsequent orders may even be rejected due
to the market pricing having changed in the time

between the original quote having been generated
and the order having been placed. Latency is intro-
duced by message transport as well as computation-
al latency in the trading platform. For example, as-
sume an aggregated order book consists of four
trading venues, each with different message trans-
port latency. If the optimal offer price currently
comes from BARX, it is still possible that an order
may not be filled because of latency. Hence, when
aggregating an order book of different venues, vary-
ing message transport latencies need to be consi-
dered in the order routing methodology.

Fig. 2. Different pipe lengths for trading venues

1.3.2. Distributed and varying market depth. Large
orders usually exceed the amount available to trade at
the optimal quote price in a single trading venue. An
aggregated order book requires an intelligent way to
split a large parent order into subsidiary orders, each of
which get routed to different trading venues. The fol-
lowing is an example of the various market depths for
an aggregated order book for AUD/CAD. The red
prices represent the optimal bid and offer prices at
each time. If we want to execute an order smaller than

1M, it will be easy to take the optimal bid and offer
prices from the composite order book. However, the
specific market depth for the optimal prices may not
be sufficient for a larger order. For example, an order
to sell 3M AUD/CAD needs to be executed at time 1
(the first column of the order book), but the available
liquidity in Nomura is only 1M. Rather than executing
the full 3M in a single venue, the aggregate fill price
will be improved by splitting the order into different
parts and allocating them to different trading venues.

B
B

G
 T

ra
de

 b
oo

k

C
B

A
 B

an
k

C
IT

I
F

X

C
re

di
t S

ui
ss

e
F

X

F
X

 D
ire

ct
 D

ea
le

r

H
ot

S
po

t F
X

IC
A

P
 P

LC

JP
 M

or
ga

n
F

X

N
at

l A
us

t B
k

M
el

N
or

m
ur

a
F

X

T
P

 F
X

Investment Management and Financial Innovations, Volume 9, Issue 1, 2012

90

Table 1. Snapshot of a simple order book for AUD/CAD

EBS UBS NORMURA BARX

1.0270(1)/73(1.1) 1.0269(3)/73(2) 1.0271(1)/73(1.5) 1.0270(2)/72(2)

1.0272(1.2)/76(1.3) 1.0271(2)/74(2.5) 1.0273(1.2)/75(1.6) 1.0272(1.5)/74(1.5)

1.0274(1.2)/77(1.4) 1.0273(2)/75(2.5) 1.0275(1.2)/77(1.5) 1.0274(1.5)/76(1.6)

1.0273(1)/76(1.1) 1.0271(2)/74(2) 1.0272(1.3)/75(1.3) 1.0272(1)/75(1.3)

Another phenomenon is that each trading counterparty
changes its quote book in response to the liquidity
being consumed at that instant. If a large order placed
on Nomura consumes a lot of the AUD/CAD liquidity
available on that platform, it is likely that the remain-
ing AUD/CAD quotes on Nomura would be changed
in response to hedge Nomura’s resultant change in
exposure to the opposite side of this large AUD/CAD
trade. Over time, these quotes may revert to their orig-
inal position as Nomura hedges its exposure and reple-
nishes its AUD/CAD inventory from other available
sources. These sources may be the same venues that
the original trader also connects to and can trade on,
creating a potentially complex series of market res-
ponses to large orders. The algorithms used by a buy-
side aggregated order book need to take this into ac-
count so as not to concentrate market impact or create
conditions that make it difficult for the counterparties
to hedge their positions.

1.3.3. No standardization of messaging protocol. De-
spite the FIX protocol offers a broad standard for fi-
nancial trading message interchange, every FX trading
venue has different message formats, and different
rules. For example, Electronic Clearing Networks

(ECNs) such as Reuters and HotSpot allow traders
to post limit orders but do not guarantee execution.
Some single-bank trading venues do not allow limit
orders, only Fill-or-Kill orders. These are executed
against a stream of quotes from that bank, and those
quotes are in turn generated in response to a request for
quote message specifying a size band and duration for
the quote stream to be valid.

1.3.4. No standardization of prices. ECNs usually
control which market makers’ prices are visible to
specific customers depending on that customer’s trad-
ing styles and needs. A trader usually does not get to
see all quotes contributed by all market makers. For
single-bank trading platforms, different customers get
differing amounts of spread and skew applied by the
bank depending on their trading style and credit profile.

1.3.5. Only quotes visible, not trades. In contrast to
exchange-traded assets such as equities or futures, the
interbank FX market typically does not allow traders
to see other market participants’ trades. Traders can
only observe quotes. Traders can see how those quotes
change, and then infer what trades or cancellations
created those changes, but this problem does not have
a unique solution. As a result, it is difficult to recon-
struct the order flow that led to a particular venue’s

order book variations over time. This makes it difficult
to use traditional algorithmic execution approaches
employed in the equity market.

2. Complex event processing

2.1. The concept of CEP. The concept of “Event-
Condition-Action” came about in database research
in the 1990s as a way to describe the composite event
processing logic of “active databases”. The structure
of traditional database architectures that use a “store-
index-query” model is limited when one confronts a
problem in which there are fast-moving updates. The
challenge is multiplied multifold when events are
derived from distributed sources (e.g., network de-
lays, out-of-order events) and when performance is
critical (e.g., when there are many event queries op-
erating on a large number of events, only a few of
which are of interest).

2.2. Difference between event-based and thread-

based programming. Imperative thread-based pro-
gramming languages such as C++, Java or Python that
run process step-by-step in a series of threads have
been the most common way for programmers to real-
ize a project with transactional logic.

In thread-based programming, execution continues
sequentially until that code thread is blocked by an I/O
operation. At that point, execution in that thread is
suspended pending the I/O completion, and the CPU
core switches another (non-blocked) thread. This ap-
proach enables simultaneous I/O and computation,
while still offering the predictability and coding sim-
plicity of serial programming. However, this concur-
rency requires the programmer to deal with thread
synchronization. The programmer has to ensure the
protection of shared data spaces with locks and condi-
tion variables. In I/O intensive applications such as FX
trading in an aggregated order book, this can lead to
latent data races and deadlocks. The following figure
is the basic structure of imperative programming.

Fig. 4. Basic structure of imperative programming

Compared with imperative programming, event pro-
gramming uses a different flow structure. The order of
execution is not determined by the order of statements

in the code it is determined by the arrival and
processing of events.

Investment Management and Financial Innovations, Volume 9, Issue 1, 2012

91

Fig. 5. Basic structure of CEP

In event programming, when a sequence of code can-
not continue because it has to wait for an I/O event to
complete, it registers a “callback” – a pointer to code
that is to be called when the I/O event is complete. A
callback executes linearly until it encounters a block-
ing operation, at which point it registers a new callback
and returns execution to its originating point.

2.2.1. Computational efficiency. Traditional transac-
tional architectures take data, store it to some static
entity like memory or disk, index this data, and pass
queries over the data to get results. A CEP architecture
takes queries (named “listeners”) and passes streams
of data over those queries to trigger results, called
“events”. Those results can in turn trigger other queries

(hence, the “Complex” name of event processing the
results of queries can create other queries. This allows
one to define events that are aggregates or combina-
tions of fundamental data events.)

One reason why CEP is computationally efficient
(particularly for finance) is that a program sets up
listeners only for events that are of interest at that
particular time. It does not have to listen for all
possible events all the time. There is no concept like
a “main loop” that controls the flow of execution in
a sequential manner. This allows a program to dis-
card events that are not of interest. Only computa-
tional resources for the events that are of interest in
a specific context are processed.

2.2.2. Loose coupling. CEP is more efficient for
creating code for transactional problems in that the
structure of code often matches the structure of the
problem. The programmer defines events that match
an event in the real world, or an event of interest
that is derived from a collection of other events.
Blocks of code communicate only by passing events
to one another, rather than by using shared re-
sources. This makes code more modular, easier to
structure for parallel execution across numerous
cores or machines, and more robust against failures.
We call this “loosely coupled code”.

This is an increasingly important consideration in
event-driven applications that are diverse and distri-
buted such as FX trading where there are multiple
event sources and trading destinations, rather than
“closed loop” environments.

2.3. CEP in FX order book aggregation. Because
of the architectural differences described above,
event-based approaches can produce stable latency
performance that does not increase linearly in the
face of increasing data throughput. This is in con-
trast to thread-based approaches, where aggregate
latency is directly dependent on data throughput.

In FX trading where event rates are often many

thousand per second and can be very “bursty” in the

periods immediately following economic data re-

leases, an event-based architecture can offer impor-

tant advantages. The response to events in FX trad-

ing needs to be nearly instantaneous. This poses a

challenge to traditional transactional architectures

because the need for stable latency performance

under bursty loads was not foreseen when these

approaches were conceived.

FX aggregation is a computationally complex task

and it scales significantly as more liquidity pools are

added into the mix. Every time one of the pools

changes, the aggregation algorithm must detect this,

consider whether the change impacts the aggregated

market view for a particular currency pair, and then

make any necessary changes. This must be done

with the minimum possible latency. Event-based

rules can be used to instantly detect and act on FX

market changes that require fine-grain reorganiza-

tion of the aggregated view. For example:

1. Quote initiations, amends and cancellations

from banks or ECNs are treated as events.

2. A CEP approach enables easy normalization of

the different messaging and quote structures

from each venue into a common event for

representing market depth.

Investment Management and Financial Innovations, Volume 9, Issue 1, 2012

92

3. Orders can be normalized into a common event
definition that may have a different semantic
structure and set of rules for each liquidity venue.

4. CEP code is natively asynchronous. For exam-
ple, one might receive a fill against an order before
receiving the order acknowledgement. This might
confuse some algorithms. By not requiring any
synchronous structure, the code operates the way
the problem does by passing events or messages.
Those events can have rules defined for them that
address issues like reconstituting the structure of a
complex event that has been implied by underly-
ing events (in this case, a filled order).

Conclusion

FX order book aggregation poses several chal-
lenges, including differing transport latency between

different trading venues, varying market depth, lack
of standardization of messaging protocols, and sta-
bility of latency performance. In this analysis, we
argue that complex event processing deals with
the difficulties of FX aggregation better than al-
ternative approaches. This is primarily due to the
fact that: (1) computational resources are used
only to process events that are of interest at that
particular time; (2) code is more maintainable
because it is built around events that are defined
to match real-world events or events derived from
an aggregate or sequence of other events; and (3)
aggregate latency does not increase linearly as a
function of event rate as it does with thread-based
approaches, and this is important for maintaining
latency stability during the bursty periods that are
characteristic of FX trading.

References

1. Dabek, F., N. Zeldovich et al. (2002). Event-driven programming for robust software, ACM.
2. Etzion, O. and P. Niblett (2010). Event Processing in Action, Manning Publications Co.
3. Luckham, D.C. (2001). The power of events: an introduction to complex event processing in distributed enterprise

systems, Addison-Wesley Longman Publishing Co., Inc.
4. Biais, B., P. Hillion et al. (1995). “An empirical analysis of the limit order book and the order flow in the Paris

Bourse”, Journal of Finance, 50, pp. 1655-1689.
5. Flood, M.D. (1991). “Microstructure theory and the foreign exchange market”, Federal Reserve Bank of St. Louis

Review, 73 (6), pp. 52-70.
6. Progress Software (2010). Apama technical white paper.

	“Aggregation of an FX order book based on complex event processing”

